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ABSTRACT  
Successful Performance Based Logistics (PBL) can reduce total ownership costs for government while maintaining or 
increasing capability. The chance of success depends heavily on the terms in the PBL contract. Performance targets, 
incentive models and measurement approach must be carefully selected in order to give the supplier both motivation and 
freedom to provide logistics functions that will enable high system performance. 

When designing and negotiating such a contract it is imperative for all involved parties to have proper decision support. The 
consequences of different alternatives must be thoroughly analyzed in advance. A Monte Carlo simulation model of the 
logistics scenario can offer valuable insight to the how the outcome may change as different variables are altered and what 
results to expect with a statistical confidence level. Such information can be of great use when formulating PBL contract 
terms. 

In this paper, some key success factors and a step wise approach for setting the terms of a PBL contract is presented. It is 
shown how a penalty function ݕሺݔሻ can be defined, where ݔ can be any measurable logistics parameter(s) that can measure 
the degree of contract fulfillment. An example is used where backorders, ܤ, plays the role of the logistics parameter	ݔ, but 
the ideas presented can be applied to any other type of measurable parameter(s). It is furthermore shown that the design 
of ݕሺܤሻ is dependent upon the time period ܶ used for monitoring the backorders. 
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1. BACKGROUND 
Performance Based Logistics (PBL) is often seen as an attractive solution these days, as it offers a potential to reduce 
Government ownership cost while maintaining or increasing capability. Applied correctly, and tailored to the specific 
scenario, that potential is substantial. But as many Program Managers and Logisticians have experienced, setting up a PBL-
contract is a complex task. More importantly, if inadequately written, the outcome may be the opposite; increased costs 
and risks for government, contractor or both. 
 

Success factor 1 - A common pitfall in PBL contract design is that the supplier scope is not clearly defined and that the 
distinction between supplier and customer responsibilities is imprecise. A weak definition of this basic foundation of the 
contract can be detrimental and cause discussions and disagreements about what is included and not. It can also lead to 
that the defined KPIs do not correspond to the actual interpretation of the contract scope. 
Success factor 2 – Appropriate performance parameters (KPIs). The KPIs must be selected based on the nature and scope of 
the contract, and give the customer performance, affordability and control. On the other side, KPIs must give the 
contractor direction and incentive, but also maneuverability to build, adapt and manage the solution in the most cost 
effective way. To allow for the latter, a small number of well selected KPIs are preferable to many. It is a common mistake 
to try to compensate uncertainty with a long array of KPI’s which are at best redundant and at worst conflicting and 
counterproductive.  

  



Success factor 3 – Appropriate KPI target levels. It is crucial to understand the consequences of setting a certain target 
level in advance. For example, a target for average availability may seem acceptable if only considering a steady state 
situation, but can mean unacceptable sensitivity to changes or poor ability to handle peak loads. Meanwhile, a too high 
target typically escalates costs. 

Success factor 4 – A clear and relevant incentive model. All involved should win when performance is on or above target 
and, the very driving force of PBL, the revenue for the contractor must drop significantly when performing below target. 
The approach can be either penalties or rewards. 

Success factor 5 – Performance measurement approach and intervals. The way performance is measured and calculated, 
and how often it is measured can have a large impact on the outcome.  Too long measuring intervals could for example 
mean that unsatisfactory performance over important periods can be averaged out by over-performing during the rest of 
the time. Too short intervals could mean that the contractor does not get enough time to adjust and correct deficiencies, 
hence the incentive to improve is lost.  

Understanding the consequences of a PBL contract in advance, the potential benefits, risks and costs involved, is equally 
important to customer and contractor. Design, evaluation and ultimately the negotiation of the terms in the contract 
should be based on thorough analysis by both parties. 

Thus far, it’s easy. Everyone with some experience in PBL can probably agree with most of the statements above. The 
difficulty, as always, lies in “how?” This paper offers a step wise analytical approach, where Monte Carlo simulation is used 
to design an effective incentive model, to set the performance levels and suitable measurement intervals; all based on 
proper decision support, mission understanding and consequence analyses. 

2. OVERVIEW 
Performance based logistics represents a potentially cost effective method for system sustainment ref [3]. From the 
customer perspective PBL means a shift away from buying parts to instead buying performance from the supplier. PBL can 
be applied at system, subsystem or major assembly level. A key element in PBL is the ability to measure the system 
performance in a well-defined way, either directly, e.g. availability, or indirectly by measuring given logistic parameters, 
e.g. backorders. Monitoring and following up logistic parameters in the supply chain can on its own be a driver for supply 
chain performance improvements ref [2].  

In this paper the degree of PBL contract fulfillment is proposed to be evaluated using a penalty function	ݕሺݔሻ, where y is 
the share (%) of the maximum penalty amount and ݔ can be any logistics parameter of interest to mission capability. The 
parameter ݔ is measured as an average over a time period ܶ.  

In Section 5 it is shown that the time period ܶ will influence the design of the penalty function	ݕሺݔሻ. In the example used in 
this paper, the backorder measure ܤ is used for designing the penalty function	ܻሺܤሻ, but the same approach can be used 
for any other logistics parameter. In fact ݕሺݔሻ could be multidimensional, i.e. ݔ being a vector of several types of logistics 
parameters.  

In reference [1] it is shown that appropriate results collected from Monte Carlo simulations enable evaluation of alternative 
penalty (or reward) functions suggested in a PBL contract negotiation. In this paper guidelines are provided for how a 
penalty function ݕሺݔሻ should be designed to meet the customer and supplier objectives in a satisfactory way for both 
parties. Rules for constructing ݕሺݔሻ are described in Sections 5 and 6.  

It is important to consider different operational scenarios and the potential effects of the penalty function on e.g. mission 
success, mission readiness, and operational effectiveness when designing the ݕሺݔሻ function. Typically, the penalty increase 
in steps if performance drops below target. Each step in ݕሺݔሻ	should be simulated to demonstrate the capability impacts 
(positive and negative) of different outcomes. While requiring a thorough understanding of mission profiles, operational 
scenarios, and definitions of “success,” this methodology allows both the customer and the supplier to make rational 
decisions and agree on a reward (or penalty) function commensurate with the relative impact of each ݕሺݔሻ step on overall 
mission readiness and mission capability. Simulation of mission readiness and capability instead of availability provides a 
  .ሻ function that aligns with operational realities and ensures cost effective capability to the warfighterݔሺݕ

The outline of the paper is as follows. In Section 3 a fictitious logistics scenario is described that is used throughout this 
paper to illustrate important points. Section 4 provides an initial analysis of the scenario using spares optimization and 
simulation, while Section 5 studies the inherent variation of backorders in more detail. Section 6 provides guidelines for an 
initial design of the penalty function ݕሺݔሻ as a function of backorders (ݔ ൌ  .ሻܤ

In Section 6 the proposed penalty function ݕሺܤሻ is evaluated on a validation simulation data set. Furthermore the 
consequence of modifying a design parameter of ݕሺܤሻ is analysed. Section 7 discusses how sensitivity analysis can be 
performed on the logistic scenario. 



3. SCENARIO 
This paper studies the formulation of PBL contract terms between a customer and a supplier using backorders ܤ as a 
performance metric. The PBL contract value ܥ that should cover the supplier’s Life Support Cost (LSC) expenses is: 

ܥ  ൌ 500 MUSD.  

The supplier responsibility is to provide both a cost efficient spares stock and a repair services solution so that the average 
system availability ܣ is  

ܣ ൒ 85	%, 

which can be translated to a backorder requirement, see Section 3.  

The PBL contract covers a 10 year period where the average backorders are measured and monitored on a time period ܶ 
basis to ensure that the supplier fulfils the contract commitments. 

The support organization is shown in Figure 1 and consists of three levels, an operating base, one collocated depot (DEPOT) 
and one contractor facility (CONTRACTOR). Both spares stock and repair solution   can be optimized to consider cost and 
availability and the relative impacts on readiness. 

 

 

Figure 1. The Support organization. 

 

The 20 technical systems at the BASE are utilized on average 25.2 hours per week or 15 % of the calendar time. Each system 
consists of 1000 items, out of which 400 are repairable and 600 discardable. The item repair time and lead time for 
reorders are both 6 months. The mean time between system failures (MTBF) is 20 hours. 

4. INITIAL ANALYSIS, SPARES OPTIMIZATION AND SIMULATION  
An initial analysis of the scenario using the logistics optimization tool OPUS10 [4] shows that the system operational 
requirement ܣ ൒ 85 % can be met if the average number of backorders is ܤ ൌ 3.14, see Figure 2 and 3. 

 

Figure 2. OPUS10 result: Cost efficient (CE) point 13. 

 

Figure 3. OPUS10 result: Corresponding backorder 
requirement (CE point 13), compare Figure 2. 

Supplier 
DEPOT 



 
Figure 4. OPUS10 result: Parts of the optimal spares stock corresponding to CE-point 13. 

The optimal spares stock suggested by OPUS10 (CE-point 13) is used in the Monte Carlo based simulation tool SIMLOX [5] to 
verify the OPUS10 results, and provide additional information regarding the inherent variations in backorders. The 
simulations covers 11 years of operation out of which the backorder results for the first year are ignored to avoid the 
transient effects at the beginning of the simulation. The 11 year simulation is repeated 100 times using a different initial 
random seed in each replication. Hence the results presented in this paper are based upon backorder statistics from  

10	years ൈ 100 replications ൌ 1000 years of simulations 

In Figure 5, the backorder results from replication 1 are shown vs. time where the backorders are averaged for each 24 
hour period. Figure 6 shows the same type of results from replication	12, where it is seen that the backorder variations are 
greater compared to replication 1. Averaging up all backorder results from the 100 replications for each 24 hour period the 
SIMLOX graph in Fig 7 is obtained. The total average number of backorders with respect to time and replications is ܤ ൌ 3.09  
and is shown in Figure 8, this SIMLOX result is consistent with the result obtained from the OPUS10 analysis (Fig 3).  

 
Figure 5. SIMLOX result, replication 1: backorders vs. 

time (ࣆ ൌ ૛. ૛, ࣌ ൌ ૚. ૡሻ. 

 
 Figure 6. SIMLOX result, replication 12: backorders vs. 

time (ࣆ ൌ ૜. ૟, ࣌ ൌ ૛. ૚ሻ. 

 
 Figure 7. SIMLOX result: Backorders averaged over 

100 replications. 

 
Figure 8. SIMLOX results: Backorders averaged over 
૚૙૙	replications and the simulation period (૚૙ years). 



5. BACKORDER VARIATIONS 
From the previous section the SIMLOX Monte Carlo simulations indicate that the inherent backorders variations can be great 
over time. It is therefore important to consider this fact when designing the penalty function ݕሺܤሻ, see Section 5, but first 
the backorder variation dependence upon the measurement time period ܶ should be considered.  

The graphs in Figure 9 show the backorder probabilities 

ܲሺ݇ ൑ ܤ ൏ ݇ ൅ 1ሻ evaluated for time periods days, weeks, months, quarters and years. The graphs indicate that the 
standard deviation ߪ of the backorders ܤ decreases as the time period ܶ is increased. For a daily time period ܶ the 
backorder standard deviation is ߪ ൌ 2.1 but for a yearly time period it is only	ߪ ൌ 1.1. The penalty function	ݕሺܤሻ, which 
should take into account ߪ in the design, will therefore look different depending upon which time period ܶ being used. 

Once a suitable measurement time period ܶ has been selected the design of the penalty function ݕሺܤሻ can start. The time 
period ܶ should be long enough so that the supplier has time to remedy defects in the support concept before the next 
measurement falls out. However, the time period ܶ should not be too long since then the feedback loop to the supplier 
concerning defects in the support concept becomes too long. In this paper a monthly time period ܶ is selected when 
designing	ݕሺܤሻ. 

 

 

 

 

 

Figure 9. The backorder probability dependence upon the time period ࢀ. 



6. PENALTY FUNCTION DESIGN 
The penalty function ݕሺܤሻ should not punish the inherent variations in backorders too much. By estimating the backorder 
probability ܲሺܤሻ given a measurement time period ܶ using Monte Carlo simulations as described in Section 4, the inherent 
variation in backorders is revealed. Two statistical measures of interest that can be obtained from the ܲሺܤሻ	estimate are 
the mean value ߤ and the standard deviation	ߪ. An upper backorder threshold covering the most common backorder 
variations can then be written as 

௬ܤ ൌ ߤ ൅ ߙ				,ߪߙ ∈ ሾ1, 2ሿ, 

where ߙ needs to be selected so that the probability ܲ൫ܤ ൒  .௬൯ is smallܤ

Using ܤ௬ as a threshold for the penalty function ݕሺܤሻ the following step-wise exponential function is proposed 

ሻܤሺݕ ൌ ൝min	ሺݕ௠௔௫, ௠௜௡൫1ݕ		 ൅ ௬݂൯
ඌ
஻ି஻೤
∆஻ ඐ

ሻ	, ܤ ൒ ௬ܤ
0, ܤ ൏ .௬ܤ

 

The penalty function ݕሺܤሻ contains the following constants: 

 ܶ ௠௜௡: Minimum penalty per time periodݕ

 ܶ ௠௔௫: Maximum penalty per time periodݕ

௬݂: Penalty increase fraction 

 ௬: Backorder penalty thresholdܤ

 Backorder step size 	:ܤ∆

The function ݕሺܤሻ is recommended to be designed iteratively by evaluating it on simulation results. This Section provides 
some rule of thumb guidelines for an initial design of ݕሺܤሻ 

The constant ݕ௠௔௫ in the penalty function ݕሺܤሻrepresents the maximum penalty for a backorder measurement time 
period	ܶ. If the PBL contract covers N time periods, the total maximum penalty becomes ܰݕ௠௔௫, where ݕ௠௔௫ should be 
selected so that ܰݕ௠௔௫ becomes a significant fraction ߚ of the total PBL contract value ܥ, i.e. 

௠௔௫ݕ ൌ ߚ
஼

ே
ߚ   ൐ 0 

In this paper ߚ ൌ 1 is chosen. Note that the total cost for the supplier can then overshoot the total contract value ܥ since 

௠௔௫ܰݕ ൅ ܥܵܮ ൌ ܥ ൅ ܥܵܮ ൐  ,ܥ

imposing a loss on the supplier. 

Considering the baseline scenario described in Section 3 with a monthly backorder measurement period ܶ, data from the 
third graph of Figure 9 gives that 

௬ܤ ൌ ߤ ൅ ߪߙ ൌ 3.1 ൅  ,ߙ1.9

with ߙ ∈ ሾ1, 2ሿ, ܤ௬ is within the range 

௬ܤ ∈ ሾ5, 7ሿ. 

Selecting the mid-range value ܤ௬ ൌ 6, we obtain 

ܲ൫ܤ ൒ ௬൯ܤ ൌ 0.08, 

which is a low probability indicating that the backorder threshold ܤ௬ ൌ 6 is a candidate to be used in the penalty 
function	ݕሺܤሻ, i.e. no penalty below this threshold and a step-wise exponential penalty increase if breaking above it.  

Selecting the remaining penalty function constants as 

௠௜௡ݕ ൌ 0.05ܿ௠௔௫ 

௬݂ ൌ 1.0 

ܤ∆ ൌ 0.5, 

causes the penalty function ݕሺܤሻ to rise from 0 % to 100 % of ݕ௠௔௫ over approximately one standard backorder deviation ߪ 
(see Figure 10). The minimal penalty 	ݕ௠௜௡ starts to falls out at the backorder threshold	ܤ௬ ൌ 6. 



 

Figure 10. Penalty function ࢟ሺ࡮ሻ. 

 

7. VALIDATING THE PENALTY FUNCTION ࢟ሺ࡮ሻ USING SIMULATIONS 
The penalty function ݕሺܤሻ described in Section 6 is evaluated on backorder results obtained from a validation set of Monte 
Carlo simulations performed on the baseline scenario described in Section 3. Backorders are measured and averaged over a 
monthly time period ܶ. Figure 11 shows the probabilities ܲሺݕሻ for different penalty levels. Since the penalty function ݕሺܤሻ 
is designed to only punish backorders ܤ greater the inherent variations (ܤ ൐  .௬ሻ we expect the average penalty to be lowܤ
From Figure 11 we conclude that the average penalty ݕത 	is 

തݕ ൌ ߤ ൌ  ,௠௔௫ݕ0.028

with over 90	% of the time periods evaluated to a zero penalty. The total penalty ܻ	ഥover ܰ time periods is 

തܻ ൌ 	 തܰݕ ൌ  .ܥ0.028

In some rare occasions, a full penalty ݕ௠௔௫ falls out (1.2	% of the cases) which should not trigger a big change in the 
supplier concept. In general, one could wait for the confirmation of at least two consecutive monthly max penalty periods 
before investigating the hypothesis that there could be something wrong with the support concept. 

From Figure 3 it is seen that the baseline Life Support Cost is ܥܵܮ ൌ 421 MUSD. Since the PBL contract value is ܥ ൌ 500 
MUSD we can write ܥܵܮ as 

ܥܵܮ ൌ  .ܥ0.84

The total supplier cost including penalties over the ܰ time periods covered by the PBL contract then becomes  

തܻ ൅ ܥܵܮ ൌ  ,ܥ0.87

i.e. a 13 % profit margin for the supplier.  

 

Figure 11. Penalty probability ࡼሺ࢟ሻ for the baseline scenario. 

 

If the supplier side of a PBL contract does not meet the operational requirements, it can be expected that the number of 
backorders ܤ more often falls outside the expected backorder range. To illustrate this fact another Monte Carlo simulation 
is done on an under stocked scenario using a spares assortment corresponding to 5.75 backorders on average (Figure 12). 
The backorder variation for the under stocked scenario is shown in Figure 13, where the probability to exceed ܤ௬ ൌ 6 is 
more significant 

ܲ൫ܤ ൒ ௬൯ܤ ൌ 0.43 

compared to the baseline scenario. 



  

Figure 12. Selecting CE-point 7, ࡮ ൌ ૞. ૠ૞, an understocked scenario not meeting the operational requirements. 

 

Figure 13. Backorder probability ࡼሺ࡮ሻ for the under stocked scenario of Figure 12.  

 

Figure 14 shows the penalty probability for the under stocked scenario when using the penalty function ݕሺܤሻ described in 
Section 5. The average penalty ݕത is 

തݕ ൌ ߤ ൌ  ,௠௔௫ݕ0.22

with almost 15	% of the time periods evaluating to a maximum penalty ݕ௠௔௫. The total penalty തܻ	over ܰ time periods is 

തܻ ൌ 	 തܰݕ ൌ  .ܥ0.22

The LSC cost in the under stocked scenario is 406 MUSD (Figure 12), or in terms of the PBL contract value ܥ 

ܥܵܮ ൌ  .ܥ0.81

The total supplier cost including penalties over the ܰ time periods covered by the PBL contract then becomes 

തܻ ൅ ܥܵܮ ൌ  ,ܥ1.03

i.e. a 3 % supplier loss. 

 

Figure 14. Penalty probability ࡼሺ࢟ሻ for the under stocked scenario.  

To get a more complete overview of the consequeces using the penalty function ݕሺܤሻ the analysis done in the baseline and 
understocked scenario is repeated for all the cost effective assortments of Figure 12. The result of this analysis is seen in 
Figure 15 which also displays the upper and lower 90 % percentiles. The minimum is obtained at CE-point 15 close to the 
baseline stock (CE-point 13). For understocked scenarios the suplier cost തܻത ൅  increases rapidly to well exceed the ܥܵܮ
contract value ܥ imposing a net loss on the supplier.  



 

Figure 15. Supplier cost evaluated for the cost effective points of Figure 12.  

 

Note that once all simulations of interest are done, no new simulations are needed to evaluate other candidate types of 
penalty functions ݕሺܤሻ. In the graph of Figure 16 the supplier cost is evaluated using a backorder penalty threshold 
௬ܤ ൌ 4, 5, 6, 7 and 8, where ܤ௬ ൌ 6 corresponds to the baseline scenario. Overstocking is encouraged in the case of ܤ௬ ൌ 4 
because otherwise the supplier risks losing money although meeting the system availability requirements. Understocking is 
encouraged in the case of  ܤ௬ ൌ 4 because the supplier can in fact increase the profit by understocking a bit (minimum cost 
is obtained at point 11, compared to point 13 for baseline scenario). An appropriate value of ܤ௬ should be somewhere in 
the range ܤ௬ ∈ ሾ5,7ሿ. 

 

Figure 1. Supplier cost when using backorder penalty thresholds ࢟࡮ ൌ ૝, ૞, ૟, ૠ	and ૡ.  

 

8. ASSESSING RISKS 
Assessing the risks before agreeing to PBL contract terms is important. From the supplier perspective it can be of interest 
to do a sensitivity analysis with respect parameters that involve some degree of uncertainty. To examplify, the supplier 
wants to analyse what an increase in repair times would mean in lost profit. 

In Figure 17 the result of simulating the a scenario with 20 % increase in repair times but still using the stock suggested for 
the baseline scenario (CE-point 13 of Figure 3). The 13 % profit for the baseline scenario has now instead turned into a 2 % 
loss measured in terms of the contract value ܥ. 

The supplier can plan for various actions to take in this situation, e.g. try to reduce repair times or increase the spares 
levels. A spares optimization tool can be of great benefit in this decision process. 



 

Figure 17. The impact of a 20 % repair time increase. 

9. SUMMARY 
The way that performance targets, incentive models and measurement approach are specified has a great impact on the 
chance of success, and should give both the customer and the supplier possibilities to achieve their goals. Setting the terms 
of a PBL contract without proper decision support means significant risks. 

The methodology described in this paper has been used in several business cases with great success. Examples of customers 
where this methodology has been used are Saab Dynamics, BAE Systems Hägglunds and the Swedish/Norwegian NH90 
program. Systecon’s software OPUS10 and SIMLOX has in these projects proven to be well suited for supporting this kind of 
analysis. 

The presented approach makes it possible for both customer and supplier to evaluate the PBL contract and assess the risks 
for not meeting the contract objectives. The suggested simulation approach is also highly suitable for the supplier when 
designing and optimizing the logistic support solution to fulfil the customer requirements at an acceptable cost and with an 
acceptable margin. 
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