SWGD041
System Development Life-Cycle Methodologies
14 January 2015

Guide

System Development Life-Cycle Methodologies Guide
1.0 Introduction

There are several system development life-cycle methodologies. This guide describes the Grand Design (Waterfall), Incremental, Evolutionary Prototyping, Spiral and Timebox methodologies. The Extreme Programming Guide describes the extreme programming methodology. A Program or Project Manager should select a system life-cycle methodology based on the nature of the program and application, the methods and tools to be used, and the required controls and deliverables. The selected life-cycle methodology should be coordinated with the customer and senior management and be reflected in the Release Schedule.

1.1 Grand Design, Waterfall, or Phased

1.1.1 Description

The grand design or waterfall methodology arose during the early 1970s as a remedy to the undisciplined “code and fix” method of software development. It is a "once-through, do-each-step once" methodology. In grand design, each phase is performed in sequence, and each phase is completed before proceeding to the next phase in the sequence.

1.1.2 Advantages and Disadvantages

Grand design provides a structured, disciplined method for system development, and can be useful for maintenance projects, and small, new starts with clearly defined and understood requirements. However, for other types of development, grand design can prove to be a risky and inflexible methodology. With only a single pass through the process, integration problems often surface too late in development, and a completed product is not available until the very end of the process. The long period between project start and product delivery can discourage customer involvement and lead to a system that does not meet changing customer requirements.

1.1.3 Implementing this Methodology with the BES Process Directory (BPD)
While the BPD does not require use of the grand design, its layout lends itself to easy implementation of the grand design. A project performs each BPD phase in sequence, and completes each phase continuing with the next phase. Each release’s high-level schedule, and eventually the Release Schedule, reflects this one-time sequence of BPD phases.

1.2 Incremental Development
1.2.1 Description

Incremental development, also known as Evolutionary Acquisition in DoDI 5000.02, involves dividing a system up into multiple "builds" or releases and developing the system one release at a time. A project performs project planning and requirements analysis one time only, and then repeats the design, construction, and testing processes multiple times to develop each build of the system. The first build of the system incorporates a subset of the planned capabilities; the next build adds another subset of the planned capabilities, and so on, until the system is complete. The Program or Project Manager must work with the customers to determine the number, size, and schedule of the builds that will lead to a complete system.

1.2.2 Advantages and Disadvantages

An incremental development methodology is most appropriate for large, new systems with fully defined and clearly understood system and software requirements. The primary advantage of this methodology over the grand design methodology is the use of multiple development cycles. This allows the customer to interact with an actual system much sooner and provide feedback to the developers. The main disadvantage of the incremental methodology is its dependence on having clearly and completely defined system requirements at the beginning. It does not allow programs to respond easily to changing requirements.

1.2.3 Implementing the Incremental Development Methodology with the BPD
To implement incremental development using the BPD, a Program or Project Manager coordinates with the customer to determine the number, size, and schedule of incremental builds. A project takes the high-level requirements for the complete system through the acquisition methodology. The acquisition methodology should show how the system could be divided into increments, with the requirements allocated to specific increments, and integrated in a series of multiple releases until the complete system is implemented and released. The acquisition methodology for the increments must match the customer's cost and schedule parameters. Each release should be militarily useful. Once the acquisition methodology for the complete system is approved, detailed requirements for the initial increment will be determined from the high-level requirements and the first increment will be designed, built, tested and released. Each increment will satisfy the same quality and documentation standards of a standalone system. Each increment will be supported after it is fielded. Subsequent increments will follow the same acquisition methodology, but will have their own detailed requirements and will be designed, built, integrated with previous increments, tested and released until release of the final increment.
	Initial Analysis
	Increment 1
	Increment N

	High-Level Requirements
and Acquisition Methodology
for Complete System utilizing Incremental Development
	Detailed Requirements selected from the High- Level Requirements

 Planning for Increment 1
	Detailed Requirements selected from the High- Level Requirements

 Planning for Increment N

	
	Design Increment 1
	Design Increment N

	
	Build Increment 1
	Build Increment N

Integrate with Increment N-1

	
	Test Increment 1
	Test Increment N

Test Integration of Increment N and Increment N-1

	
	Release Increment 1

Support Increment 1
	Release Increment N

Support Increment N

Figure 1 -- Incremental Development

1.3 Evolutionary Prototyping
1.3.1 Description

The evolutionary prototyping methodology is similar to the incremental approach. The primary difference is that a program using the evolutionary prototyping methodology redefines the requirements more than one time and produces and delivers a program at successive levels of completeness. Each level is a version of the program that is usable to some extent. As with the incremental development methodology, a project progresses through multiple development cycles and produces multiple builds. The first build produced is an Operational Prototype (OP) that meets the initial set of functional, system, software requirements. Based on customer feedback, the project repeats the complete development process to produce a second OP that meets the more clearly defined functional, system, and software requirements. This process continues until the requirements are fully defined and understood and a final system is produced. The program manager must work with the customers to determine the number, size, and schedule of the builds that will lead to a complete system. For more in-depth discussion regarding prototyping, see Prototyping and Rapid Application Development Guide.

For example, if you were developing a spreadsheet program, you could plan several levels of releases:

 a. Delivery 1 - The basic interface is available. Arithmetic calculations work. Simple data entry is supported, but many more sophisticated data-entry functions are available. The first delivery is the core of the product you will ultimately deliver. Subsequent releases add more capabilities in a carefully planned way.

 b. Delivery 2 - Formulas and more sophisticated data-entry functions are available.

 c. Delivery 3 - The ability to save and load files is available.

 d. Delivery 4 - Database operations are available.

 e. Delivery 5 - Graphing capabilities are available

 f. Delivery 6 - Interfaces to other products (databases, ASCII text files, other spreadsheets) are available. The project is fully functional.

 g. Delivery 7 - The performance-tuned product is available. Performance bottlenecks in the previous versions have been identified and eliminated.

 h. Delivery 8 - The fully system-tested product is available.

1.3.2 Advantages and Disadvantages

Evolutionary prototyping methodologies are particularly suited to situations where, although the general scope of the program is known, functional and detailed system and software requirements are difficult to articulate, define, or qualify. This is usually the case with software-dominated decision support systems that are highly interactive and have complex human-machine interfaces. There are a couple of drawbacks to the use of the evolutionary prototyping methodology: 1) customers or users might prematurely accept one of the OPs as the final system, and 2) because evolutionary prototyping involves an ongoing requirements process, it is easy for a project to experience "scope creep" and allow additional and expanding requirements to delay or increase the cost of development. It is important that the customer is aware of this potential. By close tracking of actual progress against the approved, baselined schedule, the Program Manager should be able to predict when scope creep will cause his project to overrun. A renegotiation of the Expectation Management Agreement may be desirable at this point.

1.3.3 Implementing the Evolutionary Prototyping Methodology with the BPD
To implement Evolutionary Prototyping using the BPD a Program Manager coordinates with the customer to determine the number and schedule of OPs for release. A project first performs the Requirements Analysis and develops an Acquisition Strategy. Then the project analyzes, designs, constructs, tests, implements, and evaluates a series of Operational Prototypes. Finally, when the requirements are fully defined and understood, the project develops the final system. The Release Schedule reflects this arrangement of BPD processes.
	Initial Analysis
	Operational Prototype 1
	Operational Prototype N

	High-Level Requirements
and Acquisition Strategy
for Complete System utilizing Evolutionary Prototyping
	Detailed Requirements Selected from the High- Level Requirements

 Planning for OP 1
	New High-Level Requirements generated from Customer Experience with OP N-1

Planning for OP N

	
	Design OP 1
	Design OP N reusing Components of OP N-1 where possible

	
	Build OP 1
	Build OP N

Integrate with Components of OP N-1 that were reused

	
	Test OP 1
	Test OP N

Test Integration of OP N with reused Components of OP N-1

	
	Release Increment 1

Support Increment 1
	Release OP N

Support OP N

Figure 2 -- Evolutionary Prototyping Methodology

1.4 Spiral Development
1.4.1 Description

Spiral development is a risk-reduction approach to system development. It is a repetitive process consisting of four main activities: planning, analyzing risk, engineering, and reviewing. The diagram below is a variation of spiral development. In this diagram, the radial indicates the current phase or process in the development life cycle, while the angular distance represents the progress made within that particular phase or process.

1.4.2 Advantages and Disadvantages

Spiral development emphasizes evaluation of alternatives and risk assessment more thoroughly than other methodologies. A review at the end phase ensures commitment to the next phase or identifies the need to rework a phase. The advantages of spiral development are its emphasis on procedures, such as risk analysis, and its adaptability to different development approaches. Spiral development encourages continuous customer buy-in with the use of demonstrations, baselining and configuration management.
A disadvantage of Spiral Development is that it may use too many resources (budget and schedule) for simulations or conceptual prototypes that reduce the risk but do not contribute to the production of the prime mission product. This may leave the project without sufficient resources to build the prime mission product. It is often very difficult to determine when the risks have been reduced enough to reliably predict the schedule and costs of building the prime mission product.
1.4.3 Implementing the Spiral Development Methodology with the BPD
The BPD includes fundamental tenets of the spiral development methodology that can be applied to any of the other development methodologies.

[image: image1.wmf]FCA/PCA

Needs

Analysis

Risk

Analysis

Conceptual

Prototyping

Enhanced

Operational

Capability

Integration,

and

Training

Planning

CSCI

Integration

and

Test

Site

Activation

Training

Planning

Design

and

Development

Transition

Planning

Engineering and

Project

Planning

Concept of Operation

System Software

Specification

Demonstration

Prototyping

Update Project Indicators

Qualification

Testing

User

Acceptance

Test and

Training

Formal

Testing

Integration

and Test

Unit

Test

Detailed

Design

Code

Simulations, Models,

and Benchmarks

Updated

Detailed

Design

Unit

Test

Integration

and Test

Software

Architecture

and

Preliminary

SDDs

Software

Requirements

Specification

Updated

System

Software

Specification

Risk

Analysis

Risk

Analysis

Risk

Analysis

Risk

Analysis

System/

Product

Objectives,

Alternatives,

and

Constraints

Design

Objectives,

Alternatives,

and

Constraints

Implementation

Objectives,

Alternatives,

and

Constraints

Support

and

Maintenance

Objectives,

Alternatives,

and

Constraints

Design

Assessment

Prototyping

Operational

Prototyping

Updated

Operational

Prototyping

Product

Review

Design

Review

Rqmts

Review

System

Review

Code

DETERMINE OBJECTIVES,

ALTERNATIVES, AND

CONSTRAINTS

EVALUATE ALTERNATIVES,

IDENTIFY AND RESOLVE RISKS

PLAN NEXT PHASE

DEVELOP NEXT PHASE

IOC

FOC

Activation

Figure 3 - Spiral Model

1.5 Timebox

1.5.1 Description

 a. The Timebox Development is a construction methodology that infuses a development team with a sense of urgency and keeps the project’s focus on the most important features. The Timebox Development redefines the product to fit the schedule rather than redefining the schedule to fit the product. The success of the Timebox Development depends on using it on projects that have relatively independent requirements (sustainment systems usually have this feature) and the customer’s willingness to cut features rather than stretch the schedule.

 b. In the Timebox Development, you specify the maximum amount of time that it will take to release the next version of the system. Any type of system can be developed, but the evolutionary and incremental methodologies seem to fit the Timebox Development methodology particularly well. The main feature of the Timebox Development is that the development is constrained to a fixed amount of time. Developers implement the most essential features first and the less essential features as time permits. It needs to be clear to the developers that whatever is complete at the end of the Timebox is what will either be put into operation or rejected. There are no deadline extensions. The system grows like an onion with the essential features at the core and the other features in the outer layers. Construction consists of developing a prototype and evolving it into the final system. Figure 4 illustrates the Timebox Development.

 c. Timebox Development is not suited for all projects. The project must have the following characteristics:
· A prioritized list of requirements,
· A minimal core set of requirements that can be developed within the Timebox time frame,
· Relatively independent requirements (that is, it is possible to produce a useful release with a subset of the requirements),
· An estimated realistic schedule created by the development team,
· Sufficient customer involvement to support prompt feedback,
· A timebox timeframe of usually 3 to 6 months,
· A customer committed to cut features instead of quality.

1.5.2 Advantages and Disadvantages

 a. Timebox Development has the potential to reduce a normal schedule. It has a good chance of success the first time it is used and an excellent chance of long-term success. Not all projects are suitable for Timebox Development. Timebox Development emphasizes the priority of the schedule. Timebox Development prevents projects from being almost complete for an excessive amount of time. Timebox Development clarifies the priorities of requirements and controls requirements creep. Timebox Development provides a sense of urgency and motivates the development team.

 b. The customer must be able to make quick decisions on cutting requirements. The customer must be committed to cut requirements instead of quality.

1.5.3 Implementing the Timebox Development Methodology with the BPD
The layout of the BPD supports the management of releases. Timebox Development manages the requirements within a release. This will require some careful tailoring and may require planning and accounting procedures in addition to those normally used as part of the BPD. Sustainment systems have many of the features that suit Timebox Development.

Estimate

[image: image2]
Figure 4 - Timebox Development

1.6 Summary

Selecting an appropriate System Development Life-Cycle methodology is not always an easy task. All methodologies presented here have unique advantages and limitations. Current direction from DoDI 5000.02 indicates that programs should consider an Evolutionary Acquisition Strategy (previously described as incremental development) for systems development. For software development the Spiral Development Methodology is recommended.
It is possible to mix and match these various strategies in the same project. For example, an incremental development overall methodology with 3 increments could use the waterfall method for the initial increment, operational prototyping for the second increment and the timebox development for the third increment. When employing a method within a method, the added complexity may overwhelm the potential benefits and should only be tried by project teams experienced in all of the methodologies being considered since understanding the nuances of one methodology is difficult enough for most project teams.
Timebox Development

Build & Evolve Prototype

Customer Review and Feedback

Requirements Analysis & Design

Evaluate Release

Accept

Implement

Reject

Page 1 of 8

