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CATEGORICAL JUDGEMEWTS: THE METHOD

OF SUCCESSIVE INTERVALS

A frequently used means of obtaining ratings from judges
is that of categorical judgement, wherein judges assign
instances to ranked categories. For example, corporate bonds
may be rated as A,AA, and so on; student opinion forms ask
the student to rate an instructor as poor, fair, average,
excellent, or outstanding; pollsters often ask pecple to
check one of a set of categories described as strongly agree,
agree, no opinion, disagree, and strongly disagree. When an
instructor assigns a students letter grades, he may be viewed
as making a categorical judgement in that the possible grades
are the categories and the students are the instances. Other
examples of ranked categories are found in such diverse
applications as restaurant sanitation ratings, military
officer fitness reports, and motion picture ratings (G, PG,
R, X). Usually, there are descriptors associated with each
category which serve to help the judge with his rating task.

The method described in this paper is a scaling method
which uses categorical ratings provided by judges, and con-
structs an interval scale which includes not only the in-
stances but also the bounds between the categories.1'3'd's
Thus descriptive benchmarks appear on the final scale.
Typically, five categories are used.z No assumptions are
made about the relative interval sizes for the categories.

The categories are understood to be a mutually exclusive set

of successive intervals which collectively exhaust the

property continuum,




Data Asrenbly

A direct way to aggregaie categorical ratings of
instances by judges is through a frequency arrﬁy, with a row
for each of the n instances and a column for each of the m
categories. Thus we would describe an entry in this raw
frequency array as fij' denoting the number of judges who
rated instance 1 ig category J. _Columns in thé fij array
should be arranged in ascending ofder of category value, so
that the category representing the least amount of the property
is Column 1, and the category representing the greatest
amount of the property is Column m. It is not necessary feor
a judge to rate all instances,

Working with the fij array, we may cumulate values in
each row rightward and divide by the row total to achieve a
relative cumulative frequency array pij’ where pij is the
proportion of’judges rating instance i who rated it in or
below category j. Since the values in the right~hand column
of the pij array will always be 1.0, this column may be
omitted for computational purposes, yielding a pij array
with n rows and m-1 columns.

In the example given below, 80 judges were asked to rate
four political candidates in terms of their "potential ef-
fectiveness as President of the USA." .The categories were
Very Ineffective, Ineffective, Marginal, Effective, and

Very Effective. Raw frequency data is shown in Table 1.




TABLE 1. Raw Frecuency Array
3
. ) gzzgl- Potential Ef.fectivengss J. §
fij . very ) . ) . ' very
ineffective ineffective marginal effective effective
A 10 20 27 21 2
-~ B 4 30 35 11 0
v C 20 43 15 2 0
D 3 2 34 30 11

From the raw fregquency array, the p,

structed as in Table 2.

ij

array may be con-

TABLE 2. Cumulated Relative Frequency Array
Candi-
date Potential Effectiveness _
S /i LS S
.) Pi. very :2—‘2 I | _,f*?’ pp
3 ineffective ineffective marginal effective
T ’/”'—‘*\' -0
[, (/,,/f’TT'—*“é 0.1250 ) . 0.3750 0.7125] 0.9750
6;7;:;- B 0.0500 0.4250 0.8625| 1.0000
2
c 0.2500 0.7825 0.975 1.0000
{
D 0.0375 0.0625 0.4875 0.8625 -

The results in Table 2 say, for example, that 71.25% of

judges found A no better than marginal. (énother way of
lovking at the values in a pij array would view tlLe

columns as upper bounds on adjacent categories, and thus we

would say that 71.25% of judges placed Candidate A below the

upper bound of the marginal categorf) This is the interpre-
Note that category

tation we will use in the work to come.




"Effective" .ill have an upper bound but the highest category,

"Very Effective”, will not. Similarly, the lowest category

will have no lower bound.

Relationship to Paired Comparisons (Optional Section)

It is possible to view the p array as arising from -.

ij
a ranking procedure such as the method of paired comparisons.
Suppose we wished to scale n instances by having judges
perform a ranking task such as that of paired comparisons.

To the set'of n actual instances, we add m-1 reference
points whose ranking is already known to both us and the
judges. This yields an enlarged set of n+m-1 instances to
be compared, and the problem could be represented as an

(n+m-1) by (n+m=-1) array of comparisons divided into

blocks as shown in Figure 1.

’E Actual 3J<I Reference
Instances Points >
Actual Comparison Comparison

Instances Block 1 Block 2

Reference Comparisoun Comparison
Points Block 3 Block 4

Figure 1. Subdivided Paired-Comparison Array




: ') If judges ranked reference points along with instances,

. we could use the comparative scaling procedure to locate both
the instances and the reference points on the same interval
scale. However, since the rank order of the reference poihts
is known, there is no need to ask judges to make the compari-
sons in Comparison Block 4. Block 3 is the complemeﬂt of
Block 2, and thus we would only need comparisons in Block 1
and Block 2.

Suppese further that in order to spare judges effort,
we do not ask them to make comparisons in Block 1l; that is,
they will not compare actual instances against actual
instances. This is legitimate since the paired-comparisons
approach does not require that every instance be compared

. ) with every other instance.

We are then left with Block 2, which in the pij 'array
of the paired comparisons approach will represent the pro-
pertion of judges who rated instance i as having less of the
property than reference j. If the ranked reference points
are interpreted as boundaries of adjacent, ranked categories,
then the paired comparisons approach should yield a pij

array similar to that from the categorical approach described
earlier in this paper, assuming that the reference points
are listed in rank order.

It would follow from the above that data from categorical
judgements could be viewed as having come from rankings or
paired comparisons, in the sense that when a judge places

.) instance i in category Jj, he is saying that he ranks in-

stance i below the upper bound of category j. Accordingly,




we could use the paired comparisons procedurn to scale both
. instances and category bounds. This approach has the dis-
advantage of not using all the information preéent, since
the rank order of the reference points is already known.
What follows in this paper is a method which iocates
instances and categery bounds on the same interval scale

with fewer restrictive assumptions than the paired-comparisons

approach. (End of Optional Section.)

Theory

We assume that a judge's "feelings" about the scale
value of an instance 1 is a normélly distributed random
variablé with mean Si and variance ci . We also assume
that judges view the continuum of values for instances as
being broken into successive intervals called categories, and

. that a judge's feelings about a category's upper bound is a
normally distributed random variable so that for category 3,
the upper bound would he normally distributed with mean b5
and variance vi.

We want, for each instance i, an estimate Si of its
mean Si. To obtain these estihates, we will also have to
obtain estimates bj of the category upper bounds since the
raw data will be sorted by category.

Since a judge's feelings about instance values and about
category upper bounds are normally distributed random variables,

the judge's feelings about the distance between an instance

value and a category bound will also be a normally distributed

. random variable with mean bé - Si and variance




@)

®>

o? + v§ - Zoijoivj. It is not unreasonapie to assume that the

value bound "feelings" are stochastically independent random
variables, SO that the correlation coefficient is zero for
all pairs 1 and 3j. Besides pij = (, we also assume that
all category bounds have the same variance, so that for all 3J.,

v, = C =«

Thus a judge's feelings about the distance from bound J
to instance 1 <¢an be viewed as 2 normally distributed random

variable with mean bt - S and variance ci + c. It follows

1
3 i

that

2

[ ] -
(bj S}) o)
’
. +C
1

Pr (Instance i is rated below Bound j) = Pr{z <

where z 1is normally distributed with mean 0 and variance
1. From the frequency data from judges we obtain estimates
p.. ©of these probabilities, and then using the normal table

1]

we find the associated zij values. We now have n{m-1})

estimating equations of the form

™~
Ll
[.
-
| o
"
[
L]
o]
-
t
|

1, +.., m=1 . (1)

For the present we will assume that all Pij are such

that 0.02 < pij < 0.98, so that the 2., array is complete.

ways of nandling situations where this is not true are dis-

cussed later in this paper.

* . . .
An alternate approach would replace this by the assumption
+hat the instances have the same variance.




Returning to our p.vblem, we seek values for the estimates
bj and S;. and the equations of the form of (l) represent a
system of n{m-1) eqguations in '2n+m-l unknowns.

There are a variety of ways to resolve this set of
equétions so as to yield values of the instance scale values.
The method given here is reasonably quick and is considered
to give satisfactory results.l

Oour data is now summarized in the zij array, and we
begin by examining the column sums of this array. Thus if

we add estimates zij over instances i to obtain column sums,

we have from (1)

_ o 1 j
] z,. = b, _Z -} . (2)

for j = 1,2, ..., m~l. Eguation (2) shows a linear relation-

ship between category upper bounds b, and column sums of the

g

244 array in that each column sum is a linear function of

that category's upper bound. In the next section we will

show how this linear relationship may be used to obtain

values for the bj.

Estimating Category Bounds bi

Since we plan to locate both instance values and category
bounds on the same interval scale, we have two degrees of
freedom available to us since the unit and the origin of the

scale are arbitrary. Egquation (2) may be viewed as a linear

transformation of an interval-scaled variable bj' where the -




second term on the right-hand side estab.’'shes the origin
. ) of the scale. Using one of our degrees of freedom, we will

set the origin of the scale so that

n S,
¥ = = 0.

i=1] [Z
i

J
(Note that this does not imply that {si = 0.)

Then, using our other degree of freedom, we will set the unit

for the scale so that the transformation slope is n, or

n

1
1
=1 |F§+c

With unit and origin thus established, Equation (2) now becomes

. ) simply

n
) z.,. =nb,, i=1,2, ..., m-1,
i=1 3 J :
n
b, = i;lfii j = 1,2
; ==L ., 3i=1,2, ..., m-1. . (3)

Equation (3) says that our estimates of the category upper

boundg may be obtained simply by taking the column averages

?f the zi_.l array.

——

This colves part of our problem since we have now
established a way to locate the category upper bounds on an
interval scale. The next task is to locate the n instance
values on the same scale, and unfortunately, we have already

.) exhausted our usual tricks of judiciously selecting scale

unit and origin.




‘.

10

Estimating Instance Valuuo Si

Our basic estimating equations (1) were

We have estimates of the zij from the judges, and values of
the bj from the column averages of the zij array. We
seek values for the Sj and we would prefer to acquire these
values without restrictive assumptions about the instance

variances.
Having had some success with column averages, we will
now look at the row averages of the zij array. The row

averages are

m-1
Zzlj

7. = 2121 -

i m-1

m-1b., - S,

i B
=1 L2,
1
1

m-

which become

or
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In (4), b is the average of the column ave.ages, and thus

. ) also the grand average of the zij array.

Now we shall solve for the variance terms. Subtracting

Equation (4) from Equation (1), we may write

. (by - S,) (B -8,)
(z.. - 2.1 = 1 i 1

1] 1 ,0_'2 ’0_2
. i+c i+c

i B

2
+
g;¥c

or

N1
o
[

(235~ 2

We square both sides of this equation, and sum over categories

j, and we have

m-1 m-1 _
2 1 X(bj-b)z.

- ij 1 g
o’

- LI PR EA

from which we obtain the variance estimates

m—-1
I (b, - B)2

"l J
c§+c - =1

-l -
El(zij - z;)

. i=11,2, ..., n. (5}

J

These variance estimates are the final components we need in

our basic estimating equation (1)

b, - 8,
.Z..=—J——l.
1] p)
. +C
1

We solve this for Si'

. ¢,) Si bj Zij i r
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and enter the variance esp‘mate (5) to obtain

m-1 - 2
-} (b, = b)
S, = b. -z =1 )
i 3 ij/ m-1 - 2 *
Y (z,. = z.)
j=1 ij i

We sum both sides of this equation over categories j:

m=-1
- 2
m-1 m-1 m-1 jgl(bj - b
Is;= 1by- 1250 a1 -
=1 =1 =1 T (z,, - 2 )2
Rt

The left-hand side of this expression is equal to (m-1}S.,

and so we divide through the equation by (m-1) to obtain,

£finally,

m=-1 - 2
J (b, - b)
i=1_? '
i if m=1
= .2
jEl(zij - z,)

’ i= 1,2, LI BN J It. (6)

Equation (6) is our final computing form for the instance
values Si' Note that within this expression, b is the grand
average of the values in the zij array, ;i is the average
value of the ith row of that array, the numerator within the
radical is the sum of sguares of the column averages, and
the dencminator within the radical is the sum of sguares of
the values in the ith row.

With the mathematical work completed, it remains to

establish a suitable computational framework by which

numerical values for the instance values and the category
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bounds (as well as the variances) may be readi., obtained.
This is given in the following section, which begins on the

next page.
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Step by Step Procedure for Obt: ‘ning Scale Values, zii

Arrav Comp.lete.

1. Arrange the raw frequency data in a table where the
rows are instances and the columns the categories. Columns
should be in rank order, with Column 1 representing the
least favorable category, etc.

2. Cecmpute relative cunulative frequencies for each
row, and record these in a new table. The last column of
this new table will consist of unit values, and may be omitted.

3.‘ Treating these values as leftward areas under a Normal
(0,11 curve, go to a table of the normal distribution and
£ind the 2z values for these areas. Record these in a new
n by (m-1) table. This is the zij array for thg compu-
tations which follow.

4. For each row 1 in the zij array, compute the

row average, zj.

5. TFor each column j in the zij array, compute the
column average. Call these column averages bj' and note
that bj is the value of the upper bound of category j on
our scale.

6. Compute a grand average of all the values in the
zij array. This is readily done by simply averaging the

column averages. Call the grand average b.

7. Compute*
n-1 - 2

B= J (b, -b)" .
j=1

* L3
sum-of-squares computational shortcuts may save time and
effort here. -
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8. For each row, compute?*

"I’ m-1 2

A, = J (2., ~ ;_) .
1 52 13 i

9. For each row, compute ¢B7Ai +» This is an estimate

2
of i+c .

10. Finally, for each row (instance) compute

sy =5 - 2z, VB/R. .

1 1

These are the scale values of the instances, and they are on
the same interval scale as the category bounds bj. We now
have the desired scale, and may perform any linear transfor-
mation y = a + Bx, B>0, to move the scale where we want it.
.) Remember to use the same transformation to move both instance

values and the category bounds.

: < .
. Sum-of-squares computational shortcuts may save time and
effort here.
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. Example 1
We will continue the example started on Page 2, with pij
array on Page 3. Because of the high pij values in the
last column, we will have to pool the Effective and Very
Effective categories. Steps 1 and 2 have already been.
completed, and the zij array below with associated calcu-
lations represents Steps 3,4,5, and 6.
¢ T e -7 '
'nz 7—-lekt,6ic Pﬁ‘79 Y 'E;i. y f+;
Candidate ' Potential Effectiveness PR
Very - /| row row -
Z; . Ineffective | Ineffective | Marginal | total average: zi
J _ " A - . 1. .
A 1 '-lLléﬁ -0.32 ‘j/ 0.§6 -0.91 -0.303
B2 ~1.64 ' -0.19 1.09 | -0.74 <0.247
c 3 ~0.67 0.78 1.96 | 2.07  0.6%0
. p 4 | -1.78 ~1.53 -0.03 | -3.34 -1.113
Column -5.24 -1.26 3.58 -2.92 = Grand Total
totals '
Column
averages:b, =-1.310 -0.315 0.895 | -0.243= Grand  _
] Average:b
Step 7. B = (-1.310-(-0.243))% + (-0.315 -(-0.243))2
+ (0.895 —(-0.243))2 = 2,439
Step 8. Al = (~«1.15 -(-0.303))2 + (-0.32 -(-0.303))2
+ (0.56 -(-0.303))2 = ].462
similarly . L] ”» - L] L - - - L » * - - - - - - Az = 3 - 731
A3 = 3,471
A4 = 1.792

-~

. Step 9. #B/Al = 1.292, :/B/Az = 0.809, /B/A3 = 0.83§, VB/A4 = 1.167.
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Step 1(

. ) S, = -0.243 -(~0.303) (1.292) = 0.148
S, = -0.243 -(-0.247) (0.809) = -0.043

S, = -0.243 -(0.690) (0.838) = -0,821

S; = =0.243 ~f1.113) (1.167) = 1.055

Also, Upper Bound on the Very Ineffective Category is -1.310

Upper Bound on the Ineffective Category is -0.315

Upper Bound on the Marginal Category is 0.895

Graphical Presentation of Results

L;.‘TJ .
c B A o}
Very , Ineffective Marginal I Effective
Ineffective and very

.) ‘ Effective
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Incomplete zij Arrays

As is the case in'the mgthod of pgired comparisons, zij
array entries correspgnding tq pij f 0.?9‘ and pij < 0.02
should be omitted to avoid undue influence by a small number
of judges. LWith the cgﬁegofiéal methéd, ho;ever, the
caﬁpuiationai procedure should ggg be applied to an incomplete
zij arfay. 'Accdrdingiy, in order to use the method described
in this paper one must mddify the specific scaling problem
at hand in such a way that complete zij arrays are obtained.

Because they correspond to cumulative relative frequencies,

mi%sing zij values are always found in one or more outermost
acoiumps‘of the 2, “array, invelving the highest-ranked -
categories, the lowest ranked categories, or both. Causes

: could include most judges rating an instance in the low
categories, most judges rating an instance in the high
categories, or judges rating in a middle category with close
agreement (low oil among judges.

Because of the variety of situations that can occur, it
is probably best not to attemp: to provide here specific
instructions on how to cope with an incomplete zij array.

We will suggest three tactics, any or all of which might be

applicable to a specific problem. All involve a cost,

leaving one with such penalties as an unscaled instance, an

unscaled category bound, or a bound or instance scaled using

ljess information than was anticipated. Accordingly, how one

‘proceeds is up to the analyst and his goals for study results.
Tactic 1. One may delete those rows with missing zij

values to obtain a smaller but complete zij array, and then




Q.

19

apply the method given in this Paper. This .ieans, of course,

that instances represented by those deleted rows will not he

scaled directly. One either discards these instances, or "pieces"

then onto the scale in some way that will hopefully be defendable

(but will seldom be altogether satisfactory).

Tactic 2. One may pool extreme categories to obtain a
zij array void ofrmissing values. For example, if Column 1 has
missing zij values and Column 2 is complete, we combine
Categories 1 and 2 into a single category, and use the zij
values of Column 2. As another example, if the last column
(column m-1) has missing 255 values and the next to last
column is complete, we combine the last two categories that the
judges used (m-1 and m) and delete the last qolumn in the zij
array. This means that soue category bounds will not be on the
scale. In many cases, this approach is preferred to Tactic 1
described previously.

Tactic 3. A third approach is to break the zij array
down into smaller arrays, applying the previously described
tactics so that one has several complete but smaller zij
arrays. These are scaled separately. If one has begn clever
in dividing the original array, the resulting set of scales
will have exactly the proper amount of "two points in common™
so that appropriate linear transformations will rlace all
instances and bounds on the same scale without redundancy.

This approach involves a number of arbitrary decisions in its
execution, but will often provide a resulting scale that is

complete in the sense that all n instances and m-l category

bounds are present.

7“7—:—‘_—‘/ /gc/d/,.\,, j(-/a e ekt Fogm-stonn s qﬁ_yp,_;

-~ . s . & Lo I - .
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In order to illustrate how these tactics may belemployed,

we shall give an example showing how, in one real situation,

1)

the problem of an incomplete z,. array was resolved.

Exam Ele 2

In a study done as a classroom scaling exerclse; nlneteen
dog breeds (instances) were to be rated in terms of their
"deterrent effectlveness against lntruders and trespassers
Five ranked categorles were used the complete guestionnaire
is shown in Flgure 2.

About 65 Judges responded by completing the questLOnnalre,

meanlng that an eventual m1551ng zij value in column 3 w111
correspond to fij < 1 in the lower categorles. In the upper
categories, an fij < 1 will YLEld a missing zij value

in the (j~1)st ceolumn. Raw frequencies fij are shown in
Table 3. In this case, nissing zij values were_handled at

the fij array level

A glance at Table 3 shows that not all dogs can be dlrectly
scaled together witb all category bounds, since a complete zij
array would have many missing values. Since it was desired
that all dog breeds be scaled, Tactic 1 (eliminate instances)
was not employed, Direct application of Tactic 2 (pool
categories) would in this case_actually destroy the category
distinctions. Accordingly, it was decided to emploeractic 3
by subdividing the array.

A useful first step was to rearrange the instances so

that rows which would be similar in missing zij values were




DETERRENT EFFECTTVENESS OF WATCHDOGS

Please rate the following dog breeds accurding to your opini
of their deterrent effectiveness against intriders and trespasser

. ) Deterrent Effectiveness Against Intruders and Trespassers.
Slighuly Highly Extremely Don't
Ineffective Effective Effective Effective Effective Know
Boston
Terrier () () () () () ()
St.
Bernard {) () ¢) () () ()
English
Bulldog () () () () () ()
Dalmation () () () () () ()
Boxer () () () {1 () ()
Chihuahua () () () () () ()
Lhasa Apso () €} () () () ()
Labrador .
Retriever () (1 () () () ( )
English
Setter () (1 () () () ()
. ) Cocker
Spaniel (1 ) () (1 {) ()
Irish
Setter () (1 (1} () () ()
German
Shephard () (] () () () ()
Great
Dane () (1 () () () ()
pachshund (1 (1} () () L) {)
Basset
Hound () () (' C) S ()
Beagle () () () () () ()
Standard
Poodle () () () () () ()
Miniature
Poodle () 0 () () () ()
‘I';) Fox
Terrier () () () () () ( )

Thank you for your help. For a copy of the results of this stud
please list your SMC or mail code number ;
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Table 3. Response Prequencies, Example 2

;. Deterrent Effectiveness Against Intruders and Trespassers
Slightly ' Highly . Extremely
Ineffective Effective Effective Effective Effective
Boston
Terrier 0o - 27 18 7 1
St.
Bernard 5 6 26 21 6
English | -
Bulldog 0 6 29 19 9
Dalmation 2 14 30 15 2
Boxer . 0 1l 20 22 20
Chihuahua 34 14 8 6 2
Lhasa Apso 20 12 9 1 1
Labrader
Retriever 2 8 32 15 7
English
: Setter 3 22 29 11 0

. Cocker
Spaniel 10 32 20 3 1
Irish
Setter 3 17 25 14 5
German
Shephard 0 0 2 6 55
Great
Dane 0 1l 3 20 38
Dachshund 20 28 13 2 0
Basset '
Ho1nd 16 31 15 1 0
Beagle 7 35 18 5 0
Standard
Poodle 9 27 21 6 2

- Miniature ,

Poodle 37 24 7 2 0 -

-‘ll’ Fox | '
| 23 4 6 0

Terrier 1




grouped. Results of this are shown in Table 41, and necessary
category pooling is shown in Table 5. Here we see that if we
treat the center group of instances (St. Bernard through
Standard Poodle] as a separate problem, it will be possible

to scale these dog breeds together with all category bounds.
After grouping categories, the first three dog breeds in the
list could be scaled as a three-category problem, and since
the resulting scale would have two points (category bounds) in
common with the scale from the center group of dog breeds,

the two interval scales could be merged via linear transfor-
mation. The same could be said.for the Boston Terrier and Fox
Terrier group. These observations provided a plan of attack,'
with only a few details to be worked out.

If categories are pooled as shown, the English Bulldog
would be rated in four categories, whereés three-category
ratings are needed if ultimate scales are to merge with the
center group. It was decided to group the English Bulldog
with the Boston and Fox Terriers, since adding an instance
to that group will give better category bound estimates. Also,
rather than ieave the Basset Hound stranded, it was decided
to add the remaining instances (Llasa Apso through Miniature
Poodle) to his group.

The results of these decisions are shown in Table 6, and

the final resalu;ion’into four scaling problems is portrayed

_in Table 7, where we have numbered the problems as Problems

1,2,3, and 4. The vertical lines in Table 7 indicate the
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Table 4. Response Frequencies with Rearranged Instances

@

Slightly Highly Extremely
Ineffective Effective Effective Effective Effective

German

Shephard 0 h) 2 6 55

Great Dane -a : 1 "3 20 - 38

Boxer = @ 1l ' 20 .22 2Q

English ' - ,

Bulldog . 0 6 29 19 9

Boston _

Terrier - aQ 27 18 7 1

Fox o :

Terrier 1 23 14 6 , 0

St. | |

Bernard- - - 5 : 6 ‘ - 26 21 6

Dalmation 2 14 . 30 15 2
. Chihuahua: 34 14 8 -6 2

Labrador A

Retriever 2 8 32 15 7

Irish 7

Setter . 3 . 17 25 14 5

Standard

Pocdle
Lhasa Apso

English
Setter

Ccecker
spaniel

Dachshund
Beagle

Miniature
Pocdle

. Basset

Hound
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Table 5. Necessary Category Groupings

Slightly Highly Extremely

Ineffective Effective Effective Effective Effective
German
Shephard 0 0 2 6 55
Great Dane 0 1 3 20 38
Boxer 0 1 20 22 20
English ‘
Bulldog 0 6 ' 29 19 9
Boston
Terrier 0 27 18 7 1
Fox .
Terrier 1l 23 14 6 0
5t.
Bernard 5 6 26 21 6
Dalmation 2 14 30 15 2
Chihuahua 34 14 8 6 2
Labrador
Retriever 2 8 32 15 7
Irish _
Setter 3 17 25 14 5
Standard
Poodle 9 _27 21 6 2
Lhasa Apso 20 12 9 1 : 1l
English
Setter 3 22 29 11 0 -
Cocker
Spaniel 10 32 20 3 1
Dachshund 20 28 13 2 0
'Beagle 7 35 18 5 0
Miniature
Pocdle - 37 24 7 2 1]
Basset
Hound 16 31 15 ; 0
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. Table 6. Grouped Categoi.as for Four Scaling Problems
Slightly Highly | Extremely
‘Ineffective Effective Effective Effective Effective
German
Shephard 0 0 2 6 55
Great Dane 0 1l 3 20 . 38
Boxer. . 0 1l 20 22 20
English o
Bulldog 0 6 29 19 9
Boston o ‘ .
Te;rier 0 : 27 18 7 l
Fox :
Terrier 1 23 14 6 0.
st; . . -
Bernard 5 6 26 21 6.
. Dalmation 2 14 30 15 - 2
Chihuahua 34 14 8 6 2
Labrador
Retriever 2 8 32 15 7
Irish :
Setter 3 17 25 14 5
Standard ‘
Poodle 9 _ 27 21 6 2
Lhasa Apso 20 . 12 9 : 1 1
English
Setter 3 22 29 11 0
Cocker
Spaniel 10 32 20 3 1
Dachshund 20 28 13 2 : 0
Beagle. 7 _35 18 : 5 0
Miniature , )
. Poodle 37 24 7 _ 2 _ 0
Basset
Hound 16 ‘ 31 15 1l 0
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Table 7. Reduction to Four Scaling Problems
Slightly Highly Extremely
Ineffective Effective Effective Effective Effective
German
Shepharad 2 6 55
Great Dane 4 20 38 Problem 1
Boxer 21 22 20
English _
Bulldog 6 29 28
Boston 7
Terrier 27 18 8 Problem 2
Fox '
Terrier 24 - 14 6
St.
Bernard S 6 26 21 6
Dalmation 2 14 30 15 2
Chihuahua 34 14 8 6 2
Problem 3
Labrador
Retriever 2 8 32 15 7
Irish
Setter 3 17 25 14 5
Standard
Poodle 9 27 21 6 2
Lhasa Apsc 20 12 11
English
Setter 3 22 40
Cocker
Spaniel 10 32 24
Dachshund 20 28 15 Problem 4
Beagle 7 35 23
Miniature
Poodle 37 24 9
Basset
Hound 16 3l 16
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category bounds that will be :“tained when each of the four
scales is constructed, and we can see that by using an ap-
propriate linear transformation for each of the scales from
Problems 1,2, and 4, these scales can be merged with the
scale from Problem 3.

The method given in this paper was used to construct
the four scales. Raw results are shown graphically-in
Figure 4, with numerical values given in Table 8.

To provide general results with some numerical meaning,
it was decided to assign a value of zero to the category
bound between the Ineffective énd Slightly_Efféctive
categories, and a value of 100 to the bound between the
Highly Effective and Extremely Effective categories. Thus,
dog breeds rated ineffective would have negative scores,
and the extremely effective dogs would have scores greater
than 100.l Raw results from Problem 3 were transformed to
this scale, and then raw results from the other three
problems were transformed to the new Problem 3 scale.

Final scale values are shown in the right-hand column of

Table 8. Project results are summarized in Table 9.
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Table 3.

Problem 2 Results

Upper bound, Highly Effective category
Upper bound, Effective category

Upper bound, Slightly Effective category
Upper bound, Ineffective category

8t. Bernard .
Dalmation

Chihuahua

Labrador Retriever

"Irish Setter

Standard Poodle

Problem 1 Results

Upper bound, Highly Effective cateory
Upper bound, Effective category
German Shephard
Great Dane
Boxer

N PER- S U A O
shH¥ . "f' Lir i

Problem 2 Results

Upper bound, Effective category

Upper bound, Slightly Effectlve category
English Bulldog S

Boston Terrier ';, ey -

Fox Terrier B

Problem 4 Results

Upper bound, Slightly Effective category
Upper bound, Ineffective category

Lhasa Apso .

English Setter

Cocker Spaniel

Dachshund

Beagle

Miniature Poodle

Basset Hound

4

i
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Solutions to tle Four Scaling Prohlems

Raw
Results Transformed
1.5933 100.0
0.6763 68.3
-0.37 32.2
-1.304 0.0
0.3666 57.7
- -8,2169 §2.5
-1.4213 -4.0
0.4144 59.3
0.2 51.9
=-0.3578 32.7
Transformed to
Prob. 3 Scale
-0.318 100.4a0
-1.268 68.3
1.198 150.1
-0.097 107.4
. =0.Bl6 83.4.
1.151 68.3
-.445 32.2
0.525 64.83
~-0.4715 31.3
-0.3734 34.6
0.5136 32.2
. =0.7293 0.0
-0.5796 3.9
0.7728 39.0
0.1983 24.1
-0.2311 12.9
0.2250 24.7
-0.8114 -2.1
-0.107% 1l6.1




(.) Table 9. Study Results

DETERRENT EFFECTIVENESS OF WATCHDOGS

As a final project in a course on Scaling methods, a

categorical questionnaire on the

deterrent effectiveness

of watchdogs was prepared and circulated. Seventy people
responded, rating each of 19 dog breeds in categories ranging
from ineffective to extremely effective against intruders

and trespassers.

On the scale of deterrent effectiveness developed from
this data, dogs scoring more than 10Q points are in the
extremely effective category, while dogs with negative
scores are in the ineffective category. Results are shown

below.

Extremely Effective: 100+

150.1
107.3

German Shephard
Great Dane

Highly Effective: 68.3 - 100

@

)

Effective:

Boxer

32.2 - 68.3

64.8
59.3
57.7
52.5
51.9
39.0
34.6
32.7

English Bulldog
Labrador Retriever
St. Bernard
Dalmation

Irish Setter
English Setter

Fox Terrier
Standard Poodle

Slightly Effective: 0 - 32.2

31.5
24.7
24.1
le6.1
12.9

3.9

Boston Terrier
Beagle _
Cocker Spaniel
Basset Hound
Dachshund
Lhasa Apso

Ineffective:

-2.1
-4.0

Miniature Poodle
Chihuahua

It is interesting to note that correlation coefficient between
deterrent effectiveness and dog weight was computed to be 0.61.
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.) EXERCISES

1. What is the minimum number of categories needed to scale
a set of ten instances using the method given in this

paper? Assume complete zij arrays.

2. Using the method of this paper, what would be the result
if you had five categories, one instance, and no missing

zij valdes.

3. Raw frequencies are as follows:

Extremely ' Extremely
Poor Poor So-so Good Good
Coors .3 10 17 52 18
.) Olympia 6 20 45 24 5
Budweiser 4 8 25 48 15
Millers 5 15 38 31 11
Henry Weinhard 3 6 21 50 20

a, Scale the instances and bounds.

B. Transform the scale so that the upper bound of

Good is 100 and the lower bound of So-so is zero.
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4. Scale the saMm Systems using the £.. data below. Sat the
upper bound on "Effectiv " at 100,%dnd the upper bound on

‘. "Ineffective*' at zero.
SAM Somewhat Marginally | Highly
System |Ineffective|Ineffective|{Effective Effective!Effective
A 1 15 38 . 40 .9
B 0 3 21 36 33
c 12 43 27 4 0
D 0 0 3 ’ 33 60
E 9 27 25 18 11
F 17 44 24 2 -0

5. Suppcse the example given in this paper had included twenty
dog breeds instead of nineteen, with the additional row in

Table 3 (and thereafter) as follows:

. ’Slightly [ ,Highly Extremely
. Ineffective |Effective |Effective|Effective Effective
Doberman ‘ , l l ’

Pinscher 0 0 0 6 36

Discuss how the presence of this data would affect the scale,

and then, add this dog breed to the scéle.




6. f I*-dent Opinion Form (SOF) asks students at the end of the ~c'~se
s.) to 1.%e course, text, and exams each as 0 (Outstanding), E (Exc.ilent),
- A (Average), F (Fair), or P (Poor). The scoring system awards five

points for 0, four points for E, three points for A, and so on, and

uses these values to compute an average score. Some SOF data for

various past courses is shown below. Using this dafa. what can you

say about how well the scoring system described above agrees with the

student's perception of category bounds?
1 2 3 4 5
P F A E 0

How would you rate these courses?

Course A 1 2 18 14 2
B 0 0 2 12 13
c 2 2 14 15 4
, D ¢ 0 9 n 12
O E 0 0 2 8 118
F 1 3 17 5 0

How would you rate the textbook?
B 0 1 2 10 14
c 1N 9 9 7 1
D 0 0 1i 1 3
E 0 0 3 13 12
F 10 10 5 1 0

How would you rate the exams?

A 3 3 11 15 4
1 2 12 12

3 13 1 6
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