SWGD040
Prototyping and Rapid Application Development Guide
 14 January 2015

Prototyping and Rapid Application Development Guide

1.0 Overview

 a. Prototyping is technique that allows the customer to look at alternatives and is encouraged when requirements are uncertain. It can be used with any development life- cycle strategy and is strongly encouraged when embarking on an evolutionary development. Prototyping uses initial customer requirements (gained from customer and analyst insight and interaction) to quickly develop a basic system model. The customer then responds to the prototyped system, and the prototyped system is modified and again presented to the user. This iterative process continues until the model satisfies the customer, and the requirements are more clearly understood. Often it is not possible for the customer to articulate requirements in depth. By showing the customer alternatives to solving a problem, valuable time and resources can be conserved. Prototyping is usable with any of life-cycle methodologies, although it is not suitable for all applications, and customers must not implement a prototype designed solely for demonstration. However, if the final prototyped version is functionally accurate, satisfies organizational nonfunctional requirements, and is properly documented and constructed, it may be used as the production system. If the prototype is used as a production system, all artifacts called for in the entire Systems Engineering Process must be accomplished.

 b. There are two methods of prototyping that should be used: conceptual prototyping (CP) and operational prototyping (OP). CP involves the rapid development of a working prototype during the definition of the requirements or the investigation of the technical solution. During the definition of the requirements, the CP enables customers to evaluate whether requirements are met and encourages customer involvement. CPs are developed and refined as quickly as possible in response to customer requirements and feedback, and formal documentation is not required. At the end of the requirements definition, a decision is made to keep the prototype and evolve it into a final system, or discard the prototype, formally document the requirements, and begin the design. During the investigation of the technical solution, the CP enables the development team to evaluate competing architectural approaches based on architectural quality issues such as performance, stability, modularity, security, interoperability, supportability, sustainability and usability. If a decision is made to keep a prototype, then that prototype is considered to be an operational prototype, and the BES Process Directory (BPD) must be followed before it can be released.

 c. Operational prototyping (OP) is comparable to the beta testing done by commercial software development organizations. Use of this method with the evolutionary prototyping development strategies helps clarify and refine customer requirements. OP is similar in purpose to conceptual prototyping. However, the operational prototype progresses through the phases of the BPD and eventually evolves into a final production system. The primary benefit of this method is that the development time of operational prototypes can be tightly controlled and adjusted to allow periodic customer feedback and interaction with the planned system.

1.1 Advantages of Prototyping

 a. Prototyping provides a technique for clarifying and verifying customer requirements for a system.
 b. Prototyping provides a technique for investigating the technical solution.
 c. Prototyping encourages customer and developer interaction and allows them to create, use, and modify a proposed system before obligating costly resources.

1.2 Disadvantages of Prototyping

 a. If the production of prototypes is too quick, the result is too little analysis before construction of the system. This can prevent thorough research of alternative solutions.

 b. Quick-fix methods may override the opportunity to research and innovatively solve underlying problems.

 c. Failure to develop a properly detailed system plan before prototyping individual modules can adversely affect system integration.

 d. A prototype may be decreed "operational" before completion of the development cycle and proper documentation. Failure to follow the BPD can lead to higher maintenance costs and interface and interoperability problems over the life cycle of the system.

 e. Prototyping may make effective resource management (people, dollars, time) more difficult for managers. The customer may direct his feedback more toward improving the prototype than satisfying the capability need. Resources consumed by prototyping will not be available for the development of the prime mission product.
 f. Successful prototyping depends upon a strong project leader who possesses knowledge of the BPD, development life-cycle strategies and prototyping techniques. It also requires a substantial amount of interaction with the most knowledgeable customers.

2.0 Approaches for Conceptual Prototyping (CP)

CP may begin during the definition of the requirements. A Conceptual Prototype can be constructed using the BPD by tailoring up the process to include CP, substituting CP for another analysis technique, or making CP part of an iteration. All of these approaches require tailoring the BPD through changes to the Work Breakdown Structure and the Tailoring Worksheet. A possible set of activities associated with CP follows:
 a. The analyst determines general system and software requirements and proposes a system design based on preliminary fact-findings and experience. This step describes an expanded list of functions, transactions, data elements, and customer procedural responsibilities. The objective is to get the model completed as soon as possible without the formalities of detailed format descriptions.

 b. The customer's concurrence with the proposed system can be a general agreement with the proposed procedural flow and that the system will most likely meet mission needs.

 c. Address technical issues at this point. Consult with those who will code and maintain the production version of the system. Consider the programming language, file structures, protocols, and hardware assignments that the final production system requires. Surface and resolve possible problem areas that may occur during system construction.

 d. Build Prototype. Validate the prototype components and integrate them in the Test & Development Range. Conduct a review similar to a TRR I to evaluate the testing activities and determine if the prototype has sufficient quality for its purpose.
 e. Simulate the Prototype (if required).

 (1) Create a system environment to simulate the prototype in the Test & Development Range, since a prototype will not reside on the operational network. Use the simulation to ensure the prototype is comprehensive, accurate enough to be relied on, and functional enough to be useful. The simulation will allow you to analyze the system's performance and gain an understanding of the system's behavior. Resolve timing and sizing issues before utilizing the prototype. Depending on the purpose of the prototype, some attributes similar to the following may need verification:

 (a) Interrupt handling and context switching,

 (b) Response times,

 (c) Data transfer rate and throughput,

 (d) Resource allocation and priority handling, and

 (e) Task synchronization and intertask communication.

 (2) The simulation environment must be as close as possible to the target operational environment. Numerous tools (CASE, Simulation Control Language, mathematical models, etc.) are available commercially to assist with the simulation process.

 f. Evaluate and refine requirements based on simulation results. Review and discuss the results of the simulation with the customer. The customer will refine, expand, or accept the results based on the requirements. Record all the results and related changes to the functional scope of the prototype. Update all written descriptions of the prototype as applicable.

3.0 Approaches for Operational Prototyping (OP)
A Conceptual Prototype may lead to an Operational Prototype. Any system that the organization fields, including an Operational Prototype, must follow the BPD. For example, if a contractor provides the Government with an operational prototype based on a Commercial Off-the-Shelf solution, the BPD provides specific direction for reviews, oversight, contracting, documentation, testing, security, architecture, release, engineering disciplines, etc. The BPD allows for tailoring to accommodate specific projects, but the tailoring must be justified and approved.

4.0 Summary of Operational Prototyping and Conceptual Prototyping

CP is a developmental technique that assists in understanding the requirements or the technical solution. Execute it in the Test & Development Range since it will not go to the field. The development of a Conceptual Prototype must follow the BPD primarily by identifying it in the Work Breakdown Structure, Cost and Schedule. Oversight and reviews will depend on the resources budgeted for and consumed by the Conceptual Prototype.

OP is a technique for improving the requirements or the technical solution based on evaluations in the operational environment. Since the operational prototype goes to the field, the development of an operational prototype must follow the BPD.

5.0 Rapid Application Development (RAD)

 a. RAD is similar to OP (used in iterative development), but with a different set of primary objectives and different test issues. The intent of RAD is fast delivery of the product in the tradeoff of time, cost and quality. RAD has many advocates but also many detractors.

 b. RAD uses an approach of incremental product delivery, with customer feedback from one iteration setting the direction for the next iteration. Users will utilize the incremental product delivery in their daily business operations. Just like an operational prototype, a RAD incremental product delivery must follow the BPD.
 c. Some advocates believe that the iterations never finish; that the application continues to evolve indefinitely, in response to unpredictable customer demands, for years until it is finally retired.

 d. A typical RAD cycle time (also called the “timebox”) is one new system version per month. Sometimes, project teams iterate weekly or even daily, though the shorter the cycle time the more likely the process is to be unstable, i.e., the easier it is to lose control. Cycle time may even be as long as 6-month phases--this effectively is “slow RAD”.

 e. RAD expedites effective delivery with several techniques, most of which are embedded in the BPD:

 (1) Before the iterations of the timebox begin, conduct a brief project planning phase to establish the initial set of needs, overall objectives, project scope, success criteria, RAD tools and development methodology.

 (2) Before the iterations of the timebox begin, draft an overview of the “chunks” of functionality that each cycle will deliver. Drafting a list of features expected in the first iteration or two is especially important, both to ensure high priority and to manage expectations and risks.

 (3) Before coding begins within an iteration, review the functionality to be added or modified within that iteration, and determine if it is consistent with the project objectives. Prioritize the work in terms of which features or upgrades are mandatory for this next version versus merely desirable.

 (4) Employ only the most seasoned and respected testers available.

 (5) Ensure the designers and programmers communicate and keep the testers closely in the loop as the product evolves.

 (6) Require the designers and programmers to develop and implement their own thorough component integration and validation tests.

 (7) Plan safety checkpoints, for example, when the number of unresolved defects exceeds a preset threshold during product evolution, place a moratorium on additional product change until the defect backlog is reduced.

 (8) Wherever possible, borrow and adapt existing test facilities, such as the Test & Development Range, regression test beds, test harnesses and test cases.

 (9) Supply sophisticated debugging tools and automated test tools to expedite the process.

 (10) Utilize volume testing, and delegate this responsibility to the clients and end users to the degree feasible. Ask the users to test in parallel as much as possible, as part of their on-going work activities, with before-and-after comparisons from iteration to iteration of the application being developed.

 (11) Keep a stringent eye on change requests and product scope; preferably, the testers should conduct an impact assessment of proposed changes and be able to veto them where justified.

 (12) Alert the users to expect some defects. Train them how to recognize and report defects in the iterations, and how to work around them.

 (13) Place each iteration of the application being developed under version control.

 (14) Do not allow a new iteration to be released without a minimal test. Identify minimal test requirements in terms of customer impact, operational risk, prior trouble spots, and what is new or changed from the last prior iteration.

 (15) Be prepared to turn off buggy features (reduce functionality) within a release before delivery if necessary to meet the timebox target date for the next iteration.

 (16) Provide mechanisms for users to easily back up to an earlier iteration if the latest one proves to contain a showstopper.

As the application evolves through the iterations, it should become more stable; or at least particular features or subsystems will become stable earlier than others. As portions of the system stabilize, move to more complete test case creation using automated capture or replay tools. Grow the automated test repository in parallel with the application, and use it to test from iteration to iteration those system portions that are already stable.

Do not apologize for minor defects being found by the users after release of an iteration. They are natural consequence of the fast turn-around and usually have minor consequences except to make the users gripe. The users should understand that the whole reason for iterative development is because things are rarely right the first time. Emphasize teamwork.
Page 1 of 5

