SWGD043
Performance Guide for an AIS
3 June 2010

[image: image1.jpg]
Performance Recommendations

for

Automated Information Systems (AIS)
12 May 2010
Prepared by:
Department of the Air Force

Performance Engineering
201 East Moore Drive, Building 856

Maxwell AFB-Gunter Annex AL 36114-3314

Table of Contents
31 Purpose

32
Background

33
Performance Recommendations (Web)

33.1
Combine Common Utility Java Script Files into a Single Java Script File

33.2
Remove Inline Java Script

33.3
Eliminate Unnecessary Data (i.e. comments, spaces, long variable names, etc.)

43.4
Enable Cache Control Headers

43.5
Web Compression

53.6
Use Pipelining

53.7
HTML Metadata Arrays

53.8
Large Pick Lists

63.9
Long Running Transactions

73.10
Image Compression

73.11
Combine Multiple Screens

73.12
Beautification Syndrome

73.13
ASP.Net View State

84
Performance Recommendations (Oracle Database)

84.1
Use Server-Side Subroutines or Procedures

84.2
Oracle Data Unit Tuning

84.3
SQL*Net Arraysize parameter

94.4
Oracle Forms Applications

94.5
Where Clauses

105
Summary

1 Purpose

The purpose of this document is to provide software developers a list of "lessons learned" and recommendations to enhance performance of Automated Information Systems (AIS) developed for the Air Force.

2 Background

The performance of software applications is dependent on several major factors; the performance of the network infrastructure (including firewalls, circuits, etc...), the performance of the application servers (including database performance), and the amount of data transmitted across the network infrastructure. This document will focus on methods for reducing the amount of data being transmitted across the network infrastructure.
Experience with Air Force systems has shown that reducing the amount of data transmitted over a network improves overall application performance, more readily than modifications to any other part of the system. By reducing the amount of data transmitted, system developers are decreasing their application’s dependence on high speed networks, and will allow their applications to be used in low speed environments such as deployed locations.
3 Performance Recommendations (Web)
The following recommendations focus on decreasing the amount of traffic that is transmitted from a web server to the user’s browser. Some of them deal with the actual software development and some of them deal with server configurations. The recommendations are in no specific order and should be seriously considered when developing an application.
3.1 Combine Common Utility Java Script Files into a Single Java Script File
As a client’s browser parses a web page, it retrieves the externally referenced files such as java script, style sheets, images, etc. Each external file requires the retrieval of approximately 2000 bytes of network connection overhead. Combining common utility java script files into a single one will reduce overhead associated with multiple requests. The combined file will be the sum of the sizes of the smaller files, plus 2000 bytes for the single retrieval. The same principal applies to style sheets. In summary, it is best to reduce the external references to the smallest number possible.

3.2 Remove Inline Java Script

Inline java script is code that is embedded inside an HTML page. If inline Java Script is used on a dynamic page, it will not get cached. Placing the java script into a single java script file (see 3.1) will allow it to be cached, thereby eliminating the retransmissions of the java script on subsequent uses of the same HTML page.
3.3 Eliminate Unnecessary Data (i.e. comments, spaces, long variable names, etc.)

Leading spaces and comments in HTML and java script constitute unnecessary data which can add up to hundreds or even thousands of useless bytes being transmitted. For static content,
the Performance Engineering Function suggests writing a small routine that parses HTML and java script to remove spaces and comments before the content is fielded on the operational server. This should not be done on the development code but instead should be used on the code that actually gets fielded on the operational server. The Performance Engineering Function has such a tool that was developed and used by several applications and is willing to share it with the understanding that the developers might have to customize it for their own specific needs.
For dynamically generated pages, the Performance Engineering Function recommends either using the small parsing routine described above at server run time (just after the page is generated but before it gets transmitted to the user) or not to generate the comments or leading spaces. The processing time for the parsing solution will most likely make it up by reducing the number of bytes transmitted.
3.4 Enable Cache Control Headers
When a user accesses a web site, the images, and other external references get inserted into the browser’s cache. Most people believe that the next time they access the same page (with the same external references) the browser will load the external references from cache rather than from the web server. This is only partially true. Before the browser loads the external references from the cache, it first contacts the server to see if the external references are the latest ones available. This incurs approximately 2000 bytes (SSL) of unnecessary network overhead per external reference just for the server to tell the browser to use the items that are in its cache.
There is an HTTP header called the Cache Control Header which eliminates this unnecessary network overhead. This header is set on the server and should only be used for such references that are static (e.g. image, Cascading Style Sheets, java script files). When this header is engaged, it informs the browser not to check (for a specified amount of time) whether the server has an updated version of an image or web page. This eliminates the browser asking the server to see if there is an updated web page or to use the one that is in cache. Depending on the application and its revision frequency, we recommend this be set between two weeks and two months. Developers and System Administrators can contact the Performance Engineering Function for a document that describes how to configure Apache and IIS web servers to use the Cache Control Header.
3.5 Web Compression
Compression is one of the most beneficial data reduction techniques for web applications because it provides the greatest bandwidth savings. Most web traffic consists of text based HTML code, which allows for efficient compression. By using compression, the amount of data transmitted between the web server and the client’s terminal can be decreased by 80 to 90 percent. Compression can either be done on the server itself, or it can be offloaded to a separate box that specializes in compression. The Performance Engineering Function is currently fielding applications that take advantage of compression via their respective servers. Most of these applications utilize GZIP as their compression utility. The Performance Engineering Function, in coordination with the Defense Information Systems Agency (DISA), is also fielding hardware compression devices in front of the DISA mainframes, and other servers such as the AF Portal. It is recommended that when then developers adds the compression capability to their application, they also insert a simple configuration variable to enable or disable the compression without having to recompile the entire application. If an application is fielding on the GCSS-AF framework, it is recommended that the application utilize the AKAMAI services for compression and edge caching of static objects.
The installation of the compression hardware and the ability of the application servers to compress data via GZIP is just the first part of this technique. The second part is a configuration change on the part of the client’s web browser. (Note: This only pertains to Microsoft Internet Explorer. Netscape does not need any configuration changes.) In order for the client’s browser to take advantage of compression, it must be configured to use HTTP 1.1. By making this change, the client’s browser will request that the server send compressed data rather than uncompressed data if it has the ability to do so. If the server does not have the ability, then the client’s browser will still accept uncompressed data.

For the most effective compression, the Performance Engineering Function recommends using all lowercase letters for the naming convention in HTML tags and variable names because the compression algorithm can produce smaller symbol tables, hence a smaller data packet. This is possible because upper and lower case are represented by different symbols and there is a higher probability of matching all lowercase substrings versus mixed case.
3.6 Use Pipelining

Usually, the client’s browser will open a new connection for every GET and POST statement. This invokes TCP Slow Start and increases network overhead due to opening and closing of each network connection. In pipelining, the client will open a single connection and then transmit several GET statements through the same connection. This minimizes the effects of TCP Slow Start by only having it execute once for several GETs or POSTs, which increase network efficiency. This can be controlled by the web server in variables called keep-alive and keep-alive timeout (for Apache servers). IIS servers have similar variables. By setting the keep-alive timeout to about 15 seconds, it will allow the client’s browser to transmit several requests via the same network connection rather than opening a new connection for each request. Be aware that this variable should not be set too high since it will hold that port open for that amount of time and will not release it for other users. If incorrectly set, this could cause the server to use up all of its resources.
3.7 HTML Metadata Arrays
It has been observed that run-time generated HTML code may contain a lot of overhead with respect to the total amount of data that is being transmitted. This overhead is most often related to the HTML formatting commands (i.e. metadata). This can sometimes result in a large percentage of the total bytes being transmitted as overhead. The Performance Engineering Function recommends that developers use arrays for the user data and transmit only the array to the user. Once on the user’s browser, the array could be decoded by a java script that would insert the HTML metadata. This java script could be contained in the java script file that contains all of the others for the entire screen. Developers can contact the Performance Engineering Function for a document that gives an example of defining and transmitting data in an array.
3.8 Large Pick Lists

Static or near static lists, such as bases, aircraft, units, etc., can be many megabytes in size. We have seen applications with more than 7,000 entries per list and the list occurred multiple times on the same page. It’s more efficient to place these lists into separate cacheable files and call a function to populate the list. If the user suspects that they have an ‘old’ or ‘outdated’ list they can force the browser to reload the page (Ctrl –F5) or the developer can place a ‘Refresh’ button on the page that performs the same function. Developers can contact the Performance Engineering Function for an example of caching large pick lists.
3.9 Long Running Transactions

Some transactions, such as quarterly or annual reports, may require several minutes to complete. For security purposes, a WebSeal session has a timeout period of 2 minutes; meaning that any transaction requiring more than 2 minutes to generate the requested data will not have a path back to the client to display the results. A solution to this problem is to design the application to generate the reports/data in the background and the user can ‘retrieve’ the report after it completes.
Here’s an example of the solution as implemented by IMDS-TBA.
[image: image2.png]
The user utilizes the ‘Reload Now’ button to get the most current status of the report generation. Another possibility is to notify the user via e-mail or other indicators that the report generation has completed.

3.10 Image Compression

Image compression is a little different from regular web compression since the data is binary data rather than text based. If the developer is creating their own image (e.g. a button graphic, logo, etc...), it is recommended that only a few colors be used (i.e. no shading). If a picture or a complicated image is required, then a compression program specifically made for images should be used. These compression tools are more efficient at compressing images than GZIP. An example of one is at http://www.spinwave.com. Compressed images will lose some granularity but this will probably not be noticed by the client. The Performance Engineering Function recommends compressing the images before they are fielded on the operational system.
3.11 Combine Multiple Screens

Another area in which excess data transfer can be eliminated is in the number of screens an application uses. The developer should evaluate the number of screens used to accomplish a transaction and understand that the lower the number of screens, the faster the application will execute. Since this technique can affect the usability of the application, the functional community should be involved in making this decision.

3.12 Beautification Syndrome

Developers and functional users often like to have lots of attractive graphics and custom buttons to give their application a nicer look and feel (e.g. beautification syndrome) which do not add any additional functionality or usability to the application. The problem with this practice is that each graphic and custom button causes extra data to be transmitted from the server to the client via the Wide Area Network. Actually, the presence of beautification graphics and custom buttons could do more harm than good by wasting valuable network bandwidth that is not always available, especially to those users at deployed locations. The Performance Engineering Function recommends that developers only use graphics when it is absolutely necessary and apply cache control headers to those images so that they get cached. As for the custom buttons, developers should exclusively use standard HTML buttons so that no extra data is transmitted. Keep in mind that there is an important tradeoff between fancy and fast.
3.13 ASP.Net View State

Microsoft .Net View State is the mechanism by which page state (information) is maintained between page post backs, i.e. a web form is submitted by the user, this same page performs some processing and perhaps presents further information to the user.

By default ViewState is enabled in an ASP.NET application. Developers should be aware that any data in ViewState automatically makes a round trip to the client. Because the round trips contribute to a performance overhead, it is important to make judicious use of ViewState. This is especially important when your application contains complex controls such as a DataList or DataGrid but is generally true when you are presenting considerable information via a server control. An example might be presented a list of countries for selection ... you don't want to impose the overhead of transferring all the country text back and forth from server to client and vice versa more than is strictly necessary. It will significantly impact on response times if you don't disable the ViewState either for the page as a whole or for the specific controls causing the unnecessary overhead.
Whenever you complete a web forms page you should review the controls in the page and consider what is being passed in the ViewState and whether you really need all that information to be passed. To optimize Web page size you may want to disable ViewState in the following cases, amongst others:

· when a page does not post back to itself

· when there are no dynamically set control properties

· when the dynamic properties are set with each request of the page

ASP.NET provides you with complete flexibility to disable ViewState at the control and page level. Additionally you may disable ViewState at the application and machine level via the web.config and machine.config files.

4 Performance Recommendations (Oracle Database)

4.1 Use Server-Side Subroutines or Procedures

The Performance Engineering Function recommends using server side procedures to eliminate the overhead involved with single row data retrieval. When the web server calls the procedure on the database server, it should request the data in large chunks rather than a row at a time. This eliminates unnecessary overhead traffic, increasing the overall performance of the application, and increasing network efficiency.
4.2 Oracle Data Unit Tuning
Oracle has two variables called Session Data Unit (SDU) and Transport Data Unit (TDU). These control the block size of the data that is transmitted between an Oracle Database and the underlying operating system TCP/IP stack. The default SDU and the TDU are each 2048 bytes which is not optimal for network performance. For optimal performance of an Oracle database, the SDU and TDU should be set to something close to a multiple of the network’s Maximum Transferable Unit (MTU) setting. The Performance Engineering Function recommends the SDU and TDU sizes should be configured to 8192.
Oracle allows the SDU to be set to multiples of 1024 (e.g. 1024, 2048, 4096). The default SDU is 2048. With an MTU of 1442, the server will transmit one full packet, and one containing only 606 bytes. If the server transmits 100,000 bytes of data to the client, every second packet will only be 40% full. Not including ACKs, the server will transmit approximately 98 packets.
With an SDU of 8192, and an MTU of 1442, the server will transmit 5 full packets and a 6th packet that has 982 bytes of data (70% full). If the server transmits 100,000 bytes of data to the client, only every sixth packet will be less than full. Not including ACKs, the server will transmit approximately 74 packets, which is more efficient than the default setting.

4.3 SQL*Net Arraysize parameter
The arraysize is the number of rows that will be returned by a fetch. The arraysize parameter should be set such that approximately 1400 bytes of data will be returned by each fetch operation. The arraysize will vary for each table because the amount of data within a row varies.

4.4 Oracle Forms Applications

Experience has shown that Oracle Forms based applications have had more performance issues on Air Force networks than applications implemented with other protocols. The reason for this is that Oracle Forms protocols are very “chatty”; they require many small packets to be transferred between the client and the server even for small requests. With Oracle Forms, it is not necessarily the number of bytes that is transmitted, as much as it is the number of packets required to send those few bytes and the number of round trips required to get those packets. The Performance Engineering Function recommends that developers avoid Oracle Forms if the applications are used over a Wide Area Network. If the developers require the use of Oracle Forms, then they need to be careful of what is being transmitted. One item of importance is field validation. Even when a user “tabs” from one field to another, the client’s computer must communicate with the server to inform it what field it is currently located in and to verify the data that was in the previous field. On a Local Area Network (i.e. client and server are on the same base), this is acceptable, but when separated by a WAN, the round trip times (50 to 100 milliseconds on average for CONUS and between 150 and 300 milliseconds for OCONUS) between the request and response can add up to seconds causing the client to get upset at poor performance.
4.5 Where Clauses

Developers should strive to filter as much data on the server as possible as opposed to transmitting large amounts of data for the client to filter. When developing the client side software, be aware of the true data needs of the user. Allow, or force the client to add more selection criteria so that only the data that is absolutely needed will be transmitted from the server to the client. Let the server do the work rather than the network and the client’s PC by having more of the business logic on the server and less on the client, whose job should be more of presentation.
5 Summary

The most important item to remember is that the amount of data transmitted has a large effect on the overall performance of an application. We have real world proof that these recommendations decrease the amount of data transmitted and have a positive effect on the performance of Air Force applications. Developers should be aware of what their application is transmitting and how it is being packaged. They should also realize that the following could assist them in decreasing not only the amount of data transmitted, but also the network overhead associated with its transmission:
· Combine common utility java script files into a single java script
· Remove inline java script

· Eliminate unnecessary data

· Enable Cache Control Headers

· Compress web pages during transmission

· Use pipelining

· Optimize run-time HTML by using HTML arrays
· Eliminate large static pick lists
· Prepare reports as a background operation
· Compress images

· Combine multiple screens

· Avoid using large graphics

· Use standard HTML buttons rather than custom image buttons

· Use server side procedures

· Tune the SDU and TDU parameters on Oracle databases
· Correctly set the SQL*Net Arraysize to fit your database

· Avoid Oracle Forms based applications that will traverse the WAN
· Use WHERE clauses to force the server to do the work rather than the client

“If developers would design applications to work in a deployed environment, they would have no worries when the application gets fielded at a fixed location.” [image: image3][image: image4][image: image5]
PAGE
2

