SWGD033
 Use Case Modeling Guide
 14 January 2015
<Company Name>

Use Case Modeling Guide
For

<Project Name>

Revision History

	Date
	Version
	Description
	Author

	<dd/mmm/yy>
	<x.x>
	<details>
	<name>

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
Definitions, Acronyms, and Abbreviations
4
1.4
References
4
1.5
Overview
4
2.
General Use Case Modeling Guide
4
2.1
General Style
4
2.2
Use of the <<Communicates>> Relationship
4
2.3
Use of the <<Include>> and <<Extend>> Relationships
5
2.3.1
Use of the <<Include>> Relationship
5
2.3.2
Use of the <<Extend>> Relationship
5
2.4
Use of Actor-Generalization
5
3.
How to Describe a Use Case
5
3.1
Actor Guidelines
5
3.1.1
Each concrete use case will be involved with at least one actor
5
3.1.2
Intuitive and Descriptive Actor Names
6
3.1.3
Consistent Use of Actor Names
6
3.2
Use Case Name
6
3.3
Use Case Brief Description
6
3.3.1
At least 1 paragraph
6
3.4
Use of Glossary Terms
6
3.5
Use of “Action” Terms
6
3.5.1
Define where the system is responsible for presenting the action option
6
3.5.2
Consistent use of the term throughout the use case
7
3.6
Separate Paragraphs for Actor and System Behavior
7
3.7
Alternate and Sub-Flows
7
3.8
Preconditions and Postconditions
7
3.9
Use of Placeholders for Missing Detail (TBD)
7
3.10
Definition of and Reference to Supplementary Specifications
7
3.11
Crosscheck with Screen Prototypes orAnalysis & Design Realizations
8
3.12
Exception Flows (Optional)
8
3.12.1 What can go wrong?
8
4.
UML Stereotypes
8

Use Case Modeling Guide
1. Introduction

The introduction provides an overview of the entire document. It includes the purpose, scope, definitions, acronyms, abbreviations and references.
1.1 Purpose

Specify the purpose of this guide.
1.2 Scope

Briefly describe what projects this document is associated with and anything else that this document affects or influences.

1.3 Definitions, Acronyms, and Abbreviations

Provide the definitions of all terms, acronyms, and abbreviations required to properly interpret this guide. May refer to the project’s glossary.

1.4 References

Provide a complete list of all documents referenced elsewhere in this guide. Identify each document by title, report number (if applicable), date, and publishing organization. Specify the sources from which the references can be obtained.
1.5 Overview

Describe what the rest of this guide contains and explain how the document is organized.

2. General Use Case Modeling Guide
2.1 General Style

The use cases will be written using the template provided by the BES Process IPT, with certain style and layout modifications to suit applicable project documentation standards.

2.2 Use of the <<Communicates>> Relationship

The association between an actor and a use-case is called a communicates relation. This association should be uni-directional. The notion of active and passive actors adds value to the reader of the use case model.
· Active Actor: The actor is active when the actor is initiating (or triggering) the execution of the use case. The arrow on the communicates relation points to the use case.
· Passive Actor: The actor is passive when the use case is initiating the communication. Passive actors will typically be external systems or devices with which our system needs to communicate. The arrow on the communicates relation points to the actor.
2.3 Use of the <<Include>> and <<Extend>> Relationships

In the first instance, avoid the use of these relationships. The misuse of these relationships has much more potential to clutter and confuse than it has to help simplify the use case model. The best practice is to avoid this type of decomposition initially, and consider using these relationships at a later stage in the process. These relationships can be used to:

· Factor out behavior that is in common for two or more use cases.
· Factor out behavior from the base use case that is not necessary for the understanding of the primary purpose of the use case, only the result of it is important.
· To show that there may be a set of behavior segments of which one or several may be inserted at an extension point in a base use case.

Use these only where they add value by helping to simplify and manage the use case model.
2.3.1 Use of the <<Include>> Relationship

The include relationship describes a behavior segment that is inserted into a use case instance that is executing the base use case. It is a mechanism similar in nature to a sub-routine, and is most often used to factor out common behavior.
2.3.2 Use of the <<Extend>> Relationship

The extend-relationship is a more difficult relationship to take advantage of, primarily because the extension use case is not known to the base use case. As a general comment, there are few places where this relationship is useful in most business systems. Keep in mind however, that there are always exceptions to the rules, and that this mechanism can be useful in certain circumstances.
2.4 Use of Actor-Generalization

In general, actor-generalization can be used to better define the different roles played by the users of the system to be developed. This is useful in applications with different “categories” of end-users. In this way, only relevant functionality will be presented to each category of users, and we are able to control the access rights based on this grouping.

Rule of thumb: Each use case will only be initiated by one actor. This “rule” may be overridden, in which case the use case description must justify the decision.
3. How to Describe a Use Case

3.1 Actor Guidelines

3.1.1 Each concrete use case will be involved with at least one actor

Is each concrete use case involved with at least one actor? If not, something is wrong; a use case that does not interact with an actor is superfluous, and you will either remove it or identify the corresponding actor. In some cases, more than one actor may play a part in the use case interaction.

3.1.2 Intuitive and Descriptive Actor Names

Do the actors have intuitive and descriptive names? Can both users and customers understand the names? It is important that actor names correspond to their roles. If not, change them. You should refer to the use case model to ensure that you are using the correct actor name for every actor in your use case.
3.1.3 Consistent Use of Actor Names

Write the use case specification using actor names consistently. Ensure actor naming is clear and unambiguous. Do not refer generically to “the actor”; instead use the actual name used to uniquely identify or define the actor. The actor name is the role in a set of system interactions.
3.2 Use Case Name

The use case name will be unique, intuitive, and explanatory so that it clearly and unambiguously defines the observable result of value gained from the use case.
A good check for the use case name is to survey whether customers, business representatives, analysts and developers all understand the names and descriptions of the use cases. Remember, you are defining an observable result of value from the actor’s perspective.

Each use case name will describe the behavior the use case supports. The name will combine both the action being performed and the key element being “actioned”. Most often, this will be a simple verb/ noun combination. The use case should be named from the perspective of the actor who triggers the use case.
3.3 Use Case Brief Description

3.3.1 At least 1 paragraph

The use case will contain a brief description. This description will be at least one paragraph and no more than three paragraphs in length. The description will cover an explanation of the key purpose, value proposition and concepts of the use case.
3.4 Use of Glossary Terms

All business terms used in a use case will be defined in the project's Glossary. If a business term exists in a use case that does not exist in the glossary, the term needs to either be:

· Added to the glossary, including a brief description (max. one paragraph).
· Changed in the use case to reflect the correct Business Term defined in the glossary.
3.5 Use of “Action” Terms

3.5.1 Define where the system is responsible for presenting the action option

The use case will explicitly state where the system is responsible for presenting an action as an available option for the actor to select. In most cases, the available options should be presented as part of the basic flow, and be referenced as the entry point in the first statement in the corresponding alternative flow.
3.5.2 Consistent use of the term throughout the use case

The use of terms such as New, Modify, Cancel, Delete, OK, and Print will be consistent throughout the use case. The same logical action will not be referred to using different terminology. Special care will be taken to ensure that the action terms used in the alternative flows match those used in the basic flow.
3.6 Separate Paragraphs for Actor and System Behavior

Each time the interaction between the actor and the system changes focus (between the actor and the system), the next segment of behavior will start with a new paragraph. Begin first with an actor and then the system. The sentence must begin with ‘The <actor-name> will xxxxx’, or ‘The system will xxxx’. Always state the actor name correctly, in full, rather than any abbreviation.
3.7 Alternate and Sub-Flows

Each alternate and sub-flow will explicitly and clearly define all of the possible entry points into the flow, and will conclude with all of the possible exit points from the flow.

The alternate flow will also state the path the actor takes from an exit point – whether it is returning to a specific step in the basic flow, or ending. Where the flow of events becomes cluttered due to complex behavior, or where a single flow exceeds a physical printed page in length, sub-flows can be used to improve clarity and manage the complexity. Sub-flows will be written by moving a self-contained, logical group of detailed behavior to a sub-flow, and referencing this behavior in summary form within the flow of events.
3.8 Preconditions and Postconditions

The use case specification will include a set of conditions (also referred to as assumptions) that are expected to be true before the use case begins (preconditions) and after the use case has ended (postconditions). Note that the use case may end in a number of ways, and each “postcondition” should be described accordingly.
3.9 Use of Placeholders for Missing Detail (TBD)

Where information is not yet defined or not yet decided, the use case will include a reference to the issue or element and will include the placeholder TBD.
3.10 Definition of and Reference to Supplementary Specifications

Where there are additional requirements that cannot be described naturally during the flow of events, these will be defined as supplementary requirements. For those that are specific to a use case, these will be defined in the Special Requirements section of the use case specification.

Those requirements that are applicable system-wide, especially those of a non-functional nature, will be defined in one or more separate supplementary specification documents.

Examples include:
Reliability:
- The system must be available 24 x 7.

- The system must run for 48 hrs MTBF.
Performance:
- The system must provide an online response that does not exceed 5 seconds under the expected normal load conditions.
3.11 Crosscheck with Screen Prototypes or Analysis & Design Realizations

The use case contents will be cross-checked against the screen prototypes and the analysis or design realizations to ensure no system requirements are missing from the use case or the screen prototypes and the analysis or design realizations.
3.12 Exception Flows (Optional)

The following guidelines will assist in the discovery of exception flows:
3.12.1 What can go wrong?

For each step in the use case, consider what can go wrong. Each unique exception can be captured as an exception flow. In some cases, a single exception flow will be used commonly across the use case, e.g. “Timeout”. The key information to capture is: what the business requirement is when the exception occurs, i.e., what should the actor’s experience be?
4. UML Stereotypes

This section contains or references specifications of Unified Modeling Language (UML) stereotypes and their semantic implications—a textual description of the meaning and significance of the stereotype and any limitations on its use—stereotypes already known or discovered to be useful for the construction of use case models. The use of these stereotypes may be simply recommended or perhaps even made mandatory; for example, when an imposed standard requires their use, when it is felt that their use makes models significantly easier to understand, or when it ensures that common types of entities, roles, relationships, or patterns are uniformly modeled and understood. This section may be empty if no additional stereotypes, other than those predefined by the UML, are necessary.
PAGE

