

JOINT SERVICES – SOFTWARE SAFETY AUTHORITIES (JS-SSA)

Software System Safety
Implementation Process and Tasks

Supporting MIL-STD-882E
With Joint Software System Safety Engineering Handbook References

Developed by the JS-SSA Sub-Working Group in Support
of the Joint Services Weapon Safety Review (JSWSR)

Boards

April 1, 2016

Distribution Statement A
Approved for public release; distribution is unlimited.

This report is provided in fulfillment of the JS-SSA responsibility to advise system safety
engineering programs on safety specific issues or concerns. It provides implementation
guidance for Software System Safety program requirements specified in MIL-STD-882E and
guidance detailed in the JSSSEH.

Encl 2

i

Table of Contents

1.0 Software System Safety Abstract .. 1

2.0 Specialty Task Outline and Process ... 2

3.0 Process and Process Tasks for Software System Safety.. 2

3.1. Process Task 1.0: Prepare the System Safety Management Plan (SSMP).................................... 4

3.1.1. Reference Documents ... 4

3.1.2. Process Subtask 1.1: Obtain Inputs from Acquirer Regulations and Policies 5

3.1.3. Process Subtask 1.2: Obtain Inputs from MIL-STD-882E and Compliance Documents 5

3.1.4. Process Subtask 1.3: Obtain Commitment from Program Management 5

3.1.5. Process Subtask 1.4: Prepare SSMP for Review and Approval .. 6

3.1.6. Process Subtask 1.5: Provide Inputs to the Request for Proposal (RFP) and Statement of
Work (SOW) .. 6

3.2. Process Task 2.0: Prepare System Safety Program Plan (SSPP) .. 6

3.2.1. Process Subtask 2.1: Obtain Inputs from the System Safety Management Plan (SSMP) 7

3.2.2. Process Subtask 2.2: Obtain Inputs from Compliance Documents 7

3.2.3. Process Subtask 2.3: Integrate Software Safety Engineering Criteria 7

3.2.4. Process Subtask 2.4: Prepare Level-of-Rigor (LOR) Appendix.. 7

3.2.5. Process Subtask 2.5: Obtain Acquirer Approval of the Developer’s SSPP 10

3.3. Process Task 3.0: Preliminary Hazard Analysis ... 10

3.3.1. Process Subtasks 3.1: Identify Hazards Pertaining to the Baseline System 11

3.3.2. Process Subtask 3.2: Categorize Hazards with Preliminary RAC .. 12

3.3.3. Process Subtask 3.3: Identify Hazard Failure Modes ... 12

3.3.4. Process Subtask 3.4: Identify Hazard Causes - Hardware, Software and Human Error 13

3.3.5. Process Subtask 3.5: Identify Hazard Mitigation Requirements .. 13

3.4. Process Task 4.0: Functional Hazard Analysis (FHA) ... 14

3.4.1. Process Subtask 4.1: Functionally Decompose the System ... 15

3.4.2. Process Subtask 4.2: Identification of All Functionality ... 15

3.4.3. Process Subtask 4.3: Document Functional Failure Consequences 16

3.4.4. Process Subtask 4.4: Determine Severity of Functional Failure Consequences 16

3.4.5. Process Subtask 4.5: Identify Safety-Significant Functions .. 16

3.4.6. Process Subtask 4.6: Identification of SwCI for SSFs .. 17

ii

3.4.7. Process Subtask 4.7: Map SSFs to the Software Design Architecture 17

3.4.8. Process Subtask 4.8: Identify Failure Mitigation Requirements .. 18

3.5. Process Task 5.0: LOR Allocations to Safety-Significant Functions ... 18

3.5.1. Process Subtask 5.1: Assess SSF against Software Control Categories (SCC) 18

3.5.2. Process Subtask 5.2: Assess the SSF for the Consequence Severity 19

3.5.3.Process Subtask 5.3: Compare SCC and Severity with the Software Safety Criticality Matrix
(SSCM) ... 19

3.5.4. Process Subtask 5.4: Assign the Criticality LOR to the Safety-Significant Function 19

3.6. Process Task 6.0: Preliminary Safety Requirements Analysis (SRA) ... 19

3.6.1. Process Subtask 6.1: Review System and Functional Specifications 20

3.6.2.Process Subtask 6.2: Identify and Tag Contributing Safety-Significant Requirements (CSSR)
 .. 20

3.6.3. Process Subtask 6.3: Identify and Tag Generic Safety-Significant Requirements (GSSR) .. 20

3.6.4.Process Subtask 6.4: Identify and Tag Mitigating Safety-Significant Requirements (MSSR)
 .. 21

3.7. Process Task 7.0: Perform In-Depth Hazard Analysis ... 21

3.7.1. Process Subtask 7.1: Integrate Hazards from the Preliminary Hazard Analysis 23

3.7.2. Process Subtask 7.2: Categorize Hazard with an Initial RAC .. 23

3.7.3. Process Subtask 7.3: Perform In-Depth Hazard Causal Analysis .. 23

3.7.4. Process Subtask 7.4: Derive Lower-Level Mitigation Requirements 24

3.7.5. Process Subtask 7.5: Categorize Hazards with a Final RAC .. 24

3.8. Process Task 8.0: Perform Detailed Safety Requirements Analysis .. 24

3.8.1. Process Subtask 8.1: Reassess Preliminary Requirements .. 25

3.8.2. Process Subtask 8.2: Reassess Mitigation Requirements .. 25

3.8.3. Process Subtask 8.3: Verify Requirements in Design ... 25

3.8.4. Process Subtask 8.4: Author Appropriate Defects Against Design Requirements............. 25

3.9. Process Task 9.0: Perform Safety Requirements Traceability .. 25

3.9.1. Process Subtask 9.1: Trace Safety Requirements to Design Architecture 26

3.9.2. Process Subtask 9.2: Trace Safety Requirements to Hazards .. 26

3.9.3. Process Subtask 9.3: Trace Safety Requirements to Implementation 27

3.10. Process Task 10.0: Perform Code-Level Safety Analysis ... 27

3.10.1. Process Subtask 10.1: Determine the Software Functionality to Analyze 27

iii

3.10.2. Process Subtask 10.2: Determine the Software Functionality to be Analyzed 28

3.10.3. Process Subtask 10.3, Determine the Objectives of Analysis ... 28

3.10.4. Process Subtask 10.4, Analyze LOR-1 Software .. 28

3.11. Process Task 11.0: Perform Software Test Planning ... 29

3.11.1. Process Subtask 11.1: Ensure Correctness and Application of the LOR Test Criteria 29

3.11.2. Process Subtask 11.2: Ensure Safety Functionality is Tested .. 30

3.11.3. Process Subtask 11.3: Comply with the LOR Test Criteria ... 30

3.11.4. Process Subtask 11.4: Assist in Writing Test Cases and Test Procedures 30

3.12. Process Task 12.0: Monitor Safety-Significant Software Testing .. 30

3.12.1. Process Subtask 12.1: Ensure Software Testing Conforms to LOR Test Criteria................. 31

3.12.2. Process Subtask 12.2: Ensure Safety Functionality is Tested ... 31

3.12.3. Process Subtask 12.3: Monitor Test Defects and Corrective Actions 31

3.12.4. Process Subtask 12.4: Review Final Software Test Results .. 31

3.13. Process Task 13.0: Perform Residual Safety Risk Assessment .. 32

3.13.1. Process Subtask 13.1: Reassess all Documented Hazards ... 32

3.13.2. Process Subtask 13.2: Verify Hazard Mitigation .. 32

3.13.3. Process Subtask 13.3: Assess Partial Mitigation or Failure to Mitigate 32

3.13.4. Process Subtask 13.4: Support Residual Safety Risk Assessment 33

3.13.5. Process Subtask 13.5: Document and Communicate Residual Safety Risk........................ 33

3.14. Process Task 14.0: Participate in Life-Cycle Management and Support 33

3.14.1. Process Subtask 14.1: Assess all Functional and Physical Changes to the System 34

3.14.2. Process Subtask 14.2: Assess the Change Against Documented Hazards 34

3.14.3. Process Subtask 14.3: Identify New Hazards, Failure Modes, or Causes 34

3.14.4. Process Subtask 14.4: Mitigate Hazards, Failure Modes, or Causes 34

3.14.5. Process Subtask 14.5: Document and Communicate Safety Risk 34

3.14.6. Process Subtask 14.6: Update all Safety-Related Artifacts .. 34

4.0 Acronym List.. 36

5.0 Glossary ... 37

iv

List of Figures

Figure 1.0: Initial SSS Process Chart for Pre-Contract and Requirements Phases .. 4
Figure 1.1: Process Task 1.0 Prepare the SSMP Subtasks .. 5
Figure 1.2: Process Task 1.0 SSPP Task and Subtasks ... 6
Figure 1.3: Sub-Process Task 2.4 Prepare LOR Appendix to SSPP .. 8
Figure 2.0: SSS Process Chart for Requirements and Preliminary Design Phases 11
Figure 2.1: Process Task 3.0 PHA Task and Subtasks .. 11
Figure 2.2: Example of Hazard Failure Modes Represented in Simple Logic Diagram 13
Figure 2.3: Process Task 4.0 Task and Subtasks .. 14
Figure 2.4: Example FHA Format .. 15
Figure 2.5: SSF Mapping to Software Design Architecture Example .. 17
Figure 2.6: Process Task 5.0 LOR Allocation Task and Subtasks ... 18
Figure 2.7: Process Task 6.0 Safety Requirements Analysis Task and Subtasks ... 20
Figure 3.0: SSS Process Chart for Detail Design and Implementation Phases .. 22
Figure 3.1: Process Task 7.0 Perform In-depth Hazard Analysis and Subtasks ... 23
Figure 3.2: Process Task 8.0 Detailed Safety Requirements Analysis and Subtasks 25
Figure 3.3: Process Task 9.0 Perform Requirements Traceability and Subtasks .. 26
Figure 3.4: Hazard Closed-Loop Requirements Traceability ... 26
Figure 4.0: SSS Process Chart for Test and Deployment Phases ... 27
Figure 4.1: Process Task 10.0 Perform Code Level Analysis and Subtasks ... 28
Figure 4.2: Process Task 11.0 Perform Software Test Planning and Subtasks .. 29
Figure 4.3: Process Task 12.0 Monitor Safety-Related Testing and Subtasks .. 30
Figure 4.4: Process Task 13.0 Perform Residual Safety Risk Assessment and Subtasks 32
Figure 4.5: Process Task 14.0 Participate in Life Cycle Management and Subtasks 33
Figure A.1: Preferred LOR Tailoring Method Example ... 39

Appendices

Appendix – A Preferred Level-of-Rigor Table

1.0 Software System Safety Abstract
Software System Safety Engineering (SSSE) focuses on two primary objectives; first to design, code, test,
and support software with the appropriate level-of-rigor (LOR) to instill a confidence, or the assurance
of safe software; and to define the necessary safety requirements for the design, code, test, verification
and validation of software that specifically target and mitigate the software “causes” of the defined
hazards and mishaps of the system. Each of these two objectives is covered in detail within the Joint
Services SSSE Handbook (JSSSEH). Requirements to meet the SSSE objectives are specified in MIL-STD-
882E. The challenge is getting Acquirers (Customer) and Developers (software developers) to specify
how they will turn the objectives of MIL-STD-882E and the JSSSEH “guidance” into actual SSSE
requirements. The objective of this document is to provide DOD Acquirers and their Developers with the
implementation details necessary to take the requirements of MIL-STD-882E and the “guidance” of the
JSSSEH and define the process and tasks required for a compliant SSSE program. MIL-STD-882E and
guidance of the JSSSEH proper will continue to be the parent source for guidance on how to meet
identified software safety engineering requirements. This document is also appropriate for use by non-
DoD entities developing software for safety-significant systems.

2

2.0 Specialty Task Outline and Process
This distillation of MIL-STD-882E and the JSSSEH into implementable process task requirements is
presented as a decomposition of parent and children activities in a process task numbering format. The
parent tasks are graphically represented depicting inputs to the tasks and the products that the task
would likely produce. Tasks identified as MIL-STD-882 requirements are coded in the graphics using an
extreme bold border of the task box. Task decomposition is to the level necessary for a basic
understanding of the process, the tasks that implement the process, and the products the tasks would
likely produce. The requirements derived that apply to each task will be specified and cross referenced
to both the applicable MIL-STD-882E requirements and JSSSEH sections and paragraphs that provide
guidance on meeting the requirements. As such, any DOD Acquirer or Developer should be able to
develop SSSE tasks and requirements that comply with MIL-STD-882E and the guidance of the JSSSEH.
Appendix A of this document is a LOR task table that should be used to develop the defined process
tasks necessary to meet LOR requirements. The LOR table should be tailored for any given program as
agreed to by the Acquirer and Developer.

3.0 Process and Process Tasks for Software System Safety
The process for accomplishing a successful Software System Safety (SSS) program begins with the
contract between the Acquirer (typically a DOD Agency, Program, Project or Product Office) and the
Developer (generally referred to as the Developer or Software Developer). It is essential for the DOD
Acquirer to adequately specify the System Safety Engineering (SSE) and SSSE tasks and artifacts
necessary to meet the requirements of MIL-STD-882E. If the statement of work (SOW) does not define
the required Developer safety tasks and artifacts, then the overall safety program is likely to not meet
either the service-specific or the Joint Services safety requirements. The vast majority of SOW tasks are
reflected in Appendix A under SSE Tasks required for adequately supporting the software system safety
effort. Additionally, the SOW must specify the frequency of meetings; Contract Deliverable items
(CDRLs); and necessary reviews in order for the developer to adequately bid their efforts.

The Acquirer must adequately plan for the tasks that will be required and implemented by the
Developer. This planning is accomplished prior to the Request for Proposal (RFP) (or contract change for
existing programs) and documented in the System Safety Management Plan (SSMP) as referenced in
JSSSEH Para 4.2.1 and detailed in Section 3.1 Process Task 1.0. Specific Acquirer tasks that must be
accomplished prior to contract award include (but are not limited to);

• Develop SSMP
• Define/Tailor the Mishap Risk Matrix, Software Criticality Matrix and associated input definitions
• Charter the System Safety Working Group (SSWG) to include all managerial, organizational, and

technical relationships
• Develop Safety input to the RFP, SOW and other contractual documentation (this is where Tasks,

CDRLs, and required analyses, etc. should be specified, as well as when/where
delivered/documented). Required analyses should include: MIL-STD-882E Task 102 SSPP, Task
106 HTS, Task 201/202 PHL/PHA, Task 203 SRHA, Task 204 SSHA, Task 205, SHA, Task 206

3

O&SHA, Task 208 FHA, and Task 301 SAR. As applicable, Task 209 SoS Hazard Analysis may be
required.

• Define Acquirer specification safety requirements
• Provide Safety requirements input to other relevant documentation (ex. Software Development

Plan (SDP), Test and Evaluation Master Plan (TEMP), System Engineering Master Plan (SEMP),
Configuration Management Plan (CMP))

• Work with PM to ensure the systems safety and software system safety program is adequately
resourced and staffed.

• Ensure Acquirer Safety is part of the configuration control process (voting member of Acquirer
chaired boards, participant/reviewer of safety impacted items at the level (MIL-STD-882E Task
304). Evidence can be incorporated into the CMP and/or Board Charter(s).

• Perform analyses required to define the System Level Mishaps and interfaces/contributions
provided by supporting system elements (ex. multiple Developers may be developing different
critical subsystems and each must account for their respective contributions to system mishaps).

Figure 1.0 includes the initial process tasks required by the Acquirer and then transitioning to the
tasks required by the Developer after contract award. This document will step through the parent
process tasks beginning with Task 1.0: Prepare System Safety Management Plan. Subtasks (children
to the parent task) will also be presented and discussed to ensure that the reader fully comprehends
the scope and details of each major task described. Where applicable, references to MIL-STD-882E
and the JSSSEH are provided for further detail.

4

Figure 1.0: Initial SSS Process Chart for Pre-Contract and Requirements Phases

3.1. Process Task 1.0: Prepare the System Safety Management Plan (SSMP)

It is standard practice within an Acquirer’s program office to develop a SSMP for a program (or family of
programs). This document defines the Acquirer’s requirements for the establishment, structure,
resourcing, and implementation of a system safety and software system safety activity for the program,
or family of programs, to be managed by an individual Acquirer program office. The SSMP must
document the system safety program requirements as established by applicable Federal and Civil law,
and DoD acquisition authorities. Subtasks to this process task are depicted in Figure 1.1.

3.1.1. Reference Documents

The following documents provide the basis for the format and criterion for the SSMP and this
implementation guide:

• DOD Instruction (Interim) 5000.02 – Operation of the Defense Acquisition System, November
25, 2013

• MIL-STD-882E – Department of Defense Standard Practice, System Safety, May 11, 2012
• DOD Joint Software System Safety Engineering Handbook, Version 1.0, August 27, 2010

5

• RTCA DO-178C, Software Considerations in Airborne Systems and Equipment Certification, 2011
• SAE Aerospace Recommended Practice (ARP) 4754, Certification Considerations for Highly-

Integrated or Complex Aircraft Systems, November 1, 1996
• SAE Aerospace Recommended Practice (ARP) 4761, Guidelines and Methods for Conducting the

Safety Assessment Process on Civil Airborne Systems and Equipment, 1996

Figure 1.1: Process Task 1.0 Prepare the SSMP Subtasks

3.1.2. Process Subtask 1.1: Obtain Inputs from Acquirer Regulations and Policies

The requirements for a system safety program are explicitly documented in MIL-STD-882E. The
Acquirer’s specific regulations and policies provide the requirements for generation of the SSMP. The
SSMP must reflect the criterion established in these regulations and policies as well as in MIL-STD-882E.
Examples may include such things as Air Worthiness Certification criteria for air vehicles to the
requirements established by individual safety boards (i.e., regulatory, Service and Joint Safety Review
Boards). The SSMP must include these additional safety program requirements that will aid the Acquirer
in meeting all certification or acceptance authority criteria. The SSMP should ensure that all of the
Acquirer’s system safety and software safety requirements are adequately transitioned to the Request
for Proposal (RFP) and the Statement of Work (SOW), and ultimately flowed down to the developer.
This flow down of the SSMP ensures the Developer’s SSPP supports the Acquirer meeting their safety
requirements. Developers bidding on the contract must have a clear understanding of the Acquirer’s
expectations for the system and software safety engineering efforts. This allows the Developer to bid
and propose a system safety program based upon Acquirer requirements and expectations.

3.1.3. Process Subtask 1.2: Obtain Inputs from MIL-STD-882E and Compliance Documents

MIL-STD-882E, Task 101 provides direction on content for System Safety Program management.
Individual Acquirer programs may possess system safety requirements that are not explicitly covered in
MIL-STD-882E, regulations or policies, but deemed important by the Program Office. The development
of a SSMP must take into consideration the requirements that are defined by other compliance
documents

3.1.4. Process Subtask 1.3: Obtain Commitment from Program Management

Without Program Management “buy-in” regarding the necessity and return-on-investment (ROI) of a
comprehensive system safety engineering effort, the probability of successfully influencing the design
from a safety perspective is greatly reduced. The system safety program defined by the SSMP must
possess concurrence and acceptance from the program manager. This is the best opportunity for the

6

System Safety Manager to adequately communicate the system safety ROI to Program Management in
terms of the total life-cycle costs associated with mishaps as it affects human injury or death,
programmatic costs, schedule, operational readiness, operation effectiveness, and organizational
reputation.

3.1.5. Process Subtask 1.4: Prepare SSMP for Review and Approval

Ultimately, it is the Acquirer who must meet their respective program requirements. The SSMP defines
the path forward for all system safety efforts to be performed by both the Acquirer and the
Developer(s). This plan establishes the overall system safety requirements whereas the Developer’s
System Safety Program Plan (SSPP) defines the processes, methods, tasks, and tools to be implemented
to meet the SSMP and contracted safety requirements. The SSMP must also include all applicable
requirements for the establishment and implementation of a software system safety program

3.1.6. Process Subtask 1.5: Provide Inputs to the Request for Proposal (RFP) and Statement
of Work (SOW)

Once the SSMP is produced and approved by Acquirer Management, the system safety requirements
language defined in the plan must be captured in each RFPs and SOWs that are published by the
program office to support the design, development, and test, of each program asset being developed or
updated. If the system safety requirements are not captured in the RFP and the supporting SOW, the
Developers will possess no contractual basis to perform the necessary tasks to complete a successful
system safety or software system safety program.

3.2. Process Task 2.0: Prepare System Safety Program Plan (SSPP)

[Ref: JSSSEH Paragraph 4.2.1, Fig. 4-6, and MIL-STD-882E Task 102]

The SSPP is the document of compliance for the contract as it applies to system safety and software
system safety engineering. Figure 1.2 depicts the process subtasks as they apply to the task of preparing
the SSPP for approval. The Developer’s SSPP, including the Software System Safety Program Plan
(SwSSPP) requirements, must define how the Developer’s contractual safety requirements are flowed
down, implemented and verified by their development team, sub-developers, subcontractors, or
vendors.

Figure 1.2: Process Task 1.0 SSPP Task and Subtasks

7

3.2.1. Process Subtask 2.1: Obtain Inputs from the System Safety Management Plan (SSMP)

The SSMP (or equivalent Acquirer document) defines the relevant compliance criteria from standards,
regulations, and handbooks, and defines the terms and term definitions to be used on the program and
to charter the SSWG. From the SSMP and Contract tasks, the Developer prepares the SSPP that defines
and documents the processes, tasks, and deliverables to be accomplished on the program to comply
with the contractual safety requirements. The SSPP should contain, as a minimum, the information
defined by MIL-STD-882E, Task 102 and the corresponding Data Item Description (DID), DI-SAFT-80100A,
System Safety Program Plan. If the JSSSEH is cited in the SOW, SSMP, and/or SSPP, then this JSSSEH
Implementation document should be used to develop Software System Safety Program (SwSSP)
requirements.

3.2.2. Process Subtask 2.2: Obtain Inputs from Compliance Documents

The primary compliance document is MIL-STD-882. Depending upon whether this is a new acquisition
program or a fielded system in the Sustainment phase (aka legacy program), the contractual version of
MIL-STD-882 may be Revision E or an earlier version. In addition, each DOD Service may have separate
compliance documents for software system safety. However, it is important to note that Service and
Joint Safety Reviews and safety risk assessment/acceptance are based upon the criteria of most current
versions of DODI 5000.02 and MIL-STD-882 regardless. On aviation related contracts, aviation specific
compliance documents or standards may be required. This is important to understand because each
individual standard can use terms that are common to the safety community but possess totally
different meanings. As an example, the Functional Hazard Assessment (FHA) as defined by SAE ARP
4761, Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems
and Equipment, has a different purpose, content, and format as a Functional Hazard Analysis (FHA) as
defined by a MIL-STD-882E.

3.2.3. Process Subtask 2.3: Integrate Software Safety Engineering Criteria

The specific processes, tasks, and deliverables to support SSS engineering should be completely
integrated into the main text of the SSPP. IAW with MIL-STD-882E requirements, the SSPP must detail
how the SSS requirements are going to be addressed for all safety-significant software (as software is
defined in MIL-STD-882E) within the system. The SSS input to the SSPP must address the requirements
for each development phase and also address validation and approval of tools, models and simulations
that will be used in the development, support and verification/validation of safety-significant software.
The SSS engineering criteria to be specified in the SSPP, and implemented, should be extracted from
both MIL-STD-882E and the JSSSEH.

3.2.4. Process Subtask 2.4: Prepare Level-of-Rigor (LOR) Appendix

[Ref: JSSSEH Paragraph 4.2.1.5, and 4.3.2, JSSSEH Figure 4-13, Table 4-3, and Table 4-4; and Appendix A-
Level of Rigor Task Table]

The SSPP must contain the comprehensive LOR Task Table that establishes both the Developer’s process
and design requirements for SSS. The Acquirer, either via reference to the SSPP, or inclusion in the SSMP
must specify an initial LOR Task Table for the Developer to tailor and implement as part of their SSS and

8

software development programs. The LOR Table contains the specific required process tasks and design
requirements to obtain the necessary body of evidence that software introduces an acceptable
contribution to mishap risks for the program, as well as to implement and meet the intent of the general
requirements of MIL-STD-882. This confidence can only be obtained if the defined tasks for each
software development life cycle phase are successfully defined and accomplished. The subtasks of
Process 2.0 are presented in Figure 1.3.

Figure 1.3: Sub-Process Task 2.4 Prepare LOR Appendix to SSPP

3.2.4.1. Process Subtask 2.4.1: Obtain LOR Task Inputs from Compliance Documents

Preparation of a LOR Table that will be accepted by the Developers’ development team and approved by
the Acquirer and their independent safety reviews, necessitates that compliance documents become
the foundational input to the table. For example, in MIL-STD-882E, Table V defines the general LOR
requirements for each level of Software Criticality. The purpose of Process Subtask 2.4 is to take those
general requirements and then specify the specific implementation requirements the program will
execute to fulfill the MIL-STD-882E criteria. DOD Service requirements must also be assessed for
inclusion into the table, as well as the requirements of the various Service and Joint Safety Reviews.

For aviation-related programs, SAE ARP 4754/4761 and RTCA DO-178C, Software Considerations in
Airborne Systems and Equipment Certification, are called out for the purposes of ensuring that
airworthiness requirements are established and fulfilled to obtain an Air Worthiness Release (AWR). In
addition, each of the Services, either jointly or independently, may have unique LOR requirements for
specific subsystems that require separate approvals, such as fuze, ignition and laser subsystems.

3.2.4.2. Process Subtask 2.4.2: Prepare the LOR Task Table Appendix

An initial LOR task table is provided in Appendix-A. An initial LOR task table can also be included in the
Acquirer’s SSMP and provided separately by the Acquirer to the Developer. This table can be tailored
for each individual program’s capabilities and requirements based upon the criticality, complexity, and
constraints of the program. All tailoring must be approved by the SSWG and the Acquirer. It is highly
recommended that the Acquirer obtain concurrence of tailored tasks from the various applicable review
authorities as well. Where tailoring is implemented, it must be adequately explained, justified and
approved.

Within the LOR Table, the criticality is ranked in accordance with both the mishap severity definitions
and the software control category definitions of MIL-STD-882E. LOR ranking is from lowest criticality
(SwCI-5) to highest criticality (SwCI-1) as referenced in MIL-STD-882E Table V.

9

System Functions that are deemed safety-significant (SSF) IAW MIL-STD-882E are assessed for their
criticality (see Section’s 3.5.2, 3.5.3, and 3.5.4) and are architected, designed, coded and verified in
accordance with the LOR tasks documented in the program’s approved LOR Table. LOR tasks must
include the software development process tasks, software test and verification tasks, and design
assurance features that are required for each SSF.

In reality, budgetary and schedule constraints may play a role in tailoring requirements. However, if the
budget and schedule do influence the tailoring process, it will likely produce more residual safety risk for
the system, or at minimum impact acceptability by review authorities. Table VI of MIL-STD-882E
provides requirements for notifying management and risk acceptance authorities of the consequences
of lack of LOR application. When potential programmatic or safety risks resulting from budget and
schedule impacts are identified, they may also require inclusion in the overall Program Risk tracking
system to maintain management visibility. Risk accepted in one contractual activity should never be
carried over as the baseline for the next contractual activity.

3.2.4.3. Process Subtask 2.4.3: Obtain LOR Concurrence from Development and Test

The software developers, architects and testers must be integrated into the software SSE activities and
be involved with the definition and implementation of LOR tasks. This is an important step in that the
safety team must understand the system and software architecture to define the software criticality and
the derived LOR tasks. In addition, the software developers and testers must fully comprehend their
role in the execution of a successful SSS program. They must understand what they are required to
accomplish by LOR definition and safety assurance rationale of the tasks to be accomplished. The
software developers and testers should have an input to the definition and tailoring of LOR tasks. Any
task that is perceived to possess little ROI for the resources expended should be flagged as candidates
for tailoring with appropriate justification to include the potential safety risk rationale.

3.2.4.4. Process Subtask 2.4.4: Integrate LOR Tasks with Development and Test Processes

The approved LOR tasks must be fully integrated into the software development, coding, and test
activities of the Developer. Some of the LOR tasks are accomplished by the system safety team,
whereas many are actually accomplished by the software design, code, and test teams. Those tasks
assigned to software development and test must be part of their defined processes as documented in
their planning documents.

3.2.4.5. Process Subtask 2.4.5: Integrate LOR Tasks into Pertinent Program Plans

The approved LOR Table tasks must be adequately documented in the applicable Developer
specifications, plans and process documentation as requirements. Documents typically include: the
Software Requirements Specification (SRS), Software Development Plan (SDP), Software Test Plan (STP),
Software Configuration Management Plan (SCMP), and Software Quality Assurance Plan (SQAP). The
Developer must ultimately be able to answer the questions “How did you meet LOR requirements?”
and, “Where is the evidence?”

10

3.2.5. Process Subtask 2.5: Obtain Acquirer Approval of the Developer’s SSPP

The developer’s SSPP must be submitted for review and approval by the Acquirer to ensure it
adequately addresses SSE and SSS requirements and tasks, to include references to other developer
documentation that may implement SSS requirements. This review and approval includes the approval
of the LOR Appendix. Acquirer approval of the LOR Table, including concurrence from their safety
review authorities, represents Acquirer concurrence that the tasks defined in the table are sufficient (if
implemented and evidenced) to provide the necessary assurance that safety-significant software is
being designed, coded, and tested in accordance with defined best practices. All LOR tailoring must be
explained and justified. As the program matures, changes to the LOR table should be coordinated with
and concurred to by the SSWG and applicable review authorities.

3.3. Process Task 3.0: Preliminary Hazard Analysis

[Ref: JSSSEH Paragraph 4.3.4 and MIL-STD-882E, Tasks 201, and 202]

The software system safety process as initiated in Figure 1.0 continues as depicted in Figure 2.0 below.
Within the software development life cycle, this is considered the requirements and preliminary design
phase of development.

11

Figure 2.0: SSS Process Chart for Requirements and Preliminary Design Phases

Figure 2.1 depicts the initial Developer Preliminary Hazard Analysis (PHA) effort in Process Task 3.0. The
PHA commences almost immediately after contract award. Notice that the Functional Hazard Analysis
(Section 3.4 Process Task 4.0) is likely to be performed concurrently with the PHA. This is considered
acceptable because these two analyses basically provide specific and essential information that brings
accuracy and fidelity to each individual analysis. The safety DID pertaining to the PHA is DI-SAFT-
80101A.

Figure 2.1: Process Task 3.0 PHA Task and Subtasks

The PHA is performed under the responsibility of SSE and its scope is dictated by the SOW and contract.
The PHA is the initial analysis performed on the system for the purpose of the identification of potential
hazards and top-level mishaps (TLM’s) which are documented within the PHA. The PHA begins with
development of the Preliminary Hazard List (PHL). The PHL, detailed in MIL-STD-882E Task 201, provides
a summary list of potential hazards and mishaps for the system, including those with software
contributions. SSSE must support the development of the PHA by providing assessment of the system’s
software within the context of the system. Another important purpose of the PHA is to identify
potential failure modes and causes of the hazards in order to define (as early as possible) mitigation
requirements for the system and software specifications. Mitigation requirements should be defined as
early in the analysis process as possible and documented in the specifications, resulting in fewer derived
safety requirements after the design matures within the life cycle process. Section 3.6.3 provides
discussion of Generic System Safety Requirements (GSSR). During the PHA, mitigating requirements will
likely consist of high level specification requirements and GSSRs. The PHA is one of the earliest
opportunities to influence the design and design decisions regarding the use of software in performing
SSFs. PHL and PHA results are used to populate the initial Hazard Tracking System (HTS) records as
defined in MIL-STD-882E, Task 106. As the results of the PHL and PHA mature and evolve in subsequent
safety analyses, the HTS records will also evolve and mature.

3.3.1. Process Subtasks 3.1: Identify Hazards Pertaining to the Baseline System

[Ref: MIL-STD Task 202 and JSSSEH paragraph 4.3.4]

The preliminary mishaps and hazards are identified based upon the capabilities the system is to provide,
the preliminary design baseline, and the safety risk potential that the system could possess. Preliminary
hazards may be either formalized or eliminated as they are peer reviewed by system designers and the

12

SSE team within the SSWG. Regardless of the final disposition of the identified hazard, all hazards are
captured and documented in the official hazard record keeping system (MIL-STD-882E, Task 106).

3.3.2. Process Subtask 3.2: Categorize Hazards with Preliminary RAC

Each identified and documented hazard and mishap is initially categorized in terms of mishap severity
and likelihood of occurrence prior to any mitigation action. MIL-STD-882E defines severity and
likelihood of occurrence (probability) and must be used unless tailoring has been approved by the
Program’s DOD Component Executive. Each hazard and mishap is assigned an initial risk assessment,
commonly known as a Risk Assessment Code (RAC), and documented in the HTS hazard record. RACs
can be obtained from the Risk Assessment Matrix as defined in Table III of MIL-STD-882E. Software does
not have a probability of occurrence component, so it is not necessary to assign a probability at the
software causal level (of the hazard), but the PHA should consider how a software cause(s) affects the
overall hazard and mishap probability of occurrence.

RAC is the allocation of severity and probability of the mishap when all hazard mitigations are
considered in the design and requirements are implemented for the procedures and training of
personnel operating and maintaining the system. In most instances, the severity of the hazard or
mishap will not change, unless the associated system capabilities and design changes. Changes in RAC,
from initial assignment to risk acceptance, will likely be a reduction in probability only.

3.3.3. Process Subtask 3.3: Identify Hazard Failure Modes

Hazard failure modes are the primary failure paths leading to a hazard as represented in the example
logic diagram of Figure 2.2. In the depicted example, “Loss of Engine” is the system-level hazard with
four primary failure modes (there are likely others); Bird Strike; Loss of Fuel to Engine; Failure of Engine
Control; and Failure of the Compressor. It should be noted that these failure modes will likely be
tracked as separate sub-system-level hazards in subsequent Sub-System Hazard Analyses (SSHA) if the
SSHA is a contractually required artifact or deliverable item. Continuing the logic diagram lower, it is
evident that each sub-system-level hazard possesses individual failure modes. It is important to
accomplish the analysis for the PHA in a “top-down” manner in order to keep track of the context
between mishaps, system-level hazards, sub-system-level hazards, failure modes, and failure mode
lower-level causes. Once the hazard failure modes are identified, each failure mode can then be further
analyzed for specific causes from a hardware, software, and human error perspective.

13

Figure 2.2: Example of Hazard Failure Modes Represented in Simple Logic Diagram

Both “loss of fuel to the engine” and “failure of engine control” events are likely to contain one or more
software causes (contributions to fault or failure). The PHA should continue as far down the causal
pathway as the design will allow in order for the definition of as many safety-significant software
mitigation requirements as possible.

3.3.4. Process Subtask 3.4: Identify Hazard Causes - Hardware, Software and Human Error

The PHA must be performed in such a way as to be able to see the context of how software reacts to
hardware and human operators, and how the hardware and the human reacts to how the software
functions. Hazard causes must be integrated to ensure that functional and physical interfaces are
included in the analysis. Note: It is essential that the PHA and follow-on analyses be performed to the
depth necessary for the identification of specific hazard mitigation requirements that provide the
evidence of sufficient AND-Gate protection against the probability of failure propagation to the top
event.

3.3.5. Process Subtask 3.5: Identify Hazard Mitigation Requirements

[Ref: JESSSEH paragraph 4.3.5.1.3]

Because the PHA is performed early in development, the hazard mitigation requirements that are
identified by the PHA and the FHA analysis might be more general (high level requirement) in nature.
Multiple derived lower-level requirements may be necessary to fulfill a high-level requirement as the
design matures. This derivation of lower level requirements must occur as the system design matures.
From the SSSE perspective, it is important to understand context for potential mitigation requirements
that may be assigned to software and to ensure their integration into the PHA and software
specifications. The PHA task concludes with the capture of all PHA analysis data in the Acquirer-
approved Hazard Tracking System (HTS).

14

3.4. Process Task 4.0: Functional Hazard Analysis (FHA)

[Ref: JSSSEH paragraph 4.3.3, and MIL-STD-882E Task 208]

The FHA is another foundational SSE analysis performed under the responsibility of system safety
engineering and its scope is dictated by the SOW and contract. Additionally, virtually all safety review
authorities expect a FHA as part of the program’s objective evidence to obtain review acceptance and
concurrence. The FHA is one of the most important analyses that the system safety analyst will
perform. As the software implements functions within the context of system, it is essential to
understand which functions are safety-significant and which of these will be implemented by the
software. It is also important to ensure (by LOR analysis and test tasks) that the safety-significant
functions (SSFs) implemented by the software perform exactly as intended and that they do not perform
any unintended functions. Further still, and given the fact that that software will possess control over
safety-significant functions and that undesired events are likely to occur, it is important that fault/failure
detection, isolation, annunciation, and tolerance is built into the system and software design
architectures. The FHA is the first step in reaching these objectives. The Process Subtasks of the FHA
are presented in Figure 2.3 below.

Figure 2.3: Process Task 4.0 Task and Subtasks

The FHA described here is not the same as the FHA described in SAE ARP 4761 that is required for
Airworthiness Release. There are different purposes for the two analyses. The primary purpose of the
FHA described in SAE ARP 4761 is the identification of mishaps and hazards by analyzing the system
functionally. Conversely, a primary purpose of the FHA described here is to identify all system
functionality, determine which are safety-significant and implemented by the software, and then map
these SSFs to the software design architecture. Once mapped to the architecture, mitigating
requirements can be identified. By performing the FHA described here, the analyst will be afforded
insight to the mishaps and hazards of the system. It should also be noted that there is no reason why
the FHA format cannot be formatted in such a way to meet the intent and purpose of both SAE ARP-
4761 and the safety FHA described here.

15

3.4.1. Process Subtask 4.1: Functionally Decompose the System

The information contained in the FHA reflects the same level of maturity as the design architecture. This
is expected, and reinforces that the FHA must be kept current through all phases of the development
lifecycle, to include functional, physical, and contractual changes made under configuration control.
Frequency of updates to the FHA should be specified within the SOW and contract. However, SSSE
should update the software inputs to the FHA IAW the SW development process and schedule. The
format of the FHA should reflect that which will provide the analysis “answers” required by the analyst
and criteria of the contract.

The first step of the analysis is to decompose the system. If the system is mature enough, this first step
may be a physical decomposition of the system. If the system has not yet been allocated to specific
pieces of hardware, this decomposition will be functional. The system must be analyzed functionally
from the perspective of both “what the system is documented to do functionally”, and “what you think
the system can do functionally”. The former is an assessment of documented functionality from the
functional specifications and the latter is assessed by analyzing the functionality of the physical
components of the system. The analysis of the physical attributes of the system is likely to provide
insight to “hidden” or undocumented functionality. This is especially true for systems heavily using
COTS components.

Figure 2.4: Example FHA Format

Figure 2.4 provides an example of a FHA format that will provide the analyst with the most basic of
information required by the analysis. If the analyst (or the Acquirer) requires more than this simple
example format can provide, add the appropriate columns to the format to identify and track the
information required. The decomposition of the system is documented in Column one. System
decomposition can be done in a WBS-like structure which may aid in structure, flow, traceability and
assignment of responsibilities. For instance, on large, complex programs such as an Aircraft (Refer:
Figure 2.2) the hazard “Loss of Engine” may be completely under the control of the Engine Integrated
Product Team (IPT). The Engine IPT is more likely to support safety if the FHA can readily show the IPT
which parts it is responsible for.

3.4.2. Process Subtask 4.2: Identification of All Functionality

Column two of the example FHA format in Figure 2.4 depicts where the system functionality is
documented. For the initial FHA, the functionality may be “higher level” functions that haven’t yet been
decomposed to lower level functionality. For an initial FHA this is sufficient for this level of analysis
maturity as lower-level functionality will likely take on the same criticality as their parent higher-level

FUNCTIONAL HAZARD ANALYSIS
System

Decomposition
Individual
Functional

Descriptions

Functional
Failure Modes

 Consequence of
Each Failure

Mode

Severity of
Consequence of
Failure Modes

Safety-
Significant
Functions

Assignment of
SCC and LOR

Map to
Software

Design

Failure
Mitigation

Requirements

Process
Subtask 4.1

Process
Subtask 4.2

Process
Subtask 4.3

Process
Subtask 4.3

Process
Subtask 4.4

Process
Subtask 4.5

Process
Subtask 4.6

Process
Subtask 4.7

Process
Subtask 4.8

16

functions. Ensure that all functionality is identified. First, identify what you think it can or should do
functionally. Second, compare the functionality identified with the documented functionality of the
functional specification and reconcile the two lists. Last, identify any functionality that is identified in
hardware literature or the performance specification to determine whether there are “hidden” or
unintended functions residing in the system. During this activity, it is also good to keep a list of
undesired functions from a safety perspective. It will be imperative to ensure that the system either
does not have the capability to perform undesired functions or that the system possesses the necessary
inhibits in place to ensure these functions do not occur when they pose a safety risk.

3.4.3. Process Subtask 4.3: Document Functional Failure Consequences

Once all known functionality of the system is identified and documented, each function must be
assessed against the following scenarios:

• The function is unavailable (does not occur when expected to occur)
• The function malfunctions (degraded, partial, or unexpected results of the function)
• The function performs its intended activity but is out of sequence
• The function performs its intended activity, but at the incorrect time (too early, too late, outside

defined window)

When documenting the consequences of functional failure it is important to understand that the
consequences can (and will likely) be different for each of the failure scenarios described above. Each
functional failure consequence must be documented in the FHA table to ensure that the worst-case
scenario is adequately documented.

3.4.4. Process Subtask 4.4: Determine Severity of Functional Failure Consequences

After all functional failure consequences are adequately identified and documented, each must be
assessed against the hazard and mishap severity definitions as defined by the SSPP. This is only an
assessment against severity of the consequence and not the likelihood that it will occur. Once a
severity allocation is determined for each functional failure scenario consequence, these allocations are
documented in column five of the example FHA depicted in Figure 2.4. While MIL-STD-882E Task 208
specifies inclusion of a probability component to the analyses, functional failure probability is not
determined via the FHA. If appropriate for the program, a column may be added to the analysis
worksheet to document the probability objective for the function to be allocated to the functional
designer. The probability of a function failing or malfunctioning as a causal factor to a hazard must be
accounted for within the context of the hazard (record) that it applies.

3.4.5. Process Subtask 4.5: Identify Safety-Significant Functions

Each functional failure consequence is assessed against the severity definitions and formally
documented in the FHA. For an individual function, there may be multiple severity consequences, and
severity of consequences for that function. The function takes on the worst-case severity consequence
as determined by the analysis. The functions will be identified as having a safety consequence or no

17

safety consequence based upon their linkage to a mishap/hazard. Those with a safety consequence will
be referred to as SSFs and be assigned to the following two subcategories:

• Safety-Critical Function (SCF): Functions that possess either a Catastrophic or Critical severity
consequence

• Safety-Related Functions (SRF): Functions that possess either a Marginal or Negligible severity
consequence

3.4.6. Process Subtask 4.6: Identification of SwCI for SSFs

Software’s functional criticality as described in MIL-STD-882E, Table V, is determined by the unmitigated
severity of the consequence of functional failure (or malfunction) in conjunction with the software
control category assignment as defined in MIL-STD-882E, Table IV. The result is the SwCI assignment
from SwCI-1 to SwCI-5. The SwCI will be assigned for each function assessed. The SwCI assignment
become the LOR by definition and provides the software developers and testers with the safety
assurance requirements for the design of each SSF.

3.4.7. Process Subtask 4.7: Map SSFs to the Software Design Architecture

Once all SSFs have been identified, the analyst must map each function to its software design
architecture (to either software modules of code or “use cases” in Object Oriented Design (OOD)). This
is required both for end-to-end traceability of requirements and to support subsequent detailed
analyses. This will be important when specific hazard analysis is accomplished and software causes to
hazards are identified and analyzed. This mapping will provide the analyst with a defined point of entry
to the software in order to analyze the software’s contribution to hazard initiation or propagation. This
mapping will also allow the analyst to determine the simplicity or complexity of the design of the SSFs
and the effectiveness of functional and physical partitioning of the software design architecture. An
example of the SSF mapping that is required is presented in Figure 2.5.

Figure 2.5: SSF Mapping to Software Design Architecture Example

Function LOR
Criticality

CSCI CSC CSU

Weapon Firing LOR 1
High

Target Authenticate

Target AcquisitionWeapon FiringMissile

Missile Fire
Command

18

3.4.8. Process Subtask 4.8: Identify Failure Mitigation Requirements

Specific software contributions to hazard and mishap failure conditions must be adequately mitigated as
a design priority. As insight and design maturity is obtained, insight as to how the system is to function,
its physical characteristics, and the potential failure pathways to hazards, must be used to determine
whether adequate mitigation is either present or absent in the design. If adequate hazard mitigation is
already present or accounted for in the form of preliminary (either generic best practice, or from the
PHA) requirements, those requirements should be tagged for follow-on safety verification and
validation. However, if the FHA identifies a shortfall in hazard control, mitigation requirements must be
identified and documented and communicated to the software development team for inclusion in the
SRS(s). The initial FHA task concludes with the capture of all FHA analysis data in the Acquirer-approved
Hazard Tracking System (HTS).

3.5. Process Task 5.0: LOR Allocations to Safety-Significant Functions

[Ref: MIL-STD-882E paragraph 4.4.1 and JSSSEH paragraph 4.2.1.4]

The allocation of SSFs to specific LOR categories is essential, both to ensure the provision of rigor to the
functions of highest safety criticality and to ensure the management of the critical resources necessary
to implement that rigor. This Process task can be integrated into the accomplishment and
documentation of the FHA. Regardless of whether it is included in the FHA or accomplished separately,
the accomplishment of the subtasks identified in Figure 2.6 must be thoroughly documented within the
artifacts of the safety analysis.

Figure 2.6: Process Task 5.0 LOR Allocation Task and Subtasks

3.5.1. Process Subtask 5.1: Assess SSF against Software Control Categories (SCC)

MIL-STD-882E, Table IV defines the SCCs. These definitions may be tailored if change is warranted.
However, all tailoring must be thoroughly justified and approved by the appropriate Acquirer authority
in accordance with MIL-STD-882E. This subtask focuses on the assessment of SSFs against the defined
definitions of the SCCs documented in the SSMP and SSPP. Accurate assessment of the LOR based upon
the complexity of the system, autonomy of the system’s functionality, and/or its command and control
authority is imperative.

19

3.5.2. Process Subtask 5.2: Assess the SSF for the Consequence Severity

This task should have been accomplished and the information documented in the FHA. This information
is also required at this point to assess the criticality of the SSF against SCC and the worst-case Severity
criteria for the purpose of assigning the LOR to the function.

3.5.3. Process Subtask 5.3: Compare SCC and Severity with the Software Safety Criticality
Matrix (SSCM)

The SSCM provides the LOR allocation for SSFs. MIL-STD-882E Table V defines the SSCM. The SSCM may
be tailored, if warranted, justified and approved by the appropriate Customer authority. Once the SCC
and the severity of consequence of the hazard/mishap are determined for a SSF, the LOR can be
determined by the predefined and approved SSCM as documented the SSPP.

3.5.4. Process Subtask 5.4: Assign the Criticality LOR to the Safety-Significant Function

Combining the activities of Process Subtasks 5.2 and 5.3, the LOR can now be assigned to the assessed
SSF. An LOR assignment of 1-5 is allocated to each SSF and the SSF must be designed, coded, tested,
and verified against the approved LOR criteria.

3.6. Process Task 6.0: Preliminary Safety Requirements Analysis (SRA)

[Refer: JSSSEH 4.3.5 and MIL-STD-882E Task 203]

The primary mechanism to “influence the design” in order to reduce the safety risk is to define specific
safety-significant requirements and include them in the system and software specifications. Safety
requirements are the primary mechanisms to fulfill the first step in the system safety order of
precedence; design for minimum risk.

This process task is Safety Requirements Analysis (SRA). This task executes a process to ensure that the
safety constraints and criteria of the system are aligned with the safety requirements of the system to
minimize the safety risk potential of the hazards within predefined CONOPS. Safety requirements to
minimize the safety risk potential that are present in the specifications, are tagged as safety-significant.
Tagging of requirements usually takes place in the Developer’s requirements management and
traceability toolset. Where requirements are absent, they must be defined, documented, tagged, and
included into the specifications. The subtasks for this process are defined in Figure 2.7. The results of
the SRA must establish and provide evidence of bi-directional traceability (top down and bottom up)
from safety criteria and specifications to design, implementation, V&V and mishaps and hazards. Note:
This type of analysis was called the Safety Requirements/Criteria Analysis in previous versions of MIL-
STD-882. MIL-STD-882E has labeled it as Safety Requirements Hazard Analysis (SRHA). It is labeled here
as a Safety Requirements Analysis as no “hazard analysis” is actually involved in the performance of the
task.

20

Figure 2.7: Process Task 6.0 Safety Requirements Analysis Task and Subtasks

3.6.1. Process Subtask 6.1: Review System and Functional Specifications

This subtask involves a review of the system and functional specifications for the system in
development. The primary purpose of this task is to identify and include the missing requirements from
a safety perspective. SSS should be a part of the configuration control process. SSS must provide their
inputs to the requirements identification process in a timely manner. SSS must thoroughly review the
preliminary specifications, as well as proposed requirements change actions, and determine where
safety-significant requirements are necessary for incorporation.

3.6.2. Process Subtask 6.2: Identify and Tag Contributing Safety-Significant Requirements
(CSSR)

Requirements that are safety-significant must be identified and tagged. For example, a requirement to
“Issue Fire Command” is a safety-significant requirement because it “contributes” to the safety risk
potential of the system…it does not mitigate it. Subsequently identified and tagged derived lower level
requirements provide the actual mitigations to mishaps associated with “Issue Fire Command”.

3.6.3. Process Subtask 6.3: Identify and Tag Generic Safety-Significant Requirements
(GSSR)

This task focuses on the identification of preliminary (generic), high-level safety requirements for the
system and getting them included in the both the hardware and software specifications. These GSSRs
are based on:

• Lessons learned from other programs
• Similar systems hazard analysis
• Generic lists of “best practices” (e.g. JSSSEH Appendix E; STANAG 4404, etc.)
• The safety implications of the choice(s) of particular programming languages and development

processes
• Historical mishap data on similar system
• User (operator, maintainer, supporter, etc.) inputs
• Information gleaned by accomplishing the PHA
• Information gleaned by accomplishing the FHA

21

3.6.4. Process Subtask 6.4: Identify and Tag Mitigating Safety-Significant Requirements
(MSSR)

MSSRs are safety significant requirements that specifically provide mitigation of identified hazard and
mishap causes. MSSRs can only be identified if hazard analysis is accomplished to the detail level
necessary to specifically derive new requirements that mitigate a cause of the hazard by reducing the
likelihood of causal initiation and/or causal propagation.

MSSRs can also be derived by decomposing higher-level requirements such as GSSRs into lower-level
requirements for the design. Higher-level GSSRs such as “The system shall initialize into a known and
predefined safe state”, must be decomposed to lower-level requirements that mitigate the possibility of
initializing into an unsafe state or define specific safe states of the system. These lower level
requirements can only be identified, in this specific example, after the specific steps of initialization are
defined and the unsafe states or conditions of the system identified. As with all of the safety-significant
requirements that are identified and tagged within the requirements management and traceability
application, they must be traced both to design, and back to the hazard that it helps to mitigate. In
addition, all safety-significant requirements must take on the LOR criteria of the function that it is
implementing within the design architecture. The initial SRA task concludes with the capture of all SRA
safety requirements data in the Acquirer-approved Hazard Tracking System (HTS) within each
appropriate hazard record.

As the design of the system matures, the SRA must also mature. The maturation of the SRA will be
covered in Process Task 8.0, Detailed Safety Requirements Analysis.

3.7. Process Task 7.0: Perform In-Depth Hazard Analysis

[Refer: JSSSEH paragraph 4.3.6 and MIL-STD-882E Tasks 204-206, and 209 for Systems-of-systems]

As the system design matures, the hazards identified in the PHA and the failure modes identified in the
FHA must be transitioned from the PHA and FHA to the Subsystem Hazard Analysis (SSHA) and the
System Hazard Analysis (SHA) as defined in Figure 3.0. The SSHA and SHA are SSE analyses performed
under the responsibility of SSE and their scope is dictated by the SOW and contract. Hazards that are
one level beneath a TLM are usually considered to be “system-level” hazards, whereas subsystem-level
hazards may be several causal-layers below the TLM. Whether the SSS analyst is working at the system
level or the subsystem level analysis, this is the phase of the program where in-depth causal analysis
typically takes place due to the availability of documentation for a maturing design.

22

Figure 3.0: SSS Process Chart for Detail Design and Implementation Phases

Regardless of SSS analysis techniques used, it must have the ability to allow the analyst to:

• Map or track SSFs to specific modules (or use cases) of code.
• Possess insight into the software’s functional and physical interfaces with hardware, other

modules of software, or the human interface with the system.
• Provide insight to both the system and software design architecture.
• Comprehend what could functionally take place within the software design or code based upon

loss of function, degraded function (or malfunction) or functioning outside the bounds of the
predetermined parameters of timing and sequencing events.

• Determine where fault management should reside within the software design architecture (fault
detection, isolation, annunciation, logging, tolerance, and/or recovery)

The process subtasks of Process Task 7.0, Perform in-depth SHA/SSHA Hazard Analysis are depicted in
Figure 3.1 below.

23

Figure 3.1: Process Task 7.0 Perform In-depth Hazard Analysis and Subtasks

3.7.1. Process Subtask 7.1: Integrate Hazards from the Preliminary Hazard Analysis

This subtask was introduced in the previous paragraphs. From the total set of hazards considered in the
prior phases of the safety program, only those that are determined to be credible for the system and its
intended test and operational environments are carried forward to the SSHA or the SHA. In addition,
some of the hazards may be transitioned to either the Operating and Support Hazard Analysis (O&SHA)
or the Health Hazard Analysis (HHA).

3.7.2. Process Subtask 7.2: Categorize Hazard with an Initial RAC

When the hazards are formally entered into the SSHA and SHA they must be categorized in terms of
hazard severity and their probability of occurrence. This categorization uses the predefined risk
assessment matrix from the SSMP and SSPP to assign an Initial Risk Assessment Code. Each hazard must
be categorized in this manner. This allows the SSS analyst, the design team, and the program manager
to comprehend the safety risk potential of the hazard and to ensure that it receives the necessary
resources to analyze the hazard and to ensure that it is mitigated to an acceptable level of safety and
associated programmatic (impact to program cost/schedule if not resourced) risk.

3.7.3. Process Subtask 7.3: Perform In-Depth Hazard Causal Analysis

This task requires access to up-to-date and accurate system design documentation. Regardless of the
methods or tools used to perform the in-depth analysis, the results must be at a level:

• Necessary to either account for mitigation already in the design architecture (probably as the
result of the GSSRs included in the early versions of the specifications), or to derive MSSRs
where mitigation is either absent or insufficient.

• Sufficient to account for software causal factors (either as casual initiators, or causal
propagations).

• Sufficient to comprehend the interdependencies and interfaces between hardware, software,
and human error causes

• Necessary to account for physical, functional, or contractual interfaces between the system
integrator and other sub-developers or vendors.

• That validates the rationale to discontinue analysis at a lower level (further down the causal
pathway to its root source).

24

One of the best ways to determine the adequacy of the design architecture in context with the systems’
functional and operational environments is to accomplish a simple logic diagram (event or fault tree) of
the hazard and its causal pathways. This provides a graphical representation of the hazard causes in
conjunction with the Boolean “AND” and “OR” logic required to accomplish an estimation of the
adequacy of the probability of occurrence. If a quantitative fault tree analysis tool is utilized as a
method to understand the design logic, the software functionality should be set to a “one” (1) to
understand the control of the software within the system context. This will help to demonstrate the
dependency of the software functionality on the design architecture.

3.7.4. Process Subtask 7.4: Derive Lower-Level Mitigation Requirements

[Ref: JSSSEH paragraph 4.3.5.1.3 and 4.3.5.2]

As stated above in process subtask 7.3, the in-depth hazard causal analysis will either confirm the
existence and adequacy of hazard mitigation, or it will determine that it is either nonexistent or
inadequate. In the latter case, the remaining safety risk potential must be adequately dealt with from a
hazard mitigation perspective. This task requires that a lower-level requirement(s) be derived and
successfully included in the design maturation process.

3.7.5. Process Subtask 7.5: Categorize Hazards with a Final RAC

[Refer: MIL-STD-882E paragraph 4.3 and subsections; and JSSSEH paragraph 4.4.4]

Upon completion of the in-depth causal analysis and assessing the adequacy of the mitigation or control
of each hazard failure mode (propagation pathway), each hazard and mishap is then reassessed against
the risk assessment criteria of the SSPP. Each hazard record should be assessed for its final RAC and
that RAC should be annotated in the record. Each hazard analysis task concludes with the capture of all
safety analysis data in the Acquirer-approved Hazard Tracking System (HTS) in the form of individual
hazard records.

3.8. Process Task 8.0: Perform Detailed Safety Requirements Analysis

[Refer: JSSSEH paragraph 4.3.5 and MIL-STD-882E Task 203]

Process task 6.0 was the up-front preliminary analysis and this task represents the culmination of the
safety requirements analysis during the SHA and SSHA efforts of process task 7.0. This task will ensure
that safety requirements analysis is formally completed and adequately documented. This formal
documented safety artifact will be an essential document to be revisited for future updates or changes
made to the system. The subtasks of this process are presented in Figure 3.2 below.

25

Figure 3.2: Process Task 8.0 Detailed Safety Requirements Analysis and Subtasks

3.8.1. Process Subtask 8.1: Reassess Preliminary Requirements

SSS must first reassess the GSSRs defined for the program. There must be evidence within the design
architecture or design processes that these requirements have been adequately addressed. Traceability
from GSSRs to these artifacts must be evident.

3.8.2. Process Subtask 8.2: Reassess Mitigation Requirements

This task formally wraps up and documents the adequacy of the GSSRs and MSSRs to mitigate and
control the SSHA and SHA hazards. Much of this effort was accomplished in process subtask 7.4, but it is
important to finalize the SRA documentation in this area. Traceability from GSSRs to the design must be
evidenced and documented in this phase of development.

3.8.3. Process Subtask 8.3: Verify Requirements in Design

As with process subtask 8.2, this process subtask is also a summation of the efforts that were
accomplished to finalize each hazard record in Process Task 7.0 and assess the final MRI. The software
test cases and procedures must be reviewed to ensure that the testing actually verifies the safety-
significant requirements in context to their intended or expected functionality. Further discussions
regarding test is provided in Process Task 11.0. Traceability is from safety-significant requirements (or
functions) to design, and then to software test cases and results. Traceability must be documented and
provided as evidence.

3.8.4. Process Subtask 8.4: Author Appropriate Defects Against Design Requirements

This process subtask is also a summation of efforts accomplished in process task 7.0. As the software
design is being reviewed and design reviews are accomplished, incorrect interpretation of the safety-
significant requirements must be identified and adjudicated. The actual documentation associated with
a defect or deficiency will be governed by the configuration management tools used and the
Configuration Management Plan. The primary cause of software defects is poorly defined, ambiguous,
unclear, incorrect or missing requirements. The detailed SRA task concludes with the capture of all SRA
safety requirements data in the Acquirer-approved Hazard Tracking System (HTS) within each
appropriate hazard record.

3.9. Process Task 9.0: Perform Safety Requirements Traceability

[Refer: JSSSEH paragraphs 4.3.5.3, 4.3.6.3.3]

26

An important task of SSS is the preparation of the safety-significant engineering artifacts that provide
the evidence or audit trail of the SSS work accomplished. As depicted in Figure 3.3, the safety-significant
requirements of the system must be sufficiently traced to the design and also back to their
corresponding hazards and mishaps to complete the evidence audit trail.

Figure 3.3: Process Task 9.0 Perform Requirements Traceability and Subtasks

3.9.1. Process Subtask 9.1: Trace Safety Requirements to Design Architecture

As depicted conceptually in Figure 3.4, there is traceability from the hazard/mishap record, where
causes are determined and mitigations identified via mitigation requirements, to the design
implementation of the requirements within the system design architecture. This traceability from
hazards to the design is essential to ensure mitigation requirements are complete, correct, consistent,
implementable and verifiable.

Figure 3.4: Hazard Closed-Loop Requirements Traceability

3.9.2. Process Subtask 9.2: Trace Safety Requirements to Hazards

To complete the closed-loop hazard mitigation process, safety requirements are traced from the design
and their verification back to the hazard/mishap record to formally provide the evidence of hazard
mitigation and control. This traceability flows from the system design architecture and the
requirements verification back to the hazard/mishap to confirm the mitigation and control of hazard
causal factors (refer to Figure 3.4).

Hazard
Record

System Design
Architecture

Mitigation
Requirements

Verification of Design
Implementation

Verification of Hazard
Mitigation

Requirements
Implementation

27

3.9.3. Process Subtask 9.3: Trace Safety Requirements to Implementation

The traceability of safety requirements to the design architecture must be traced to implementation
within the software code. This implementation will later be verified through software test.

3.10. Process Task 10.0: Perform Code-Level Safety Analysis

[Ref: JSSSEH paragraph 4.3.7.3.2]

As depicted in Figures 3.3 and 4.0 and depending on the LOR assessed, Code-Level Safety Analysis is the
next step of the software system safety process. Code-level safety analysis is required and called out in
the LOR table for LOR-1 software.

Figure 4.0: SSS Process Chart for Test and Deployment Phases

3.10.1. Process Subtask 10.1: Determine the Software Functionality to Analyze

Figure 4.1 depicts the process subtasks for the selection and implementation of the code-level safety
analysis. Software assessed as LOR-1 should be evaluated and assessed using the code-level safety
analysis technique.

28

Figure 4.1: Process Task 10.0 Perform Code Level Analysis and Subtasks

3.10.2. Process Subtask 10.2: Determine the Software Functionality to be Analyzed

Software modules (or use cases) that implement the functionality identified in Process Subtask 10.1
must be identified and tagged for analysis.

3.10.3. Process Subtask 10.3, Determine the Objectives of Analysis

Before the safety-code level analysis begins, the SSS analyst and the assisting Subject Matter Experts
(SMEs) determine the specific objectives that are required to be fulfilled by the code-level analysis.
Examples of specific objectives that may be fulfilled by the accomplishment of a safety-code-level
analysis include, but are not limited to:

• Specification to code tracing
• Complex logic accuracy
• Equation and algorithm accuracy
• Fault and exemption handling
• Forward or backward logic tracing
• Safety-significant requirements implementation (compatible with architecture, models, is

verifiable, conforms to standards, complies with requirements)
• Safety-significant data handling
• Effects of concurrent processing
• Accuracy and integrity of external file structures
• Integrity of lower-level functional interfaces
• Off-nominal inputs from functional or physical interfaces

3.10.4. Process Subtask 10.4, Analyze LOR-1 Software

Upon identification and documentation of the objectives to be accomplished, the code level analysis
review must be scheduled and conducted. Specific questions to be answered include, but are not
limited to:

• Is the code uniquely identified as such in the module header?
• Is the intended functionality of the software coded correctly?
• Have the requirements been correctly interpreted and coded?

29

• Is the timing and sequencing of the functionality correct?
• Is the logic for functionality accurate and as simple as necessary?
• Have all nominal and off nominal inputs been accounted for?
• Are variables or file structures adequately protected?
• Have fault and exception handling been adequately considered and implemented?
• Does the code contain any dead or unused code, or unintended functionality?
• Is this code influenced by concurrent processing?
• Are data races or shared data issues detected to prevent the corruption of safety-critical data or

variables?
• Can corrupted safety-critical data lead to incorrect decisions by safety-critical software?
• Can mutual exclusion deadlocks freeze autonomous software control over safety-critical

functionality or processing?
• Are the code’s interfaces with other code and modules compatible?
• Are the functions and code isolated and/or partitioned from non-safety code where required?

Any errors or software deficiencies discovered in the safety code-level analysis review must be formally
documented and submitted to the software development team for defect resolution.

3.11. Process Task 11.0: Perform Software Test Planning

[Ref: MIL-STD-882E Tasks 303 and 401, JSSSEH paragraph 4.4.1 and Appendix A – LOR Table]

Software test planning from a safety perspective actually begins during Process Task 2.0 when the LOR
task table is defined, documented, and agreed upon by the SSS, software development and software
test teams. It is best practice of software test teams to test each software requirement that is
documented in the software requirements specification. At a minimum, all SRS safety requirements
must be reviewed to ensure the implementation complies with safety design requirements and mapped
to test cases.

Figure 4.2: Process Task 11.0 Perform Software Test Planning and Subtasks

3.11.1. Process Subtask 11.1: Ensure Correctness and Application of the LOR Test Criteria

A portion of the software test planning for the program has been accomplished with the fulfillment of
Process Task 2.0 when defining the LOR tasks for each phase of the software development and test life
cycle. The LOR Table provides specific software test tasks for each LOR allocation. At this specific point

30

in time, the SSS reassesses the LOR software test tasks to ensure that they are still relevant and to verify
that the tasks have been accurately accounted for in the STP.

3.11.2. Process Subtask 11.2: Ensure Safety Functionality is Tested

All safety-significant SRS requirements should be tested. Safety-significant requirements should be
formally documented within the SRS as accounted for in Process Task 8.0, Perform Detailed Safety
Requirements Analysis. The SSS can assist the software test team in developing specific test cases and
procedures to ensure that each SSF is exercised and tested IAW its LOR. The testing should demonstrate
that the software functions as it is expected to function in both nominal and off-nominal operations and
environments. Specific off-nominal environment testing scenarios should be identified and tested for
software that is of high safety criticality, as defined by the LOR table.

3.11.3. Process Subtask 11.3: Comply with the LOR Test Criteria

LOR test requirements, as defined in the program’s LOR table, must be specifically adhered to for the
purpose of increasing the confidence that the software does not possess unnecessary or undocumented
safety risk potential. At this point in time, it is the responsibility of SSS to verify that the software testing
is conducted in accordance with the criteria as documented.

3.11.4. Process Subtask 11.4: Assist in Writing Test Cases and Test Procedures

SSS should assist in the test case and procedure development for safety-significant CSCIs, CSCs and
CSUs. SSS should possess insight as to how the software should perform functionally and what the
software should be prohibited from doing. Specific safety test criteria for consideration when writing
test cases and test procedures can be found in the program’s LOR Table.

3.12. Process Task 12.0: Monitor Safety-Significant Software Testing

It is SSS’s responsibility to monitor the software testing of SSFs. Monitoring should also include notifying
and inviting the Customer to witness testing. “Monitoring” can come in the form of participation or
witnessing test events, or from the review of test results and SQA sign-offs. The test objectives and test
criteria must be fulfilled by the test activity in accordance with the STP and the LOR Table’s design
assurance criteria as depicted in the Process Subtasks of Figure 4.3.

Figure 4.3: Process Task 12.0 Monitor Safety-Related Testing and Subtasks

31

3.12.1. Process Subtask 12.1: Ensure Software Testing Conforms to LOR Test Criteria

Specific software test criteria have been established in the LOR task table. The software test activities
must be accomplished in accordance with this established LOR criteria. LOR test criteria that are not
fulfilled must be formally documented and accounted for in any residual safety risk assessment that is
accomplished for the program, IAW MIL-STD-882E criteria. MIL-STD-882E, Table VI, provides
requirements for documenting potential contributions to system level risk associated with LOR
shortfalls.

3.12.2. Process Subtask 12.2: Ensure Safety Functionality is Tested

As defined in Process Subtask 12.1, SSS ensures that all safety-significant functionality is adequately
tested in accordance with LOR criterion. Specific test objectives for safety-significant functionality
should include such criteria as:

• Software performs the function as intended and produces the expected outcome
• Software performs the function in its intended time allocation and within its defined sequence
• Software does not perform undocumented, undefined, and unintended functions
• Software performs as expected in normal or nominal environments and conditions
• Software performs as expected in off-nominal environments and conditions
• Software can detect faults/failures of safety-significance
• Software can isolate faults/failures to minimize the propagation of faults/failures to the system
• Software can annunciate fault/failures to appropriate control entity responsible for recovery

action.
• Software can take appropriate autonomous recovery action (if there is a requirement) to

defined faults/failures.
• Functional, physical and human interfaces to ensure they are under positive control

3.12.3. Process Subtask 12.3: Monitor Test Defects and Corrective Actions

As the software testing commences, SSS must monitor the testing accomplished (unit testing,
integration testing, and formal qualification testing (FQT)) on safety-significant elements of the software
design architecture. “Monitoring” can be in the form of reviewing test cases, procedures, and results or
actually witnessing software test events themselves. Any failures identified in software test must be
identified, documented, and tracked to a suitable solution or corrective action. Defect resolution, or
changes made to correct software deficiencies must be accomplished in accordance with the Software
Configuration Management Plan.

3.12.4. Process Subtask 12.4: Review Final Software Test Results

Upon the completion of defined software test cases and procedures, the SSS must review the software
test reports. The review of the software test report should confirm:

• The software test case is accomplished in accordance with the test procedure,
• The software test results verify the successful implementation of safety requirements,

32

• The software test results verify the adequate mitigation of hazard causal factors,
• The software test anomalies and defects are adequately identified, documented, and rectified.
• The software defect resolutions are adequately regression tested.

SSS must bring this evidence to the hazard control portion of the HTS.

3.13. Process Task 13.0: Perform Residual Safety Risk Assessment

[Ref: MIL-STD-882E, Task 301, and JSSSEH paragraph 4.4.4]

As the SSS process is implemented, the conclusion of software testing will usually bring the program to a
point in time where “influencing the design” is also concluded. The remaining options for hazard
mitigation or control in our “order of precedence” are procedures and training for operators and
maintainers.

SSS must support the system safety requirements to document residual safety risk as depicted in Figure
4.4.

Figure 4.4: Process Task 13.0 Perform Residual Safety Risk Assessment and Subtasks

3.13.1. Process Subtask 13.1: Reassess all Documented Hazards

The residual safety risk assessment begins with a comprehensive assessment of each documented
mishap and hazard in the HTS. This assessment is a confirmation that the hazard records contain
complete and accurate information.

3.13.2. Process Subtask 13.2: Verify Hazard Mitigation

As the HTS records are being assessed for hazard mitigation verification, the SSS must verify that
documented hazard mitigations have been adequately and accurately documented within the HTS
records. The evidence pertaining to the successful implementation of these safety requirements
becomes the necessary evidences for mishap and hazard mitigation.

3.13.3. Process Subtask 13.3: Assess Partial Mitigation or Failure to Mitigate

In the process of verifying the successful implementation of safety requirements, SSS may discover that
some safety requirements were only partially implemented, deferred to later software builds, or
completely rejected. Partial or no implementation of safety requirements (including hardware,
software, and human action requirements) for a given mishap or hazard equates to residual safety risk.
The amount of residual safety risk will be dependent on other factors that must be considered, such as:

33

• The severity of the mishap or hazard occurrence
• The number of other hazard mitigations implemented
• The Boolean relationship of other mitigations with the mitigation that was not implemented
• The ability (or inability) of the system to detect, isolate, and recover from a failure should the

failure occur.
• Body of Evidence (i.e. the results of LOR task implementation) to meet the LOR specified in MIL-

STD-882E, Table V.

Software safety requirements that are not implemented must remain in the system and be prioritized
for the next software build or engineering change proposal (ECP) that occurs.

3.13.4. Process Subtask 13.4: Support Residual Safety Risk Assessment

The residual safety risk assessment is a comprehensive evaluation of the mishap risk being assumed
prior to test or operation of the system. The results of this safety evaluation should be documented in
the SAR in accordance with DI-SAFT-80102A data item description supporting MIL-STD-882E (or the
version on contract).

3.13.5. Process Subtask 13.5: Document and Communicate Residual Safety Risk

The results and conclusions of the SAR evaluation are formally documented within the SAR. System
Safety Risk Assessments (SSRAs), and corresponding risk acceptance must also be performed, as
applicable.

3.14. Process Task 14.0: Participate in Life-Cycle Management and Support

[Ref: MIL-STD-882E, Task 304, and JSSSEH paragraph C.11)

Modifications or changes to the system are likely to occur multiple times before the system is
decommissioned and taken out of service. Changes are either the correction of defects and deficiencies
identified by the system user or maintainer, or the functional or physical upgrade of the system to
enhance operational effectiveness and suitability. The latter can even be the result of the redefinition of
the mission that the system is to accomplish. Regardless of the reason for change, the SSS must be
prepared for change and to accomplish the process tasks regarding change as depicted in Figure 4.5.
Detailed Life-cycle Management tasks are also found in Appendix A, Life-cycle Support Phase Tasks.

Figure 4.5: Process Task 14.0 Participate in Life Cycle Management and Subtasks

34

To actively participate in a product’s life cycle management, SSS must be familiar with, and an active
participant, in the configuration management process.

3.14.1. Process Subtask 14.1: Assess all Functional and Physical Changes to the System

At a minimum, System Safety should be a member of the Configuration Control Board (CCB) with
signature authority on ECP actions or upgrades. SSS must review every change request pertaining to the
system software and provide input to the System Safety representative on the CCB.

3.14.2. Process Subtask 14.2: Assess the Change Against Documented Hazards

Functional or physical changes to a legacy system will likely affect the status quo of the existing hazard
analysis and must be assessed against documented hazards, or for the potential to introduce new
mishaps and hazards.

3.14.3. Process Subtask 14.3: Identify New Hazards, Failure Modes, or Causes

The system safety analysis of a change to the system must determine whether a change creates a
mishap/hazard that did not exist in the legacy system, or has an impact on an existing mishap/hazard. If
this is the case, the mishap/hazard must be analyzed to determine how it will be mitigated or controlled
to an acceptable level of risk. If new mishaps/hazards are not created by the proposed design change,
there is a potential that new failure modes or causes are created for existing hazards of the systems.

3.14.4. Process Subtask 14.4: Mitigate Hazards, Failure Modes, or Causes

Mishaps and hazards, failure modes, and causal factors identified by the safety analysis for the proposed
system change must be adjudicated just as any hazard identified during system development.
Mitigation is not complete until the modified software functionality has been analyzed and tested
(including regression testing) IAW its LOR.

3.14.5. Process Subtask 14.5: Document and Communicate Safety Risk

As change requests are processed, approved, analyzed, and implemented, all safety analyses must be
accomplished for the purpose of reducing safety risk potential to operators and support personnel to
the greatest extent possible (or practical). Upon the completion of the system safety and SSS
engineering tasks, a residual safety risk assessment is required.

3.14.6. Process Subtask 14.6: Update all Safety-Related Artifacts

Upon the completion of system safety engineering and management tasks associated with a change, all
system and system safety related artifacts must be updated to account for the change and its ultimate
safety risk potential. For any given change action, the following engineering artifacts should be
considered candidates for update:

• SSPP (if there were any changes to management or engineering processes, tasks, budgets, or
schedules)

• Hazard Analysis (analyses accomplished to date, i.e., PHA, FHA SSHA, SHA, O&SHA, etc.)
• In Depth Causal Analysis (i.e., FTA, FMECA, etc.)

35

• SRA (all safety requirements artifacts to include updates to the SRS, SDP, or STP as required)
• SAR (or possibly Safety Case to account for the residual safety risk assessment)
• HTS (to account for all hazard analysis record keeping to include hazard mitigation and/or

control)

Updating the safety-related artifacts produces the necessary evidence of hazard identification,
documentation, categorization, and mitigation for those organizations and personnel operating and
supporting the legacy system. The majority of this safety-related information must be contained within
the HTS system.

36

4.0 Acronym List
AWR Air Worthiness Release SCC Software Control Category
CCB Configuration Control Board SCF Safety Critical Function
CDR Critical Design Review SCI Software Criticality Index
CDRL Contract Data Requirements List SCM Software Criticality Matrix
CONOPS Concept of Operations SDP Software Development Plan
CSSR Contributing Safety-Significant

Requirement
SDR Software Defect Report

COTS Commercial-off-the-Shelf SHA System Hazard Analysis
CSC Computer Software Component SME Subject Matter Expert
CSCI Computer Software Configuration Item SoS System-of-Systems
CSU Computer Software Unit SRA Safety Requirements Analysis
DAL Design Assurance Level SRCA Safety Requirements/Criteria

Analysis
DID Data Item Description SRF Safety-related Function
DOD Department of Defense SRS Software Requirements

Specification
DOORS IBM Rational Requirements Management

Toolset
SSE System Safety Engineering

ECP Engineering Change Proposal SSF Safety-Significant Function
FAA Federal Aviation Administration SSHA Sub-System Hazard Analysis
FHA Functional Hazard Analysis SSMP System Safety Management Plan
FHA Functional Hazard Assessment SSPP System Safety Program Plan
GSSR Generic Safety-Significant Requirement SSRA System Safety Risk Assessment
HHA Health Hazard Analysis SSS Software System Safety
HRI Hazard Risk Index SSSE Software System Safety

Engineering
HTS Hazard Tracking System (database) SSSTRP Software System Safety Technical

Review Panel
JSSSEH DOD Joint Software System Safety

Engineering Handbook
SSWG System Safety Working Group

LOR Level-of-Rigor STP Software Test Plan
MSSR Mitigating Safety-Significant Requirement STR Software Trouble Report
O&SHA Operating and Support Hazard Analysis SOW Statement of Work

OJT On-the-Job Training SwCI Software Criticality Index
OOD Object Oriented Design SwSSP Software System Safety Program
PDR Preliminary Design Review SwSSPP Software System Safety Program

Plan
QSMA Quality, Safety, and Mission Assurance TDP Technical Data Package
RFP Request for Proposal TLM Top-Level Mishap
SAR Safety Assessment Report TRR Test Readiness Review

37

5.0 Glossary
Acceptance Criteria – Criteria that a system, software build, or component must satisfy in order to be
accepted by an Acquirer, acceptance authority, or a certification authority.

Acquirer – Stakeholder that acquires or procures a product or service from a supplier. The Acquirer may
be one of the following: buyer, customer, owner, or purchaser.

Baseline – Specification or product that has been formally reviewed and agreed upon that thereafter
serves as the basis for further development and that can be changed only through formal change
management procedures.

Causal Factors – (1) The particular and unique set of circumstances that can contribute to a hazard. (2)
The combined hazard sources and initiating mechanisms that may be the direct result of a combination
of failures, malfunctions, external events, environmental effects, errors, inadequate design, or poor
judgment.

Contributing Safety-Significant Requirements – A subcategory of the defined safety requirements of a
system. CSSRs are requirements contained within the specifications that contribute to the safety risk
potential of a system by the functionality that they will perform. CSSRs do not mitigate risk.

Control Entity – The specific entity that provides autonomous, semi-autonomous, or responsive
situational awareness command or control authority over unmanned system functionality. The entity
may be human, software logic, or the logic programmed into firmware or programmable logic devices.

Developer – A private or government enterprise or organizational element engaged to provide services
or products within agreed limits specified by the Acquirer.

Failure – The inability of an item to perform its intended function.

Failure Mode – A term used to describe one (of possibly many) mechanisms that could contribute to
failure. In context to a hazard, the failure modes are descriptors of the overall mechanisms that could
lead to a hazards existence. Individual failure modes consist of causal factors, causal pathways, and
pathway initiation events.

Firmware – The combination of a hardware device and computer instructions and/or computer data
that resides as read-only software on the hardware device.

Function – A task, action, or activity that must be performed to achieve a desired outcome.

Generic Safety-Significant Requirements – A subcategory of the defined safety requirements of a
system. GSSRs are a product of documented system development, safety best practices, and lessons
learned from legacy programs.

Level-of-Rigor – A specification of the depth and breadth of software analysis, test, and verification
activities necessary to provide a sufficient level of confidence that a safety significant software function
will perform as required.

Mishap – An unplanned event or series of events resulting in death, injury, occupational illness, damage
to or loss of equipment or property, or damage to the environment.

38

Mishap Probability – The aggregate probability of occurrence of the individual events or hazards that
might create a specific mishap.

Mishap Risk – An expression of the impact and probability of a mishap in terms of potential mishap
severity and probability of occurrence.

Mishap Severity – An assessment of the consequences of the most reasonable credible mishap that
could be caused a specific hazard or combination of hazards.

Mitigating Safety-Significant Requirements – A subcategory of the defined safety requirements of a
system. MSSRs are normally identified during in-depth mishap and hazard causal analysis and are
derived for the purpose of mitigating or controlling failure pathways to the mishap or hazard.

Qualification Testing – Testing conducted to determine whether a system or component is suitable for
operational testing.

Regression Testing – The testing of software to confirm that functions that were previously performed
correctly continue to perform correctly after a change has been made.

Requirement – (1) A condition or capability needed by a user to solve a problem or achieve an objective.
(2) A condition or capability that must be met or possessed by a system or system component to satisfy
a contract, standard, specification, or other formally imposed documents. (3) A documented
representation of a condition or capability as in (1) or (2).

Residual Mishap Risk – The remaining mishap risk that exists after all mitigation techniques have been
implemented or exhausted in accordance with the system safety design order of precedence.

Safety Critical – A term applied to a condition, event, function, operation, process, or item of whose
mishap severity consequence is determined to be either Catastrophic or Critical by definition.

Safety Requirements Analysis – An analysis which identifies, categorizes, prioritizes, and justifies the
safety requirements to be implemented on a system to influence the design of that system from a safety
perspective.

Safety Related – A term applied to a condition, event, function, operation, process, or item of whose
mishap severity consequence is determined to be either Marginal or Negligible (less than critical) by
definition.

Safety Significant - A term applied to a condition, event, function, operation, process, or item that
possesses a mishap or hazard severity consequence by definition. That which is defined as safety-
significant can either be safety-critical or safety-related.

Validation – The determination that the requirements for a product are sufficiently correct and
complete.

Verification – The evaluation of an implementation of requirements to determine that they have been
met.

Appendix A
Preferred Level of Rigor Activities Table

The LOR task table formally defines the software safety process tasks, software development and test
tasks, and special design criterion required to fulfill the MIL-STD-882E requirements of Table V located
on Page 16 of the standard. It is essential that the LOR tasks defined and contractually required on each
program make logical and economic sense from a both a safety risk and return-on-investment
perspective. In addition, it is important that the tasks defined are fully integrated into the standard
practice processes of both system safety engineering and software development and test processes.
With this in mind, the Acquirer and the Developer may tailor the preferred tasks provided in this
implementation guide. Figure A.1 provides a graphical representation of the recommended method of
tailoring the task table.

Figure A.1: Preferred LOR Tailoring Method Example

It is recommended that tailoring consists of making changes to the columns of the table to determine
whether a specific task will be required for a given LOR level as depicted in the figure. It is also
recommended making word changes to the actual tasks themselves not be accomplished. The tasks
themselves have been formally documented and peer reviewed as “best practices” and should only be
tailored as a last resort where special circumstances warrant the change. As an example, LOR Task RP-8
states: “Coordinated Safety-significant Requirements Review for correctness and completeness.” This
could be tailored to state that only Safety-Critical requirements be reviewed for correctness and
completeness. The documented rationale for this tailoring may be that the system possesses an

Level of Rigor (LOR) Activity
Primary

Responsibility

Support

Responsibility
Level-Of-Rigor

Representative Artifacts

Produced

Baseline 4 3 2 1

defects against existing high-level

safety-significant Requirements.

Section 3.6.4

[Best Practice]

Safety Requirements

DP-4: From DP-2 and DP-3, document the newly

derived safety-significant requirements in the

RTM tool, and track, and trace these

requirements to design implementation.

Section 3.6.2-3.6.4

[Best Practice]

Contactor System

Safety

Developer Software

Safety

Developer Software

Design Architect

R R R R RTM Tool Update

Software Design Artifacts

Task not required for LOR-4
Developer Standard Practice
Acceptable

DP-5: Review the design for compliance with the

corporate safety design standards and

guidelines, and Acquirer directed best practices

(i.e., STANAG 4404, Appendix E of the JSSSEH,

etc)

[Directed Best Practice]

Acquirer System and

Software Safety

Developer System

and Software Safety

Developer Software

Design Architect

Acquirer SSWG Review

and Approval

R R R As directed Assessment of

Compliance Artifact

DP-6: Review of the user interface design for

safety-significant issues

[Best Practice]

Developer System

Safety

Developer Software

Safety

Developer Hardware

and Software Design

Engineering

Developer Human

Factors

R R R Assessment of User Interfaces

with Software Functionality

Human interfaces are deemed
extremely critical in this
application

DP-7: Create traceability from all safety-

significant requirements to the system and

software architecture

Section 3.6

Section 3.9

[Best Practice]

Developer Software

Design Architect

Developer Software

Safety
R R R R Safety Requirements-to-design

Traceability

Remove

Add

40

extraordinary number of safety-related requirements and the rapid acquisition budget and schedule
does not warrant the accomplishment of the task for lower severity level requirements.

As a reminder, all LOR tailoring of tasks must be reviewed and approved by the Acquirer to ensure that
the intent of the LOR activity meets the intent of MIL-STD-882E and any acceptance authority.

Legend:
PR: Prerequisite Requirement – Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

Required System Safety Tasks to Support
Software System Safety Per MIL-STD-882E

SSE-1: Document the Developer plans and
processes to meet the requirements of the
System Safety and Software System Safety
programs.

Section 3.0 Process and Process Tasks for
Software System Safety

MIL-STD-882E, Task 102

Developer System
Safety Manager

Developer Software
Safety

Developer Program
Manager

Developer Hardware
and Software Design
Engineering

Developer Software
Design Architect

Developer
Configuration
Management

PR System Safety Program Plan
(SSPP) and Software System
Safety Program Plan (SwSSPP).
SOW, CDRL

Acquirer Approved SSPP/SwSSPP

SSE-1.1: Define the safety-related terms (and
the definitions) to be used on the program

Section 3.1, Prepare the SSPP; Subsections 3.1.1-
3.1.2

[Best Practice]

Acquirer System
Safety Manager

Developer System
Safety Manager

Developer Software
Design Architect

Developer System
Safety

Acquirer SSWG Review
and Approval

PR Documented Program-Specific
Terms and Definitions. MIL-STD-
882E definitions and terms are
required unless approved by
appropriate authorities

Acquirer Approved SSPP

SSE-1.2: Detail within the SSPP/ SwSSPP, how
the SwSS tasks will be accomplished within the
specific software development life-cycle for the
project.

Section 3.1.3 Prepare the SSPP

MIL-STD-882E, Task 102

Developer Software
Safety

Developer Software
Development

Acquirer SSWG Review
and Approval

PR SOW, CDRL. SSPP/SwSSPP

Acquirer Approved SSPP/SwSSPP

SSE-1.3: Develop safety entry/exit criteria for
each program phase of the software
development life cycle to include concept
refinement, requirements, preliminary and
detailed design, coding, Test V&V, software
release and support).

[Best Practice]

Developer Software
Safety

Developer Software
Development and
Test

Configuration Mgmt

Acquirer SSWG Review
and Approval

PR Input to SwSSPP

Input to SDP

Input to STP

Input to CMP

Input to SwQAP

SSWG Minutes

SSE-1.4: Develop (or update) the Software
Control Category (SCC) Definitions to be used on
the program

Section 3.1 Prepare the SSPP

Developer Software
Safety

Developer Software
Development

Acquirer SSWG Review
and Approval

PR Defined Software Control
Category Definitions

SwSSPP

SSWG Minutes

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

42

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

[MIL-STD-882E, Table IV]

andTest

Developer Software
Design Architect

SSE-1.5: Develop (or update) the Software
Criticality Matrix (SCM) for the program

Section 3.1 Prepare the SSPP

[MIL-STD-882E, Table V]

Acquirer System
Safety Manager

Developer Software
Safety

Developer Software
Development and
Test

Developer Software
Design Archite

Acquirer SSWG Review
and Approval

PR SSMP

Program Software Criticality
Matrix

SwSSPP

SSWG Minutes

SSE-1.6: Develop (or update) Level of Rigor (LOR)
task table for the program to include tasks and
work products for each LOR software
development phase

Section 3.2.2 Prepare Level-of-Rigor Table

[MIL-STD-882E, Table V]

Developer Software
Safety

Developer Software
Development and
Test

Developer Software
Design Architect

Acquirer SSWG Review
and Approval

PR LOR Table

SwSSPP

SSWG Minutes

SSE-2: Establish a chartered System Safety
Working Group (SSWG)

Section 3.1.1 Obtain Inputs from the SSMP

[MIL-STD-882E, Task 105]

Acquirer System
Safety Manager

Developer System
Safety, Software
Design Architect,
Software Safety,
Software
Development & Test

Acquirer SSWG PR SSMP, SSPP. SSWG Charter and
Proceedings

SSE-3: Set-up a Hazard Tracking System (HTS) for
the program

Section 3.1.1 Obtain Inputs from the SSMP

Also, Statement of Work tasks

[MIL-STD-882E, Paragraph 4.3.2]

Developer System
Safety

Acquirer SSWG Review
and Approval

PR, AD Hazard Tracking Database

SSWG Minutes

SSE-3.1: Enter each hazard identified into the
HTS

Developer System
Safety

Acquirer SSWG Review
and Approval

PR Individual Hazard Records of the
HTS

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

43

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

Section 3.3.1 Identify Hazards Pertaining to the
Baseline System to Include the Preliminary
System/Software Architecture

[MIL-STD-882E, Paragraph 4.3.2]

SSWG Minutes

SSE-3.2: Assign the severity and probability of
occurrence to each hazard identified and
calculate the initial Mishap Index (MRI) based on
the best available data documented, including
provisions, alternatives, and mitigation measures
to eliminate hazards or reduce associated risk

Section 3.3.2 Categorize Hazards with
Preliminary Hazard Risk Index

[MIL-STD-882E, Para 4.3.3]

Developer System
Safety

Acquirer SSWG Review
and Approval

PR MRI/HRI Assignment for each
Hazard Record

SSWG Minutes

SSE-4: Perform a Preliminary Hazard Analysis
(PHA) to identify the top level safety mishaps and
hazards and top-level safety mitigation
requirements

Section 3.3 Preliminary Hazard Analysis (PHA)

[MIL-STD-882E, Task 202]

Developer System
Safety

Acquirer SSWG Review
and Approval

PR List of Top-Level Mishaps

List of Hazards and Hazard Failure
Modes

Preliminary Hazard Analysis (PHA)

SSWG Minutes

SSE-5: Perform a Functional Hazard Analysis
(FHA) to identify the safety-significant functions
and provide inputs or updates to the PHA

Section 3.4 Functional Hazard Analysis (FHA)

[MIL-STD-882E, Task 208]

Developer System
Safety

Acquirer SSWG Review
and Approval

PR Functional Hazard Analysis (FHA)

List of Safety-Significant Functions

LOR Assignment to Safety-
Significant Functions

SSWG Minutes

SSE-6: Perform a Safety Requirements Analysis
(SRA)*

Section 3.6 Preliminary Safety Requirements
Analysis (SRA), Section 3.8 Perform Detailed
Safety Requirements Analysis

[MIL-STD-882E, Task 203] *Referred to as SRHA

Developer System
Safety

Acquirer SSWG Review
and Approval

PR, AD SOW, CDRL, Safety Requirements
Analysis (SRA)

SSWG Minutes

SSE-7: Perform a System Hazard Analysis (SHA)
and accomplish an in-depth causal, interface, and
failure mode analysis of the identified hazards to
identify specific hardware, software, and human-
related causes and the safety mitigating

Developer System
Safety

Developer Software
Safety

PR System Hazard Analysis

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

44

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

requirements to eliminate or control them.

Section 3.7 Perform In Depth Hazard Analysis

[MIL-STD-882E, Task 205]

SSE-8: Perform a Sub-System Hazard Analysis
and accomplish an in-depth causal, interface, and
failure mode analysis of the identified hazards to
identify specific hardware, software, and human-
related causes and the safety mitigating
requirements to eliminate or control them.

Section 3.7 Perform In Depth Hazard Analysis

[MIL-STD-882E, Task 204]

Developer System
Safety

Developer Software
Safety

 PR, AD Subsystem Hazard Analysis for
individual subsystems

SSE-9: Perform initial FTA/Event Tree/Logic
Diagram on prioritized hazards

Section 3.7 Perform In Depth Hazard Analysis

[Best Practice]

Developer System
Safety

Developer Software
Safety

PR, AD Fault Tree Analysis on prioritized
(by SSWG) mishaps or hazards

SSE-10: Perform a System-of-System Hazard
Analysis (SoS) to identify unique SoS hazards

Section 3.7 Perform In Depth Hazard Analysis

[MIL-STD-882E, Task 209]

Developer(s) System
Safety

Developer(s) Software
Safety

PR, AD SoS Hazard Analysis

SSE-11: Perform an Operating and Support
Hazard Analysis to identify hazards from the long
term operation, maintenance, and support of the
application, and to identify mitigating
requirements

[MIL-STD-882E, Task 206]

Developer System
Safety

Developer Software
Safety

PR, AD O&SHA

SSE-12: Review of all Software Trouble Reports
for safety applicability to safety-significant
functions and mishaps/hazards (STR)

Section 3.12.3 Monitor Test Defects and
Corrective Actions, 3.12.4 Review Final Software
Test Results

[MIL-STD-882E, Task 304]

Developer Software
Safety

Developer Software
Development and Test

Developer Software
Design Architect

PR STR Review Results

NOTE: Refer to subsequent Life-
Cycle (LC) Support Tasks required
to support sustainment after
design is put under Configuration
Control

SSE-13: Produce Safety Case or Safety
Assessment Report as directed by the customer
(SAR). Ensure the SAR captures all of the

Developer System
Safety

Developer Software
Safety

PR, AD Safety Case

Safety Assessment Report

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

45

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

relevant SSS elements applicable to the system
assessed

Section 3.0 Process and Process Tasks for
Software System Safety

[MIL-STD-882E, Task 301]

SSWG Minutes

SSE-14: Maintain records of compliance with the
tailored program safety requirements.

[MIL-STD-882E, Tasks 102, and 104]

Developer Software
Safety

Software Quality
Assurance

Developer Software
Development & Test

Acquirer SSWG Review
and Approval

PR, AD All System Safety and Software
Safety Engineering Artifacts

SSWG Minutes

SQA Audits and Results

REQUIREMENTS PHASE (RP) TASKS

RP-1: Review generic software safety
requirements from other standards, including
coding standards or industry best practice and
identify the software safety requirements that
are deemed appropriate for the
system/software. Tag and track these Software
Safety Requirements in the Requirements
Traceability Management (RTM) tool

Section 3.6.3 Identify and Tag Generic Safety
Significant Requirements

[MIL-STD-882E, Task 203]

Developer System
Safety

Developer Software
Safety

Acquirer Review and
Approval

 R R R R List of Generic Safety-significant
Requirements documented in
RTM tool

SSWG Minutes

RP-2: Review System Requirements Specification
(SRS), and identify the functional requirements
that contribute to the hazards. Tag and track
these safety-significant Requirements in the
Requirements Traceability Management (RTM)
tool

Section 3.6.1 Review System and Functional
Specifications

Section 3.6.2 Identify and Tag Contributing Safety
Significant Requirements (CSSR)

[MIL-STD-882E, Task 203]

Developer System
Safety

Developer Software
Safety

 R R R R List of Contributing Safety-
significant Requirements
documented in the RTM Tool

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

46

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

RP-3: From the FHA and the PHA Analyses,
derive high-level safety requirements to mitigate
identified hazards and failure modes. Tag and
track these mitigating safety-significant
Requirements in the Requirements Traceability
Management (RTM) tool.

Section 3.6.4 Identify and Tag Mitigating Safety
Significant Requirements (MSSR)

[MIL-STD-882E, Task 202, 203, and 208]

Developer System
Safety

Developer Software
Safety

 R R R R List of Derived Safety-significant
(high-level) Requirements

RP-4: Determine Software Criticality and assign
an LOR to each Safety-significant Requirement
based on the software control category and the
highest severity of the associated hazard
(functional contribution)

Section 3.5 LOR Allocations to Safety Significant
Functions

[MIL-STD-882E, Task 203]

Developer Software
Safety

Developer Software
Requirements

 R R R R LOR Assignments for Each Safety-
Significant Requirement

RP-5: Create traceability matrix from safety-
significant requirements (generic, contributing or
mitigating requirements) to identified hazards

Section 3.6 Preliminary Safety Requirements
Analysis (SRA)

Section 3.9 Perform Safety Requirements
Traceability

[MIL-STD-882E, Task 203]

Developer System
Safety

Developer Software
Safety

Acquirer Review and
Approval

 R R R R Requirements-to-Hazards
Traceability Artifact

SSWG Minutes

RP-6: Ensure that SwSS requirements (generic,
contributing, or mitigating) are flowed down and
traceable to the lower level software
requirements specifications (SRS) safety
requirements, as they are developed.

Section 3.6 Preliminary Safety Requirements
Analysis (SRA)

Developer System
Safety

Developer Software
Safety

 R R R R Requirements-to-Specifications
Traceability Artifacts

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

47

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

[Summary Task for RP-1 to RP-3]

RP-7: Derive requirements to insure that safety-
significant interfaces are validated and controlled
at all times

[Best Practice]

Developer Software
Requirements

Developer Software
Safety

Developer Software
Design Architect

 R R Functional and Physical Design
Interface Analysis

RP-8: Coordinated Safety-significant
Requirements Review for correctness and
completeness

[Best Practice]

Developer Software
Requirements

Developer Software
Safety

Developer Software
Design Architect

 R R Safety Requirements Review

RP-9: Derive high-level requirements for a fault
tolerant design and tag as Derived Safety-
significant Requirements

[Best Practice]

Developer Software
Requirements

Developer Software
Safety

Developer Software
Design Architect

 R Derived Fault Tolerant
Requirements

RP-10: Independent review of all Contributing,
Generic, and Mitigating Software Safety
Requirements

[Best Practice]

Someone Other Than
the Developer

Independent Software
Safety

IV&V,
AD

 Independent Safety Requirements
Review

RP-11: Define the verification method
(inspection, demonstration, analysis, or test) for
each Safety-Significant Requirement

[Best Practice]

Developer Software
Requirements

Developer Software
Safety

Developer Software
Design Architect

 R R R R Requirements Traceability Matrix
(includes verification method)

SW Development and Test
Artifacts

DESIGN PHASE (DP) TASKS

DP-1: Update all analyses (PHA, FHA, SRA, SSHA,
SHA, and FTA) for depth and fidelity based on the
maturing design concepts in the design phase of
the program

Section 3.3 – 3.8

[MIL-STD-882E, Tasks 202, 203, 204, 205, 208]

Developer System
Safety

Developer Software
Safety

Acquirer Review and
Approval

RP, AD Updated safety engineering
analysis artifacts

Acquirer Approval

DP-2: From DP-1, identify and add to the SRS
generic safety and coding standard requirements

Contactor System Developer Software R R R List of Safety-Specific
Requirements Considered to be

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

48

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

for fault detection, isolation, annunciation, and
tolerance, error logging, and safe state
transitions, and tag these as Mitigating Safety-
significant Requirements

Section 3.6.3

[Best Practice]

Safety

Safety

Developer Hardware
and Software Design
Engineering

Developer Software
Development and Test

Developer Software
Design Architect

Safety Best Practice

DP-3: From DP-1 and DP-2, identify and add to
the SRS mitigating software requirements for
hazards causal factors, and tag these as
Mitigating Software Safety Requirements or
defects against existing high-level safety-
significant Requirements.

Section 3.6.4

[Best Practice]

Contactor System
Safety

Developer Software
Safety

Developer Software
Design Architect

 R R R R Derived Safety Requirements

OR

Defects against existing Safety
Requirements

DP-4: From DP-2 and DP-3, document the newly
derived safety-significant requirements in the
RTM tool, and track, and trace these
requirements to design implementation.

Section 3.6.2-3.6.4

[Best Practice]

Contactor System
Safety

Developer Software
Safety

Developer Software
Design Architect

 R R R R RTM Tool Update

Software Design Artifacts

DP-5: Review the design for compliance with the
corporate safety design standards and
guidelines, and Acquirer directed best practices
(i.e., STANAG 4404, Appendix E of the JSSSEH,
etc)

[Directed Best Practice]

Acquirer System and
Software Safety

Developer System
and Software Safety

Developer Software
Design Architect

Acquirer SSWG Review
and Approval

 R R R As directed Assessment of
Compliance Artifact

DP-6: Review of the user interface design for
safety-significant issues

[Best Practice]

Developer System
Safety

Developer Software
Safety

Developer Hardware
and Software Design
Engineering

Developer Human
Factors

 R R Assessment of User Interfaces
with Software Functionality

DP-7: Create traceability from all safety-
significant requirements to the system and

Developer Software
Design Architect

Developer Software
Safety

 R R R R Safety Requirements-to-design
Traceability

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

49

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

software architecture

Section 3.6

Section 3.9

[Best Practice]

DP-8: Functionally partition all implementations
of high LOR requirements from lower LOR
requirements in the design

[Best Practice]

Developer Software
Design Architect

Developer Software
Safety

 R R Functionally Partitioned Design in
Design Documentation Artifacts

DP-9: Assess design’s stress tolerant (i.e.,
memory, processing through-put, timing, etc).
Make appropriate recommendations to update
requirements for stress tolerant design.

[Best Practice]

Developer Software
Design Architect

Developer Software
Safety

Developer Software
Requirements and
Design

 R R Stress Tolerant Design

DP-10: Perform Design Interface Analysis to
evaluate internal and external interfaces of
safety-critical units to ensure functional and
physical compatibility across the interface.
[Best Practice]

Developer Software
Design Architect

Developer Software
Safety

 R Verification that the design
controls the functional and
physical interfaces with safety-
significant functionality

DP-11: Analyze all safety functional threads to
ensure that all paths lead to their desired
outcomes and that there is no dead/unused
code, unused/undesired entry/exit points
into/out of the software thread

[Best Practice]

Developer Software
Design Architect

Developer Software
Safety R Safety (functional) Thread Analysis

DP-12: Verify that every variable and functional
statement in safety-critical modules of code have
a predefined behavior that fulfill the criteria of
the functional objective

[Best Practice]

Developer Software
Design Architect

Developer Software
Safety R Safety-specific Behavioral Review

Results for Safety-Critical Modules
of Code

DP-13: Independent Safety Review of
Requirements-to-Design for Safety Coverage

[Best Practice]

Someone Other Than
System Safety Team

Independent Software
Safety

Independent Software
Design

IV&V,
AD

 Independent Safety Review of
Requirements-to-Design Coverage
Artifact

IMPLEMENTATION (CODING) PHASE (IP)

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

50

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

TASKS

IP-1: Update existing FTA/Event Tree/Logic
Diagram on prioritized hazards

[MIL-STD-882E]

Developer System
Safety

Developer Software
Safety

R, AD Updated FTA/Event Tree/Logic
Diagram on Prioritized Hazards

IP-2: Update all Hazard Analyses to include the
in-depth causal analysis that reflects the
mature(ing) design

Section 3.3 – 3.8

[MIL-STD-882E, Tasks 204, 205]

Developer System
Safety

Developer Software
Safety

RP, AD Updated Hazard Analysis

IP-3: Update Safety Case or Safety Assessment
Report (SAR) as required by Customer

[MIL-STD-882E, Task 301]

Developer System
Safety

Developer Software
Safety

RP, AD Updated Safety Case or Safety
Assessment Report

IP-4: Participate in Test Readiness Reviews

[Best Practice]

Developer System
Safety

Developer Software
Safety

 R R R Test Readiness Review Artifacts

IP-5: Mark safety-significant code header with
the appropriate safety-criticality or LOR
assignment

[Best Practice]

Developer Software
Developer

Developer Software
Safety

 R R R R Code Headers Reflect Correct
Safety Significance

IP-6: Perform high-level reviews of code for
compliance with safety-significant coding
standards and guidelines (e.g. MISRA)

[Best Practice]

Developer Software
Developer

Developer Software
Safety

Developer Software
QA

RP Artifacts Demonstrating
Compliance with Best Practices
for Safety-Critical Code
Development

IP-7: Perform detailed code walkthroughs and
analysis of safety-critical code

Section 3.10 Perform Code Level Safety Analysis

[Best Practice]

Developer Software
Design Architect

Developer Software
Developer

Developer Software
Safety

 R Code Level Review Results

IP-8: Create traceability from code to safety-
significant design requirements

Section 3.9

Developer Software
Design Architect

Developer Software
Developer

Developer Software
Safety

 R R R R Requirements-to-Code
Traceability

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

51

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

[Best Practice]

IP-9: Participate in acceptance review of safety-
significant code

[Best Practice]

Developer Software
Safety

Developer Software
Developer and
Software Test

 R R R Acceptance Review of Safety
significant Software

IP-10: Independent Safety Review of Safety-
Significant Code

Section 3.10 Perform Code Level Safety Analysis

[MIL-STD-882E]

Independent Design Independent Software
Safety

IV&V,
AD

 Safety Code-Level Review

IP-11: Perform detailed code inspections for
fault contributions of Safety-Significant Code

Section 3.10.4 Analyze the Safety-critical code

[Best Practice]

Software
Development Team

Software Test

Software Safety
 R Safety Code-Level Analysis for

Fault Management

IP-12: Review unit test plan to ensure that it
defines the requirements for testing units of
safety-significant code

Section 3.11.2 Ensure Safety Functionality is
Tested

[Best Practice]

Developer Software
Safety

 R R R R Assessment of Unit Test Plan for
Requirements Definition

IP-13: Execute unit tests

[Best Practice]

Developer Software
Developer

 R R R R Documented results of Unit Test
Execution

IP-14: Unit test results review

[Best Practice]

Developer Software
Developer

Developer Software
Safety

 R R R R Assessment of Unit Test Results

IP-15: Review unit test results and verify that the
unit tests provide the required unit test coverage
and were executed in compliance with the unit

Developer Software
Test

Developer Software
Safety

 R R R R Documented results of Unit Test
Review

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

52

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

test plan

[Best Practice]

TEST PHASE (TP) TASKS

TP-1: Finalize the System Hazard Analysis (SHA)

Section 3.7

[MIL-STD-882E, Task 204, 205, 206, 208]

Developer System
Safety

Developer Software
Safety

 R R R R Final Hazard Analysis Artifacts

TP-2: Mark safety-significant test cases with the
appropriate LOR

[Best Practice]

Developer Software
Safety

Developer Software
Test

 R R R Evidence within the Safety-
Specific Software Test Cases

TP-3: Perform a safety review of each test case

3.11 Perform Software Test Planning

[Best Practice]

Developer Software
Safety

 R R R Safety Review Results

TP-4: Review all requirements traceability
matrices for coverage and completeness

[Best Practice]

Developer System
Safety

Developer Software
Safety

 R R R Requirements Traceability Review
Results

TP-5: Develop software test case procedures to
demonstrate software structure (statement
coverage) is achieved

[Best Practice]

Developer Software
Test

Developer Software
Design Architect

Developer Software
Safety

 R R R Evidence within the Software Test
Plan

Documented Code Structural
Coverage evidence

TP-6: Develop software test case procedures to
demonstrate software structure
(condition/decision coverage(C/DC)) is achieved

[Best Practice]

Software Test

Software Design

Software Safety R R Safety-Specific Software Test
Cases

Documented Code Structural
Coverage evidence

TP-7: Develop software test case procedures to
demonstrate software structure (modified
condition/decision coverage (MC/DC)) is
achieved.

[Best Practice]

Developer Software
Test

Developer Software
Design Architect

Developer Software
Safety

 R Safety-Specific Software Test
Cases

Documented Code Structural
Coverage evidence

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

53

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

TP-8: Perform a software structural coverage
analysis to demonstrate that the appropriate
level of software structural coverage, including
data coupling and control coupling, has been
achieved.

[Best Practice]

Developer Software
Test

Developer Software
Design Architect

Developer Software
Safety

 R R Safety-Specific Software Test
Cases

Documented Code Structural
Coverage evidence

TP-9: Develop software test cases to
demonstrate that the software satisfies its
requirements and those anomalous conditions or
software errors cannot lead to a hazardous
condition as identified by the Hazard Analyses
from the System Safety process.

[Best Practice]

Developer Software
Test

Developer Software
Design Architect

Developer Software
Safety

 R R Safety-Specific Software Test
Cases

TP-10: Each software requirement identified as
safety significant in the System Safety Hazard
Analysis process shall be traced to a test case and
each test case shall trace back to a software
requirement.

[Best Practice]

Developer Software
Test

Developer Software
Design Architect

Developer Software
Safety

 R R Safety-Specific Software Test
Cases

TP-11: Develop software test cases to
demonstrate the ability of the software to
correctly respond to off-nominal, robustness,
and failure mode conditions as identified by the
system Safety Hazard Analysis process. Off
Nominal and robustness conditions that must be
considered are: abnormal, out-of-bounds, and
invalid variable input values including zero, zero
crossing and approaching zero from either
direction or similar values of trig functions;
proper state transitions and possible disallowed
state or mode transitions; system initialization
under abnormal and failure conditions; errors in
input values or counters associated with time or
rate functions and algorithms; failure modes of
input data strings and messages; out of range
loop counters and other loop failure conditions;
exception handling correctness; fault and error
handling correctness

Developer Software
Test

Developer Software
Safety

 R R Safety-Specific Software Test
Cases

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

54

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

[Best Practice]

TP-12: Perform a software test coverage analysis
to demonstrate that test case procedures meet
the requirements based test coverage criteria: a
test case exist for each software requirement;
test cases satisfy the criteria for normal;
robustness, and failure mode testing; all test
procedures used to satisfy structural coverage
are traced to requirements; and that
requirements or structural coverage deficiencies
are resolved by identification or new
requirements or new test cases.

[Best Practice]

Developer Software
Test

Developer Software
Safety

 R R Safety Requirements-to-Test
Cases Trace

TP-13: Create a safety-significant test report
documenting the safety-significant formal testing
compliance and execution results

[Best Practice]

Developer Software
Test

Developer Software
Safety

 R R R R Safety-Critical Test Report

TP-14: Review safety-significant test results and
verify that the safety-significant test cases
provide the required test coverage and were
executed in compliance with the formal test
plans.

 [Best Practice]

Developer Software
Test

Developer Software
Safety

Developer Software
Quality

 R R R Verification of Test Case
Implementation

TP-15: Track safety verification failures and
participate in test anomaly resolution

 Section 3.12.3 Process Subtask 12.3: Monitor
Test Defects and Corrective Actions

[Best Practice]

Developer Software
Design

Developer Software
Test

Developer Software
Safety

 R R R Attendance Log

TP-16: Plan, perform, and review functional and
Failure Modes and Effects Test (FMET) regression
test plans and procedures.

Section 3.12.4 Review Final Software Test Results

[Best Practice]

Developer Software
Design

Developer Software
Test

Developer Software
Safety

 R R R Regression Test Plans and
Procedures

TP-17: Add test cases to the Regression Test Plan
to support 100% regression testing

Developer Software
Test

Developer Software
Design

 R R R Regression Test Plans and
Procedures

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

55

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

[Best Practice]

Developer Software
Safety

TP-18: Perform 100% regression testing

Regression testing must include testing of non-
partitioned non-safety-significant software at the
same LOR as the safety-significant software.

[Best Practice]

Developer Software
Test

Developer Software
Safety

 R R R Regression Test Results or Report

TP-19: Calculate and document the residual
safety risk (after mitigation)

Section 3.13 Perform Residual Safety Risk
Assessment

[MIL-STD-882E, Task 301]

Developer System
Safety

Developer Software
Safety

 R R R R Residual Safety Risk Assessment

TP-20: Gain accreditation and validation of
models and simulations that are used to support
software system safety verification in accordance
with DoDI 5000.61, DoD Modeling and
Simulation (M&S) Verification, Validation, and
Accreditation (VV&A).

[Best Practice]

Developer Software
Engineering

 R R

TP-21: Validate models and simulations against
actual hardware and data.

[Best Practice]

Developer Software
Engineering

 R R

TP-22: SwSS personnel shall support the SS risk
assessment process.

Section 3.13 Perform Residual Safety Risk
Assessment

[Best Practice]

Developer and
Acquirer SSWG

 R R R R Problem Reports, adjudications,
SSWG Minutes

LIFE CYLE (LC) SUPPORT PHASE TASKS

LC-1: Review of all Engineering Change Proposals
for safety applicability to safety-significant
functions and mishaps/hazards (ECP)

Developer System
Safety Team

Developer Software
Safety

 RP ECP Review Results with System
Safety assessment indicated

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

56

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

Section 3.14 Participate in Life-cycle
Management and Support

[MIL-STD-882E, Task 304]

LC-2: Identify and track safety-significant
requirements to mitigate the safety risk potential
of the Software Trouble Reports (STRs) or
Engineering Change Proposals (ECPs) being
processed.

Section 3.13.3 Assess Partial Mitigation or Failure
to Mitigate, Section 3.14

[MIL-STD-882E, Task 304]

Developer System
Safety Team

Developer Software
Safety

RP

LC-3: Update SSHA, SHA, and FHA (as required)

Section 3.14.6 Update all Safety Related Artifacts

[MIL-STD-882E, Task 204, 205, 208]

Developer System
Safety Team

Developer Software
Safety

R, AD Updated FHA

Updated SSHA and SHA

NOTE: If the safety analysis has
NOT been accomplished on the
system (e.g., legacy system), then
it must be accomplished now)

LC-4: Update the FTA (as required)

Section 3.14.6

[MIL-STD-882E]

Developer System
Safety Team

Developer Software
Safety

R, AD Updated FTA

LC-5: Update the HTS (as required)

Section 3.14.6

[MIL-STD-882E]

Developer System
Safety Team

Developer Software
Safety

R AD Updated HTS

LC-6: Participate in Configuration Management
process and Configuration Control Board (CCB)

[Best Practice]

Developer System
Safety Team

Developer Software
Safety

RP Safety Review and Approval of
ECPs and STRs

LC-7: Mark safety-significant software ECPs and
items in CM with the appropriate LOR as
determined by the criticality

[Best Practice]

Developer Software
Safety

Developer
Configuration
Management

Developer Software
Design Architect

RP ECP Review Results

Legend:
PR: Prerequisite Requirement– Required regardless of LOR or required in order to assess and determine LOR
R: Required for assigned LOR AD: As directed by Customer/Contract
IV&V: Independent Verification and Validation N/A: Not Applicable for this program or LOR

57

Level of Rigor (LOR) Activity Primary
Responsibility

Support
Responsibility Level-Of-Rigor Representative Artifacts

Produced

 Baseline 4 3 2 1

LC-8: Review problem reporting/defect tracking,
change control, and change review activities for
safety impact and compliance

 [Best Practice]

Developer Software
Safety

Developer
Configuration
Management

Developer Software
Design Architect

RP Software Trouble Report and
Defect Tracking Results

LC-9: Document the results of any Safety
Reviews

[Best Practice]

Developer System
Safety

Developer Software
Safety

RP Safety Review Results

Note: Regression testing must be performed on
all changed or modified software in system
sustainment. See TP-18 and TP-19

 R R R Regression Test Plans

Regression Test Results

LC-10: Review Test Reports [Safety, Test]

[Best Practice]

Developer System
Safety Team

Developer Software
Safety

RP Test Report Review

LC-11: Review and give signature approval on
safety-significant CRs

[Best Practice]

Developer System
Safety Team

Developer Software
Safety

RP Safety-significant CR Signature
from Software Safety

LC-12: Independently review safety-significant
code changes implemented by ECPs within the
CM process

[Best Practice]

Someone Other Than
Designer/Developer

 IV&V,
AD

 Independent Safety Review
Results

	1.0 Software System Safety Abstract
	2.0 Specialty Task Outline and Process
	3.0 Process and Process Tasks for Software System Safety
	3.1. Process Task 1.0: Prepare the System Safety Management Plan (SSMP)
	3.1.1. Reference Documents
	3.1.2. Process Subtask 1.1: Obtain Inputs from Acquirer Regulations and Policies
	3.1.3. Process Subtask 1.2: Obtain Inputs from MIL-STD-882E and Compliance Documents
	3.1.4. Process Subtask 1.3: Obtain Commitment from Program Management
	3.1.5. Process Subtask 1.4: Prepare SSMP for Review and Approval
	3.1.6. Process Subtask 1.5: Provide Inputs to the Request for Proposal (RFP) and Statement of Work (SOW)

	3.2. Process Task 2.0: Prepare System Safety Program Plan (SSPP)
	3.2.1. Process Subtask 2.1: Obtain Inputs from the System Safety Management Plan (SSMP)
	3.2.2. Process Subtask 2.2: Obtain Inputs from Compliance Documents
	3.2.3. Process Subtask 2.3: Integrate Software Safety Engineering Criteria
	3.2.4. Process Subtask 2.4: Prepare Level-of-Rigor (LOR) Appendix
	3.2.4.1. Process Subtask 2.4.1: Obtain LOR Task Inputs from Compliance Documents
	3.2.4.2. Process Subtask 2.4.2: Prepare the LOR Task Table Appendix
	3.2.4.3. Process Subtask 2.4.3: Obtain LOR Concurrence from Development and Test
	3.2.4.4. Process Subtask 2.4.4: Integrate LOR Tasks with Development and Test Processes
	3.2.4.5. Process Subtask 2.4.5: Integrate LOR Tasks into Pertinent Program Plans

	3.2.5. Process Subtask 2.5: Obtain Acquirer Approval of the Developer’s SSPP

	3.3. Process Task 3.0: Preliminary Hazard Analysis
	3.3.1. Process Subtasks 3.1: Identify Hazards Pertaining to the Baseline System
	3.3.2. Process Subtask 3.2: Categorize Hazards with Preliminary RAC
	3.3.3. Process Subtask 3.3: Identify Hazard Failure Modes
	3.3.4. Process Subtask 3.4: Identify Hazard Causes - Hardware, Software and Human Error
	3.3.5. Process Subtask 3.5: Identify Hazard Mitigation Requirements

	3.4. Process Task 4.0: Functional Hazard Analysis (FHA)
	3.4.1. Process Subtask 4.1: Functionally Decompose the System
	3.4.2. Process Subtask 4.2: Identification of All Functionality
	3.4.3. Process Subtask 4.3: Document Functional Failure Consequences
	3.4.4. Process Subtask 4.4: Determine Severity of Functional Failure Consequences
	3.4.5. Process Subtask 4.5: Identify Safety-Significant Functions
	3.4.6. Process Subtask 4.6: Identification of SwCI for SSFs
	3.4.7. Process Subtask 4.7: Map SSFs to the Software Design Architecture
	3.4.8. Process Subtask 4.8: Identify Failure Mitigation Requirements

	3.5. Process Task 5.0: LOR Allocations to Safety-Significant Functions
	3.5.1. Process Subtask 5.1: Assess SSF against Software Control Categories (SCC)
	3.5.2. Process Subtask 5.2: Assess the SSF for the Consequence Severity
	3.5.3. Process Subtask 5.3: Compare SCC and Severity with the Software Safety Criticality Matrix (SSCM)
	3.5.4. Process Subtask 5.4: Assign the Criticality LOR to the Safety-Significant Function

	3.6. Process Task 6.0: Preliminary Safety Requirements Analysis (SRA)
	3.6.1. Process Subtask 6.1: Review System and Functional Specifications
	3.6.2. Process Subtask 6.2: Identify and Tag Contributing Safety-Significant Requirements (CSSR)
	3.6.3. Process Subtask 6.3: Identify and Tag Generic Safety-Significant Requirements (GSSR)
	3.6.4. Process Subtask 6.4: Identify and Tag Mitigating Safety-Significant Requirements (MSSR)

	3.7. Process Task 7.0: Perform In-Depth Hazard Analysis
	3.7.1. Process Subtask 7.1: Integrate Hazards from the Preliminary Hazard Analysis
	3.7.2. Process Subtask 7.2: Categorize Hazard with an Initial RAC
	3.7.3. Process Subtask 7.3: Perform In-Depth Hazard Causal Analysis
	3.7.4. Process Subtask 7.4: Derive Lower-Level Mitigation Requirements
	3.7.5. Process Subtask 7.5: Categorize Hazards with a Final RAC

	3.8. Process Task 8.0: Perform Detailed Safety Requirements Analysis
	3.8.1. Process Subtask 8.1: Reassess Preliminary Requirements
	3.8.2. Process Subtask 8.2: Reassess Mitigation Requirements
	3.8.3. Process Subtask 8.3: Verify Requirements in Design
	3.8.4. Process Subtask 8.4: Author Appropriate Defects Against Design Requirements

	3.9. Process Task 9.0: Perform Safety Requirements Traceability
	3.9.1. Process Subtask 9.1: Trace Safety Requirements to Design Architecture
	3.9.2. Process Subtask 9.2: Trace Safety Requirements to Hazards
	3.9.3. Process Subtask 9.3: Trace Safety Requirements to Implementation

	3.10. Process Task 10.0: Perform Code-Level Safety Analysis
	3.10.1. Process Subtask 10.1: Determine the Software Functionality to Analyze
	3.10.2. Process Subtask 10.2: Determine the Software Functionality to be Analyzed
	3.10.3. Process Subtask 10.3, Determine the Objectives of Analysis
	3.10.4. Process Subtask 10.4, Analyze LOR-1 Software

	3.11. Process Task 11.0: Perform Software Test Planning
	3.11.1. Process Subtask 11.1: Ensure Correctness and Application of the LOR Test Criteria
	3.11.2. Process Subtask 11.2: Ensure Safety Functionality is Tested
	3.11.3. Process Subtask 11.3: Comply with the LOR Test Criteria
	3.11.4. Process Subtask 11.4: Assist in Writing Test Cases and Test Procedures

	3.12. Process Task 12.0: Monitor Safety-Significant Software Testing
	3.12.1. Process Subtask 12.1: Ensure Software Testing Conforms to LOR Test Criteria
	3.12.2. Process Subtask 12.2: Ensure Safety Functionality is Tested
	3.12.3. Process Subtask 12.3: Monitor Test Defects and Corrective Actions
	3.12.4. Process Subtask 12.4: Review Final Software Test Results

	3.13. Process Task 13.0: Perform Residual Safety Risk Assessment
	3.13.1. Process Subtask 13.1: Reassess all Documented Hazards
	3.13.2. Process Subtask 13.2: Verify Hazard Mitigation
	3.13.3. Process Subtask 13.3: Assess Partial Mitigation or Failure to Mitigate
	3.13.4. Process Subtask 13.4: Support Residual Safety Risk Assessment
	3.13.5. Process Subtask 13.5: Document and Communicate Residual Safety Risk

	3.14. Process Task 14.0: Participate in Life-Cycle Management and Support
	3.14.1. Process Subtask 14.1: Assess all Functional and Physical Changes to the System
	3.14.2. Process Subtask 14.2: Assess the Change Against Documented Hazards
	3.14.3. Process Subtask 14.3: Identify New Hazards, Failure Modes, or Causes
	3.14.4. Process Subtask 14.4: Mitigate Hazards, Failure Modes, or Causes
	3.14.5. Process Subtask 14.5: Document and Communicate Safety Risk
	3.14.6. Process Subtask 14.6: Update all Safety-Related Artifacts

	4.0 Acronym List
	5.0 Glossary

