SWGD019
Software Cost Estimating Guide
14 September 2009

Software Cost Estimating Guide

1. Estimating by Analogy

The estimates are based on analyst experience with past similar projects. This technique depends on using locally developed algorithms. If historical data is not available, the Lead Analyst must rely on personal experience to generate the effort and stage duration estimates. Systems Program Offices (SPOs) may use historical data to develop local algorithms applicable to the type of products developed by the SPO.

General productivity factors can also be used in conjunction with the size estimate to determine effort. If size estimate is in lines of code, convert to function points using Table 2. A current productivity factor and a sample organization phase distribution chart (Table 1) are shown below. This is a good starting point for generating estimates. Keep in mind that, paradoxically, the higher level languages are less productive on lines of code produced per time basis than lower level languages. This is compensated for by the fact that higher level languages contain more functionality per line than lower level languages. Language does not have to be considered when using a function point factor.
1.1. Productivity Estimates for Small Systems

Productivity Factors for Small Systems
Function points produced per staff month: range is 5 to 9, average is 8

Project Duration Formula: Months Duration = 2.5*(# of Man-months)*.38

Table 1. Distribution of Effort Over Phases.

	PHASE
	PERCENT OF EFFORT

	Requirements Evaluation Phase
	8%

	Project Planning Phase
	3%

	Analysis Phase
	10%

	Design Phase
	20%

	Construction Phase
	32%

	Test Phase
	23%

	Implementation Phase
	1%

	Customer Support Phase
	2.5%

	Completion Phase
	.5%

1.2. Converting Source Lines of Code to Function Points

Table 2, Threshold for Selected Programming Languages, provides the Source Lines Of Code (SLOC) per function point and the number of source lines of code equivalent to 40 function points. For instance, a function point represents 107 source lines of code in COBOL 74, while 40 function points represent 4280 SLOC.

Table 2. Thresholds for Selected Programming Languages.

	Programming Language
	SLOC

	40 FP
Threshold

	Ada 83
	71
	2840 SLOC

	Ada 9x
	58
	2320 SLOC

	Assembly (Basic)
	320
	12800 SLOC

	Assembly (Macro)
	213
	8520 SLOC

	Assembly (Object)
	65
	2560 SLOC

	C
	128
	5120 SLOC

	C (Object)
	27
	1080 SLOC

	C++
	49
	1960 SLOC

	C++ (MS V7.7)
	28
	1120 SLOC

	Cobol 74
	107
	4280 SLOC

	Cobol 85
	91
	3640 SLOC

	FORTRAN 66
	128
	5120 SLOC

	FORTRAN 77
	107
	4280 SLOC

	JCL
	220
	8800 SLOC

	MS-DOS Batch Files
	128
	5120 SLOC

	Pascal (Object)
	29
	1160 SLOC

	PowerBuilder
	16
	640 SLOC

	Query Languages (Default)
	13
	520 SLOC

	Reuse (Default)
	6
	240 SLOC

	Screen Painter (Default)
	6
	240 SLOC

	SQL (RDL)
	12
	480 SLOC

	Unix Shell Scripts
	107
	4280 SLOC

	Visual Basic 3
	32
	1280 SLOC

2. Estimating Using SEER-SEM

2.1. SEER-SEM is an approved tool that can be used to estimate software development and maintenance cost, effort, schedule, reliability and risk. For estimates greater than, or equal to, 40 function points, the lead analyst must use the SEER-SEM tool and coordinate with the Organizational Comptroller Support Cost Function. The most important driver for utilizing SEER-SEM is the size of your products. SEER-SEM can accept a variety of size metrics. The two key metrics for estimating size are source lines of code and function points, but there are also variations on these metrics. Along with estimating new software, SEER-SEM can also consider the use of pre-existing software.

2.2. There are other parameters that SEER-SEM can use to improve the accuracy of its estimates. These involve personnel capabilities and experience, development support environment, product development requirements, product reusability requirements, development environment complexity and the target environment. An example of a product development requirement would be the anticipated frequency and scope of change in the requirements once they are baselined. The estimator would select one of six answers ranging from frequent major changes to essentially no requirements change.

2.3. SEER-SEM access and detailed information is available through the Organizational Comptroller Support Cost Function. The Organizational Comptroller Support Cost Function will assist in operating the SEER-SEM tool to produce estimates, but values for size and most of the other parameters are project specific and these need to be determined by the project or estimating teams. The Organizational Comptroller Support Cost Function will assist the project team in deriving these parameter values. SEER-SEM can also be calibrated based on historical data to improve estimates. The Organizational Comptroller Support Cost Function will calibrate SEER-SEM as historical data becomes available.

Appendix A contains questions that determine parameters that characterize the project.

Appendix B contains questions that are utilized to determine the cost of the software.

APPENDIX A - SEER-SEM SOFTWARE DESCRIPTION FORM
(Project Name) Data Collection Form

__

General Software Characteristics

Select one item in each of the five (5) sections, following, which best describes the software. If you choose 'other,' a short description would be welcome. Definitions of the most likely descriptors of software are provided for each section.

__

Section 1 - Platform

Platform describes the primary mission or operating environment of the software project under estimation.

BUSINESS
Systems developed around business applications, such as information systems

CLIENT
Ground-based business application intended to run on a network client, such as a PC platform

CLIENT-SERVER
Business system which is developed for client-server platforms

GROUND
Ground-based, mission critical system for defense and aerospace, such as command and control, communications systems, operating systems and primary applications
MOBILE
Software developed for ground-based mobile platforms such as automobiles, trucks, tanks, and rail

SERVER
Ground-based business application intended to run on a network server
OTHER:
Description:

ERP Development
ERP implementation is typically dominated by application and database configuration (table editing) and application integration and not by traditional software development activities (e.g., detail design, coding, and unit testing).

Financial Processing
The system is dedicated to running only financial applications.

Internet Development
Software on a client-server type host platform environments that use internet or intranet transport mechanisms and protocols. This knowledge base is appropriate for the development of web-based or browser-based applications.

SAP/R3 Development
The software runs in the SAP/R3 environment with the ABAP language. This platform seeks to integrate typical key business processes (e.g., human resources, finance, operations, manufacturing, etc.) into a single automated system. Its implementation is typically dominated by application and database configuration (table editing) and application integration and not by traditional software development activities (e.g., detail design, coding, and unit testing).

Telecommunications
The system is dedicated to running only telecommunication applications.

(Project Name) Data Collection Form

Section 2 - Application

Application describes the primary function of the software. If the module or CI under estimation has elements corresponding to more than one application type, please indicate by % the portion of each.

ARTIFICIAL
Software that employs data analysis techniques to refine

INTELLIGENCE
decision processes. No outcomes of such processes are pre-programmed.

BUSINESS
Business-oriented application for the analysis of quantitative

ANALYSIS TOOL
data, processes, or other information. Examples include project planning and monitoring, decision support, resource analysis, forecasting, process optimization, scenario simulation and risk analysis.

CAD
Computer Aided Design applications, layouts, and analysis

COMMAND &
Network monitoring, network control and switching, sensor control,

CONTROL
signal or telemetry processing, message processing, data reduction or analysis, mission control, command processing

COMMUNICATIONS
Telecommunications, satellite communications

DATABASE
Database generation, database management

DATA MINING
Data analysis application used to identify patterns, trends, or unknown information from existing data sources. Generally involves large volumes of data, possibly stored across multiple platforms. Analysis techniques may include neural networks, heuristics, rules based logic, or induction methods.

DATA
Data-oriented application focusing on the storage and archiving of

WAREHOUSING
large volumes of data

DEVICE DRIVER
Software that allows a computer to communicate and control any devices attached or added to the system. Examples include drivers for printers, pointing devices, CD-ROM drives, display units, sound systems, and communications devices.

DIAGNOSTICS
On-line or off-line hardware, on-line or off-line software

EXPERT
SYSTEM
Employs data analysis and learning techniques to refine decision processes.
(Project Name) Data Collection Form

GRAPHICS
Highly graphical applications, such as cartography, advanced image rendering (ray tracing, smoothing, fractals, etc.), and certain CAD or CAM applications.

INTERNET
Platform independent application for Internet or an Intranet client.

APPLET
Such applications are downloaded from the server, and typically, as with Java, executed in a pseudo-environment.

GUI
Used to describe the impacts of developing user interfaces for business and other applications. Examples include GUI frameworks for business systems, advanced cockpit displays, and certain virtual reality application

MATHEMATICAL
Software involving complex mathematical operations, numerical methods, and analysis

MESSAGE
Packet switching, circuit switching, electronic mail, file transfer
SWITCHING

MIS
Resource estimation, project planning, accounting, configuration management, performance monitoring, decision analysis

NETWORK MGMT
Software that monitors and reports on the status of all components of telecommunication networks

OBJECT-ORIENTED
Database generation and management utilizing object-oriented

DATABASE
architecture and processes

OS OR EXECUTIVE
Network, security, file management, device drivers, display drivers, multi-tasking

RELATIONAL
Database generation and management utilizing relational database

DATABASE
architecture

SOFTWARE
Compilers, linker or loader, debugger, editor, assembler, requirements

DEVELOPMENT
analysis, design tool aids, code generator, programming aids, report

TOOLS
generator, code auditor

TEST
Test case generation, test case data recording, test case data reduction or analysis, test driver or stub
TRAINING/CBT
Computer Aided Instruction (CAI), simulator, scenario generator.

TRANSACTION
Transaction processing application for non-financial business

PROCESSING
processes. Examples include point of sale transactions, service reservations and bookings, order entry, shipping and delivery confirmation.

GENERAL
Any combination of new and pre-existing software. This knowledge base describes a wide variation in the amount of rework to pre-existing software that is necessary.

PROCESS CONTROL
Developing software that controls various processes by commanding devices according to some desired sequence, monitoring process, device, and sensor feedback, and modifying device commands as a function of the desired behavior and of the feedback.

REPORT GENERATE
Describes the impacts of developing software that extracts information from a data source, and formats it for viewing, printing and other reporting purposes. Examples include report writers and screen writers.

SIMULATION
Environment simulation, system simulation, emulation, process flow, network simulation, operations flow, and system reliability programs.
SYSTEM &

DEVICE

UTILITIES

Describe the impacts of developing software that, in order to

perform some distinct common function, uses and manages computer resources, devices, software formats, hardware interfaces and/or software interfaces. Often times collections of these utilities are bundled into some sort of library package. Examples include media conversion, sort / merge, format translation, math routines, plotting routines, input/output drivers, compression, encryption, miscellaneous routines, and interfaces.

(Project Name) Data Collection Form

Section 3 - Acquisition Method

Acquisition Method describes the scope and type of project being developed or maintained. Most of these descriptors provide guidance for sizing rework of pre-existing functions or source lines of code.

AUTOMATED
Use this for estimating the effort required to convert software

LANGUAGE
from one language to another (e.g., FORTRAN to Ada) using

CONVERSION
an automated tool. Assumes no change in the software design beyond what is dictated by the language change. The basic application and mission will remain intact. Note: this will impact the pre-existing software only. New components still will require normal development, of course.

MANUAL
Use this for estimating the effort required to convert software

LANGUAGE
from one language to another (e.g., FORTRAN to Ada)

CONVERSION
manually. Assumes no change in the software design beyond what is dictated by the language change. The basic application and mission will remain intact. Note: this will impact the pre-existing software only. New components still will require normal development.

FULL
Used for situations where the software is being built from a completely preexisting design
DESIGN REUSE

SUSTAINING
Use this knowledge base to estimate sustaining maintenance for the

MAINTENANCE
modifications and additions of the defined system. This maintenance effort will cover only the essential corrective and adaptive maintenance effort. This knowledge base assumes maintenance for 10 years. You may change the number of years by changing the "Years Of Maintenance" parameter.

FULL COMPLETE
Use this knowledge base for maintenance estimates without

MAINTENANCE
development effort. This knowledge base assumes complete rigorous software maintenance for 10 years. You may change the number of years by changing the "Years of Maintenance" parameter.

MINOR
Minor modification to existing software. Typically, the existing

MODIFICATION
software is being used for the same mission, but with some changes in functionality. The target environment and programming language will not have any significant changes.

MAJOR
Major modification to existing software. Typically, the

MODIFICATION
existing software is being used for a new application or mission. Often involves a target environment change. Assumes the programming language will not have any significant changes.

(Project Name) Data Collection Form

MINOR
Minor rework of an existing application to improve program structure

REENGINEERING
and documentation. This assumes the basic functionality of the application will remain intact, and that the programming language will stay the same.

MAJOR

REENGINEERING
Major rework of an existing application to improve program structure, documentation, and maintainability. This effort will include moderate amounts of reverse engineering to ascertain the program design. This knowledge base assumes the basic functionality of the application will remain intact, and that the programming language will stay the same.

MINOR
Rehosting software from one target environment to a similar

REHOST
environment. Assumes no major operating system changes. Development tools may be different between the platforms. For example, a port from an SGI UNIX workstation to a Sun UNIX workstation. This assumes the basic functionality of the application will remain intact, and that the programming language will stay the same.

MAJOR
 Rehosting software from one target environment to another.

REHOST
Assumes a change in operating systems, target hardware, and development tools. For example: A port of an application from Windows to a Macintosh environment. This assumes the basic functionality of the application will remain intact, and the programming language will stay the same.

NEW
Development of a new system. There may be some pre-existing

DEVELOPMENT
software available. May be used for the initial deliverable build of an incremental development. Choose new for the most general descriptor in this category. Reuse still may be estimated with the descriptor.

REDOCUMENTATION
This knowledge base is for estimating the effort required to make major revisions to the software specifications and manuals. No change is made to the software. Assumes some familiarity with the software, and that up to 25% of the documentation can be used. Note: this will impact the pre-existing software only. New components will still require normal development.

SUBSEQUENT
Use for a deliverable incremental build other than the initial build.

INCREMENTAL
This assumes no requirements work after baseline. Maintenance

BUILD
estimates of subsequent builds are only for the portion of software being added and modified in this build.

CODE GENERATOR
used for code that is automatically generated. Using this knowledge base assumes that no hand coding is required; however, it does assume that some level of work is required to create and use the automatically generated code.
CONCEPT REUSE
Used for situations where the software approach is being appropriated from a well-defined basic concept, including architectural definitions. This work may have been done previously and shelved or possibly under a separate contract.

INTEGRATE AS-IS
Used for development efforts where no design or coding is required. This knowledge base assumes the existence of well-built code, considered reliable, delivered to the developer for virtually turnkey integration with the rest of the system.

INTEGRATE W/

CONFIGURATION
Used for off-the-shelf software items that are intended to be configured or customized, either by code patching or by table entry modifications.

SALVAGE CODE
Used to estimate the creation of a new system by "salvaging" existing code from another application. This knowledge base assumes that heavy redesign and coding must be done to successfully renovate the system. It assumes greater than 50 percent redesign and recoding and nearly 100 percent retesting. It assumes major changes to design, development environment, and programming language.

SUBSEQUENT

INREMENTAL BUILD
Used for incremental build deliveries subsequent to the first in

Incremental build deliver

(Project Name) Data Collection Form
Section 4- Development Method

Development Method describes the methodology to be used during the implementation of the individual program (CI). Although several specifically reference Ada, the descriptor chosen should be the one that is most like the system being analyzed. For example, if a prototype happens to be in Ada, prototype is the best choice.

ADA
Use of Ada as a programming language only. No tools,

DEVELOPMENT
practices or methods are used to improve software development consistent with Ada. This type development does not yield benefits in development or maintenance.

ADA
Use of Ada as a programming language following a modern

DEVELOPMENT
incremental development process. This assumes some better

WITH
tools and practices are in place than Ada development. This

INCREMENTAL
method is getting closer to what Ada intended originally, but

METHODS
is still not a dedicated Ada organization.

ADA
Full use of the Ada programming language, Ada development tools

FULL USE
and methods. This organization is dedicated to Ada as a way of doing business. Both development and maintenance will benefit.

ADA
Use of the Ada programming language, using object-oriented design

OBJECT-ORIENTED
and programming methods.

CODE
Software will be generated with a code generation method rather than

GENERATION
manual coding.

COMMERCIAL
Software was obtained as an off-the-shelf component and needs only

OFF-THE-SHELF
to be integrated and tested.

EVOLUTIONARY
Software requirements and design will change and grow throughout

DEVELOPMENT
the development process. Often associated with user-oriented systems or systems where the nature is not yet fully understood.

NONE
An extremely informal development approach.

OBJECT-
The use of object-oriented techniques for architecture design and

ORIENTED
coding.

DESIGN AND

PROGRAMMING

FULL OBJECT-
The use of all object-oriented techniques for requirements, design,

ORIENTED

coding and testing by a development team that is experienced and

motivated to

motivated to use object-oriented approaches.

(Project Name) Data Collection Form

PROTOTYPE
Informal development process applicable for prototypes, proof of concept, or demonstration software. Development is iterative, with minimal up front requirements effort.

PURCHASED
Includes pass through costs only. Not a development item. Normally

ITEMS
would not have any size or effort associated with it.

RAPID
Use of 4GL rapid application development environment, often

APPLICATION
referred to as RAD. This knowledge base assumes a fairly informal

DEVELOPMENT
development environment with most of the emphasis on the coding.

(RAD)
Minimal effort is expended for requirements and design

TRADITIONAL
A method of software development which allows developers to

INCREMENTAL
overlap among the activities within each of the life cycle phases

TRADITIONAL
A linear model of the software development process where the

WATERFALL
activities of each phase of the life cycle must be completed before continuing on to the next phase

TRUSTED
Use of trusted systems principals to produce software that is not

SYSTEM
reliable but has been verified as functioning correctly and performing

LEVEL 3
only the functions required, while doing so with the fewest defects. This knowledge base is applicable for a trust 3 system that emphasizes software development approaches, which are aimed at the avoidance of inadvertent errors. This class also introduces minimal requirements necessary to begin preventing malicious errors

OTHER
Description:

CASE FULL

Used to describe the impacts of a fully encompassing Computer Aided Softwa

Software Engineering (CASE) development environment.

RUP-LITE
A lightweight, document-centric implementation of the Rational Unified Process. Appropriate for smaller projects.

RUP-FULL
Appropriate for projects that adopt the full Rational tool suite in addition to the RUP methodologies. For further information on the Rational Unified Process, see www.rational.com.

WEB-SITE

CONSTRUCTION
Used to describe the impacts of a software development life cycle approach that facilitates the construction of an average web site.

 (Project Name) Data Collection Form

Section 5- Development Standard

Development Standard describes the development standards which will be followed during the development. These descriptors generally include knowledge encompassing the specification level, test level, and quality assurance level parameters.

IEEE/EIA 12207
IEEE/EIA 12207 Software Life Cycle Processes, typical tailoring to project specific considerations.

2167A MINIMAL
U.S. DoD Standard 2167A will be followed during the

SET
development tailored to be similar to a high-end commercial specification

2167A
U.S. DoD Standard 2167A will be followed during the development

with some tailoring for cost reduction or reliability requirements

2167A FULL SET
U.S. DoD Standard 2167A will be followed during the development. Full set, used to the maximum to ensure highest reliability.

498 BUSINESS
Mil-Std 498 with appropriate tailoring for business systems.

SYSTEMS

498 SUPPORT
Mil-Std 498 with appropriate tailoring for non-mission critical

SYSTEMS
weapons systems and support systems. Reliability is important, but consequences of failure are not as great as for the 498-weapon classification.

498 WEAPONS
Mil-Std 498 with appropriate tailoring for mission critical weapons

SYSTEMS
systems. Reliability is very important.

IEEE STANDARDS
The Institute of Electrical and Electronics Engineers standards for software development. These are high-end commercial standards that incorporate state-of-the-practice software development and maintenance methods

IEEE STANDARDS
The Institute of Electrical and Electronics Engineers standards for

PLUS HIGHEST
software development fully used for high reliability systems. These

RELIABILITY
are high-end commercial standards that incorporate the state-of-the-

(FULL IEEE)
practice software development and maintenance methods.

IS RELAXED
Business information systems developed using informal standards for documentation, testing, quality assurance, configuration management or reviews. Associated with business information systems where uptime in not a critical operational feature.

(Project Name) Data Collection Form

IS FORMAL
Business information systems developed using formalized standards for documentation, testing, quality assurance, configuration management, or reviews. Associated with high reliability business information systems where uptime is a critical operational feature.

ISO 9001
Software developed to the International Standards (ISO) quality standard 9001 using ISO 9000-3 guidelines for software systems.

MIS LO
Business information systems with minimal reliability requirements, uptime is not a critical operational feature.

MIS HIGH
High reliability business information systems, uptime is a critical operational feature.

OTHER
Description:

1679 WITH IV&V
Used to describe the impacts of using DOD-STD-1679 Software Development in conjunction with strict independent verification and validation.

APPENDIX B - SEER-SEM Parameter Form and Inputs
1. PERSONNEL CAPABILITIES & EXPERIENCE

· Analyst capabilities

· Analyst's application experience

· Programmer capabilities

· Programmer's language experience

· Development system experience

· Target system experience

· Practices & methods experience

2. DEVELOPMENT SUPPORT ENVIRONMENT

· Modern development practice use

· Automated tools use

· Logon through Hardcopy Turnaround

· Terminal response time

· Multiple site development

· Resource dedication

· Resource and support location

· Development system volatility

· Process volatility

3. TARGET ENVIRONMENT

· Special display requirements
· Memory constraints
· Time constraints
· Real Time Code
· Target system complexity
· Target system volatility
· Security requirements
4. SCHEDULE & STAFFING CONSIDERATIONS

· Complexity (staffing)

· Staff loading

· Minimum time vs. optimal effort

· Process volatility

5. PRODUCT DEVELOPMENT REQUIREMENTS

· Requirements volatility (change)

· Specification level - reliability

· Test level

· Quality assurance level

· Rehost from development to target

6. PRODUCT REUSABILITY REQUIREMENTS

· Reusability level required

· Software impacted by reuse

7. DEVELOPMENT ENVIRONMENT COMPLEXITY

· Language type
· Host development system complexity
· Application class complexity
· Process improvement
8. REQUIREMENTS

· Requirements complete @ start
· Requirements definition formality
· Requirements effort after baseline
9. SYSTEM INTEGRATION

· Programs concurrently integrating

· Concurrency of I&T schedule

· Hardware integration level

· Labor rates

10. SOFTWARE MAINTENANCE

· Years of maintenance

· Separate sites

· Maintenance growth over life

· Personnel differences

· Development environment differences

· Annual change rate

· Maintenance level (rigor)

· Minimum maintenance staff (optional)

· Maximum maintenance staff (optional)

· Maintenance monthly labor rate

· Additional annual maintenance cost

· Maintenance start date (optional)

· Percent to be maintained.

· Maintain total system

11. EFFORT TO COMPLETE

· Source lines of code

· Estimate to complete analysis

· System requirements design

· Software requirements analysis

· Preliminary design

· Detailed design

· Code & unit test

· Component integration & test

· Program test

1. SIZE
Software size is most often measured in lines of code or function points. Because it is such a key determinant of development requirements, this survey pays special attention to the sources of size--how much code is new, how much have you reused from other sources, how much you will have to redevelop.

Size can be expressed in Source Lines of Code (SLOC) or Unadjusted Function Points (UFPs). Use the metric that is most accessible and accurate.

New lines of code

Lines that will be completely designed, implemented and tested within this component or computer program. These lines of code will be developed from scratch or else represent new functionality that will be added to existing code.

Lines of countable source lines of code include:

· Control statements (DO, While, Do Until, GOTO, etc.)

· Mathematical statements (ex: i = a*b)

· Conditional statements (IF, THEN, ELSE)

· Deliverable Job Control (JCL) statements

· Data declarations

· Data typing and equivalence statements

· INPUT OUTPUT format statements

Lines of countable source lines of code EXCLUDE:

· Comments!

· Blank lines

· BEGIN statements from Begin-End pairs (count one line only for each pair)

· Non-delivered programmer debugging statements

· Continuation of formatting statements

· Machine or library-generated data statements
New LOC count:

Pre-existing lines of code

Use this parameter to enter the actual number of pre-existing lines of code that will be used for this project. This figure will be adjusted by the following percentages for redesign, retest, and re-implementation to arrive at the effective lines of code for this estimate.

Pre-existing LOC count:

Lines to be deleted in pre-existing

This is the number of lines of code which will be deleted outright from the pre-existing lines of code before any work begins. There is no effort associated with the deleted lines of code; they are simply discarded from the project before any work begins. Included in this definition is any software that will no longer be supported, or otherwise, will no longer be used or needed.

Lines to be deleted in pre-existing:

Redesign Required

The amount of redesign (software architecture) that must be performed to make this pre-existing software functional within the CI under estimation, or changes to the overall design or system architecture which will be required to reuse the existing design. INCLUDE amounts that must be learned or reverse engineered, re-documented, or revalidated to make the changes as well as the actual amount of redesign work. This percentage may be greater than 100% if the work involved in designing involves severe reverse engineering of the existing code.

Redesigned required:
Re-implementation required
The amount of re-implementation (code and unit testing) of the pre-existing software that must be performed to make this software functional within the CI under estimation, or any actual source code which is rewritten and re-tested at the unit level. INCLUDE amounts that must be learned or reverse engineered to make the changes, as well as the actual amount of code to be re-implemented.
Reimplementation required:

Re-test Required
The amount of testing (integration testing, Component testing, and Program testing) that must be performed to ensure this software functions within performance, reliability, and other criteria after the changes.

Retest required:

1. PERSONNEL CAPABILITIES & EXPERIENCE

Analyst capabilities

Rate the analyst team, not individuals, assigned to the computer program. Analysts include personnel developing software requirements and specifications and preparing high-level software design (architecture). A functional team is an average team, performing at a respectable level. Inherent learning abilities, efficiency, motivation, quality of design, communication abilities, etc may impact performance. Conflicts within a team and an uncooperative environment can reduce the rating.

Capabilities should not be confused with experience. This parameter rates the inherent potential of the team as a whole, independent of experience. More experienced personnel are not necessarily more capable, and less capable personnel also are not necessarily less experienced.

Rating

Description

Near perfect functioning team (90th percentile)

Extraordinary (75th percentile)

Functional and effective (55th percentile)

Functional and somewhat effective (35th percentile)

Non-functional group

Analyst's application experience

Rate the analyst team's relevant experience in designing with similar applications. This rates the team's experience when design begins. For example, if a new program was started with 3 analysts, 2 of which were fresh out of college, and a third with 10 years experience, the AVERAGE experience would be about 3 years.

Enter the average years of experience:

Programmer capabilities

Rate the programming team assigned to the computer program. Programmers perform "code to" detailed design, (program design languages, flowcharts, etc.) write code and prepare and run initial unit test cases. Rate the team, not just the individuals. A functional team is an average team, performing at a respectable level. Consider inherent ability, motivation, programming efficiency and thoroughness, program quality, and the ability to communicate. Conflicts within a team and an uncooperative environment can reduce this rating.

Capabilities should not be confused with experience. This parameter rates the inherent potential of the individual team members as well as a team as a whole, independent of experience. More experienced personnel are not necessarily more capable, and less capable personnel are not necessarily less experienced.

Rating

Description

Near perfect functioning team (90th percentile)

Extraordinary (75th percentile)

Functional and effective (55th percentile)

Functional and somewhat effective (35th percentile)

Non-functional group

Programmer's language experience
This represents the programming team's average experience with the programming language being used. Some experience may be credited for similar languages, although the rating should be for the experience at the start of development.

For example, a new project begins with 7 programmers, a lead programmer with 10 years of experience with the language being used, 3 programmers with 2 years experience each, and the other 3 with no applicable experience with this language. The average experience would be about 2 years.

Enter the average years of experience:

Host system experience

The development team of analysts and programmers average years of experience with the development system, the combination of hardware, operating systems, job control languages, and all the things the developers will use to develop the software. Rate the experience level at the start of the project.

Other parameters that can be closely related to this parameter include development system volatility and development system complexity.

Enter the average years of experience:

Target system experience

The average years of experience the development team of analysts and programmers has with the target (final) system, on which the software product under estimation will execute, including both the hardware environment and the resident operating system. If the target system hardware or operating systems are under development, target system experience will almost automatically be quite low, since the system has not previously existed. On the other hand, if the target system is a workstation or PC, then target system experience might be the same as host system experience.

Enter the average years of experience:

Practices & Methods Experience

Rate the number of years the development team of analysts and programmers will have with the software processes at the beginning of development. Software processes are those processes, methods, and tools that establish the managerial and technical environment in which software products are developed (i.e., design reviews, quality assurance activities, and software engineering methods).

Enter the average years of experience:

2. DEVELOPMENT SUPPORT ENVIRONMENT

Modern development practices use

Rate the usage of modern software development practices and methods at the time the software design begins. These include analysis and design, structured or object-oriented methods, development practices for code implementation, documentation, verification and validation, database maintenance, and product baseline control. Only successful incorporation of practices as standard procedures within the organization as well as by this team counts as full use. Just having books, a few experts, or academic courses does not count as experience.

Rating

Description

Routine use of all practices

Reasonably experienced in most practices

Reasonably experienced in some practices

Beginning experimental use of practices

No use of modern development practices

Automated tools use

Specifies the degree to which the software development practices have been automated. This parameter refers only to automated tools, not to modern practices and development methods, although tools and methods can be closely associated. For example, many advanced tools are designed specifically for use with a certain development method or practice.

Rating

Description

Advanced fully integrated toolset (Integrated CASE, full Ada APSE).

Modern fully automated application development environment,
 including requirements or design tools.

Modern visual programming tools, automated CM, test analyzers plus
 requirements or design tools.

Visual programming, CM tools and simple test tools.

Interactive, programmer workbench (Ada minimal ASPE).

Base batch tools (compiler, editor).

Primitive tools (bit switches, dumps).

Logon through hardcopy turnaround

A generalized measure of system throughput as experienced by the project team. The following are included:

· Logging on, if not dedicated developer terminal, including travel and waiting time
· Invoking an editor

· Submitting a software unit for compilation

· Receiving hard copy into hands

Rating

Description

Turnaround 8 hours

Turnaround 4 hours

Turnaround 2 hours

Turnaround 30 minutes

Turnaround 6 minutes

Terminal response time

The average transaction response time from the time a developer presses a key until that key is acknowledged and its action is completed. This measures the efficiency of interactive development operations.

Rating

Description

> 3 seconds

2 seconds

1 second

.5 seconds

< .25 second

Multiple site development

Organization and site diversity of system development. Consider physical and political separation, and mixed security levels.

Rates the organizational and site diversity within the personnel developing the software. This separation can be due to physical location, political boundaries, or even security issues. Anything that would isolate one part of the design team from another should be considered for this parameter. A program being developed in a mixed security level environment should be considered as multiple organizations. Advance communications and networking techniques, such as e-mail, WANs, or teleconferencing can reduce the impact of physical separation, but will not negate it.

Rating

Description

Multiple sites located 50+ miles apart or international participation.

Multiple sites, same general location.

Single site & multiple organizations.

Single site & single organization.

Resource dedication

Availability of host and target machines. Physical interference due to site operations or contending project organizations can result in reduced access to the system. The sharing of scarce hardware resources can lower resource dedication if the developers are actually locked out.

Rating

Description

100% access to computing resources (fully dedicated).

70% access to computing resources.

40% access to computing resources.

10% access to computing resources.

Resource and support location

Degree of access by proximity to development resources and support, such as system consultants, programming language support, and development tool support. Access may be limited by physical distance, or organizational or procedural constraints, resulting in a "psychological" distance in terms of wasted time getting the needed resource.

Rating

Description

400 mile radius or greater.

200 mile radius or 5 hours.

50 mile radius or 1.5 hours.

Local development resources and support.

Host system volatility

Degree and frequency of changes to the development system. These may be changes in the program editors, compilers or other tools, changes in the operating system and command languages, or changes in the development hardware itself. If a development operating system upgrade is released during development, there will be no impact if developers continue to use the old version rather than switch.

Rating

Description

Major change each 2 weeks, minor 2 times a week.

Major change each 2 months, minor each week.

Major change each 6 months, minor each 2 weeks.

Major change each 12 months, minor each month.

No major change, minor change each year.

Process volatility

Degree and frequency of changes to the processes, methods, and tools that establish the managerial and technical environment in which software products are developed (i.e., design reviews, quality assurance activities, software engineering methods), development practices, and methods being used during development. This rating is dependent on the scope or magnitude of the changes, as well as the frequency with which they occur. A minor change would be any change that would have some impact on the development team, but would not require significant adjustments to the way in which it works. For example, filling out an additional form or consulting an additional management source for a design decision approval would be a minor change. A major change would require a significant adjustment in the way in which the development team works and would have a noticeable impact on the development effort.

Rating

Description

Major change each 2 weeks, minor 2 times a week.

Major change each 2 months, minor each week.

Major change each 6 months, minor each 2 weeks.

Major change each 12 months, minor each month.

No major changes, minor change each year.

3. PRODUCT DEVELOPMENT REQUIREMENTS

Requirements volatility or change
The frequency and scope of change in the requirements during the development. Minor changes may include work such as a specification clarification for a software component. Moderate changes are items such as tighter performance requirements. Major changes are items such as rework of major system specifications related to mission changes.

Rating

Description

Frequent moderate and frequent major changes

Frequent moderate and occasional major changes

Evolutionary software development with significant user interface
 requirements

Occasional moderate redirections

Small non-critical redirections

Essentially no requirements changes

Specification Level - Reliability

The level of development specification required. This refers primarily to software engineering level documentation. The level of documentation is dictated by the development standards being used.

Specification Level is also related to system reliability requirements. More reliable systems must be specified more stringently during development to ensure that they are sufficiently reliable to perform within acceptable limits.

Rating

Description

High reliability, public safety requirements

Major financial loss (Mil-Spec: full documentation)

Moderate loss, recover without extreme penalty; (commercial product
 widely used, Mil-spec. complete, essential documentation (e.g., DoD-
 Std-2167A, DOD-Std 1703))
Mil-Std-2167A tailored minimal subset, high-end commercial

Low, easily recoverable from loss, Commercial software
Slight inconvenience, Personal software
Test level

The rigor and formality of the software testing. The test level is usually based on the potential for loss if the software malfunctions during operation. More reliable systems must be tested more stringently during development to ensure that they are sufficiently reliable to perform within acceptable limits.

Rating

Description

High reliability, public safety requirements

Major financial loss (Mil-Spec: full documentation)

Moderate loss, recover without extreme penalty; (normal Mil-Std Testing)
Low, easily recoverable from loss
Slight inconvenience
Quality assurance level

Evaluates the completeness of the quality assurance (QA) activities. The quality assurance effort is usually directly related to the impact that a failure in the software would have during its operational phase. More reliable systems must be documented more stringently during development to ensure that they are sufficiently reliable to perform within acceptable limits.

Rating

Description

High reliability, public safety requirements

Major financial loss (Mil-Spec: full documentation)

Moderate loss, recover without extreme penalty; (normal Mil-Std Testing)
Low, easily recoverable from loss
Slight inconvenience
Rehost from development to target

The effort to convert the software from the development system (computers, operating systems, etc.) to the target system on which the software will execute. This is related to the difference between the host and target environment, including both hardware and software considerations.

Rating

Description

Major language and system change

Major language or system change

Minor language and system change

Minor Language or system change

No rehosting, same language & system

4. PRODUCT REUSABILITY REQUIREMENTS

Reusability level required

Rate the requirements for producing software that is designed to be reusable within other programs. Reusable code is fully reusable as is with no modifications.

The level of reusability required is determined by how widely the final software will need to be reused. For example, code designed to be reused in future builds or incremental releases of a single application would be one step up from No Reusability, while code designed to be reused throughout an office automation product line (word processors, spreadsheets, databases, etc) would be a step higher.

This input is used in conjunction with Software Impacted By Reuse, which determines how much of the total code will be reused on other systems.

This parameter should only be greater than No Reusability if there is a specific requirement for reuse. Incidental reuse should not be included in this parameter.

Rating

Description

Mission software developed with full reusability required. All
 components of the software must be reusable. Reusability is a
 primary objective of development.

Software will be reused within a single product line (single product
 line: multiple developers, multiple or single customers).

Software will be reused within a single application area (single
 application area: single developer, multiple or single customers).

No reusability requirement or incidental reuse for this development

Software impacted by reuse

The amount of the software under development that is required to be reusable. This parameter works in conjunction with reusability required.

Rate the percentage of software that is intended for reuse (0% - 100%):

5. DEVELOPMENT ENVIRONMENT COMPLEXITY

Language Type

Enter the language used for this software development. If multiple languages were used, please specify the percent of coding undertaken in each:

Language 1:

% of Development:

Language 2:

% of Development:

Language 3:

% of development:

Host development system complexity

The relative complexity of the host development system, compilers, JCL, file interfaces, and support environment. This parameter is closely linked to host system experience.

Rating

Description

Distributed network (Vines)

Multi-user systems (IBM 370)

Single-user machines (PC)

Application class complexity

The overall level of application difficulty. This parameter is closely linked to analyst's application experience.

Rating

Description

Networks, operating systems, compilers, fire control systems;
Applications with complex systems, file or user interfaces, such as command and control communication networks,
Business data processing, applications interface systems.

Process improvement

The amount of change or improvement in software processes. This can be evaluated by comparing current, established software processes with those planned for this development.

The SEI Capability maturity Model (CMM) philosophy is to introduce greater control into the software development process, and to apply consistency in the way these processes are applied to projects within an organization. The ultimate goal is better software quality and increased productivity. The SEI Equivalent rating can be thought of as an effective SEO level attained for the development environment being analyzed.

Rating

Description

Extreme change - organization attempting a 2 level jump in
 SEI process rating

Major change – organization improving rating (moving from

 SEI DMM level 1 to 2, implementing ISO)
Moderate change - organization attempting a 1 level jump in
 SEI process rating (from level 2 or above)
No change from established development practices

6. TARGET ENVIRONMENT

Special display requirements

The level of user interfacing required for this computer program. If the computer program has no user interface, such as when the user interface function is performed by another, use the lowest rating.

Rating

Description

Complex: CAD or CAM Solid Modeling

Interactive: Light pen, mouse, touch screen, etc. Controlled by the
 computer program (graphics based; 1990's interactive user interfaces)

User friendly error recovery & menus, character based or basic
 windows interface

Simple inputs or external outputs: batch programs, no user interface
 issues

Memory constraints

The measures taken by developers to reduce memory usage. If no memory conservation actions are required of the development team, then no memory constraint exists, even when the available memory is 99% utilized.

Rating

Description

Complex memory management and economic measures

Extensive overlaying or segmentation or 50% of software has extra
 memory constraints

Some overlaying or segmentation or 25% of software has memory
 constraints

No memory constraints (many modern application programs; programs
 on virtual memory systems)

Time constraints

The percentage of software that must have specific coding effort to enhance timing performance. Rate only the percentage of the code that receives special effort to enhance timing performance, not simply a time budget allocation.

Percent of time-constrained code:

The amount of software involved in real-time functions. Real-time functions are driven by an external clock, such as gathering data from hardware devices or time-sensitive control of such devices where waiting can alter or lose data. Real-time functions must be performed during the actual time that an external process occurs in order that the computation results can be used to control, monitor, or respond in a timely manner to the external process. Real-time code manages data exchange across the interfaces, but not the processing of data (which is in non-real-time). For example, telemetry is gathered in real-time, but is processed in non-real-time. Although real-time code is not directly related to time constrained code, some code may require timing constraints because of real-time considerations.

Percent of real-time code:

Target system complexity

The level of complication of the target operating systems, compilers, controllers and other attached processors the developer must be familiar with to perform the development task. This parameter is closely related to target system experience.

Rating

Description

Distributed network (Vines)

Multi-user systems (IBM 370)

Single-user machines (PC)

Target system volatility

The degree and frequency of changes to the target system (the system on which the software will execute when actually used). These may be changes in the program editors, compilers or other tools, changes in the command languages, or changes in the target hardware. Each change may cause developers to lose time due to learning the system, changing their code, procedures, etc. Furthermore, more volatile target hardware will adversely affect software to hardware integration.

Rating

Description

Major change each 2 weeks, minor 2 times a week

Major change each 2 months, minor each week

Major change each 6 months, minor each 2 weeks

Major change each 12 months, minor each month

No major changes, minor change each year

Security requirements

Rate development impacts of security for the delivered target system. Rate special work to be performed during this computer program development only.

If security requirements will be met by the operating system, by other software, or by environment (behind locked doors), then Security Requirements should be Class D.

Rating

Description

Class A1: Security formally verified by mathematical proof. (only a
 few known systems)

Class B3: System excludes code not essential to security enforcement.
 Audit capability is strengthened. System almost completely resistant

 to penetration

Class B2: System segregated into protection critical and non-protection
 critical elements. Overall system resistant to penetration (critical
 financial processing)

Class B1: In addition to C2, data labeling and mandatory access control
 are present. Flaws identified by testing are removed. (classified or
 financial transaction processing)

Class C2: Users individually accountable via logon operations, auditing
 of security relevant events and resource isolation (typical multi-user
 operating system such as VAX VMS)

Class C1: Access limited. Based on system controls accountable to
 individual user or groups of users. Simple project specific password
 protection

Class D: Minimal protection-no security. Security requirements are
 handled outside the scope of the developed software.

7. SCHEDULE & STAFFING CONSIDERATIONS

Complexity (staffing)

The software system's inherent difficulty, in terms of the rate at which staff can be added to a project. Highly complex projects have highly complex interdependencies in the order in which engineering problems can be solved, and thus have lower staffing increase rates. Complexity relates to the rate at which personnel can be added to a development program, thus it drives both costs and schedule. A more complex task is more difficult to work on. Consequently, the number of people working on that task must be reduced. However, when the staff size is reduced, there is less effort lost to the inefficiencies of communication and team integration, so an actual cost benefit can be achieved for more complex tasks, although the schedule length will at the same time be increased.

For example, the task of computerizing the phone book is a large but simple task. Many people could work on it at the same time, simply dividing it into equal size chunks and letting each team member work on a much smaller piece of the problem. The schedule would thus be accelerated. On the other hand, a complex application might impose a constraint on the number of people who can work on it, thus lengthening the schedule although perhaps decreasing costs.

Rating

Description
Development primarily using micro code for the application, for
 example, a signal processing system with extremely complex
 interfaces and control logic. Staffing will increase very slowly.

 Top of the scale for 99% of all defense software

New systems with significant interfacing and requirements for
 interaction within a larger system structure. Examples include
 operating systems & real-time applications with significant logical
 code. Additional staff can only be added slowly.

Applications with significant logical complexity, perhaps requiring
 changes to the host operating system, minor real-time processing or
 specific displays and hardware. Staff may not be added quickly to
 the project.

New stand-alone systems developed on firm operating systems. Minimal interface problems with the underlying operating system or
 other system parts. Complexity characteristics also map into
 processing as follows: control operations; mostly simple nesting,
 some inter-module control. Computational Operations: standard
 mathematical and statistical functions. Device Dependent
 Operations: device selections, status checking. Error Processing Data
 management operations: multi-file inputs, single file, and simple
 structural changes. Bottom of scale for 99% of all defense software

Software of low logical complexity using straightforward Input Output and primarily internal data storage. Additional staff may be added easily to the project. Extremely simple software with primarily straightforward code, simple Input Output, and internal storage arrays. Staffing may increase rapidly.

Staff loading

Characterizes how a project is staffed in terms of when staff is added. The development method should be considered when rating the staff loading parameter.

Rating

Description

Staff peaks toward the front of the project. Typical of
 prototype and informal developments (prototypes,
 evolutionary)

Staff for integrated team development. Also typical for object
 oriented developments

Staff for incremental development (more people added faster).

 Typical for Ada developments and Ada incremental.

Staff for serial development (waterfall process). Staff peaks
 towards the end of project.

Minimum time v. optimal effort

Optimizing for schedule (minimum time) assumes the development will be finished as quickly as possible. Staff will be added as quickly as possible, but larger teams will reduce efficiency and, although the project will be completed sooner, it will also take more effort.

Optimizing for effort plans for a longer schedule, with fewer people working together and thus less overall effort.

Which objective best characterizes this software project?

Minimal time:

Optimal Effort:

8. REQUIREMENTS

Requirements complete @ start

Rate the amount of requirements effort completed before the contract was awarded, or otherwise when the project began. Effort completed before the formal start date is NOT included in the actual estimate.

Rating

Description

All software requirements review complete and requirements
 baselined

Proposal level requirements complete
No software requirements analysis performed, still in system
 requirements phase

Requirements definition formality

Rate the detail and formality to which software requirements will be analyzed and specified.

Rating

Description

Formal requirements method and tool, plus independent
 verification and validation

Mil standard software requirements analysis, formal
 requirements method and tool

Formal requirements method and tool used but not required
 deliverable

Mil standard software requirements analysis, no formal
 requirements tool required; commercial products, multiple
 customers

Informal requirements analysis and specification commercial
 products, prototyping, iterative development

No requirements analysis included in this estimate

Requirements effort after baseline

Identify if software requirements work is still performed after the up-front requirements activity is complete.

Rating

Description

Requirements effort throughout the development

No requirements effort after the requirements review was
 completed

9. SYSTEM INTEGRATION

Programs concurrently integrating

Enter the number of separable programs (or CIs) that will be integrated with this one. Count only those with which this module must interface directly.

Number of other modules:

Concurrency of I&T schedule

The degree of overlap between development, and integration and testing activities.

Rating

Description

All system integration will occur during development

The majority of system integration will occur during

 development before testing is complete

System integration begins during software integration testing.

System integration occurs after software WBS elements are

 completely tested individually.
Hardware integration level

Rate the difficulty of integrating the software with the operational or target hardware. This is often driven by concurrent hardware developments or custom hardware interfacing.

Rating

Description

Significant integration with hardware, concurrent hardware
 development

Significant integration with hardware, some custom hardware
 in the configuration

Same type hardware, different configuration

Same system or commercial off-the-shelf hardware

No hardware integration

Labor Rates

Enter the monthly labor rate:

10. SOFTWARE MAINTENANCE

Years of maintenance

Number of years for which software maintenance costs will be estimated. Maintenance begins when operational test & evaluation is completed.

Number of years:

Separate sites

Number of separate operational sites where the software will be installed and users will have an input into system enhancements.

Number of sites:

Maintenance growth over life

The anticipated size growth from the point immediately after the software is turned over to maintenance to the end of the maintenance cycle. Software growth may include additions of new functionality. Major enhancements should be modeled separately as new developments or incremental builds.

Rating

Description

Major updates adding many new functions

Major updates adding some new functions

Minor updates with enhancements to existing functions

Minor enhancements

Sustaining engineering only

Personnel differences

Rates the maintenance personnel's capabilities and experience in comparison to the development personnel's capabilities and experience. If maintenance only is being estimated as a separate CI, this parameter should be set to "Same As Development", and the personnel capabilities and experience parameters should be rated individually.

Rating

Description

Significantly better than development personnel

Slightly better than development personnel

Same as development personnel

Somewhat less than development personnel

Significantly lower than development personnel
Development environment differences

Rates the quality of the maintenance environment in comparison to the tools and practices used in the development environment. If maintenance is being estimated as a separate CI, this parameter should be set to "Same As Development", and the development support environment parameters should be rated individually.

Rating

Description

Significantly better than development

Slightly better than development

Same as development

Somewhat worse than development

Significantly worse than development

Annual change rate

Average percentage of the software impacted by software maintenance and sustaining engineering per year. This could include changes, revalidation, reverse engineering, re-documentation, minor changes for new hardware, or re-certification.

Rating

Description

35%

15%

11%

5%

0%

Maintenance level (rigor)

This parameter rates the thoroughness with which maintenance activities will be performed.

Rating

Description

Thorough maintenance for all types of software maintenance
 activities, including regular documentation updates.
 Software maintenance is well planned in both the long and
 short term with frequent reviews of priorities. Dedicated
 staff assigned for maintenance. Software will remain useful
 for users and will not degenerate over time.

Complete maintenance including maintenance planning and
 priority review. Software documentation is updated on a
 semi-regular basis. Software will not degenerate over time.

Average maintenance activity. Short term planning and
 prioritization of maintenance activity. Documentation is
 updated less than once a year (change pages and addenda).
 Software will become less useful as more time goes by.

Basic maintenance with most activity being reactive to
 emergencies and problems as they arise. No planning of
 maintenance activity. Documentation is updated only with
 page and addends changes. Software will degenerate over
 time.

Bare bones maintenance. Non-dedicated team doing
 emergency fixes. Maintenance is performed on an ad hoc,
 sporadic basis. Little to no documentation update. Software
 will degenerate rapidly. May also represent sustaining
 engineering effort of a delivered incremental build by the
 developers during development of subsequent builds.

Minimum maintenance staff (optional)

This is the minimum number of personnel who will be assigned to maintain the software. Use this parameter for fixed staffing or level of effort maintenance.

Minimum staff:

Maximum maintenance staff (optional)

This is the maximum number of personnel who will be assigned to maintain the software. Use this parameter for fixed staffing or level of effort maintenance.

Maximum staff:

Maintenance monthly labor rate

This is the average monthly labor rate for maintenance personnel.

Monthly labor rate:

Additional annual maintenance cost

Enter any annual throughput costs for maintenance.

Annual maintenance costs:

Maintenance start date (optional)

Enter the date on which maintenance will begin. If no date is entered, maintenance will begin when operational evaluation and test is completed.

Maintenance start date:

Percent to be maintained

Enter the percentage of the total that will be maintained. For example, if part of the software is in a read only memory and cannot be changed, exclude this part of the computer program from software maintenance costs by reducing this percentage.

Percent maintenance:

Maintain total system

Determines whether total size or effective size should be used to estimate maintenance. This parameter is normally yes so that maintenance is estimated based on the entire completed CI, not just the change estimated? during the estimate. If the software is entirely new lines of code, the estimate will be identical with this parameter.

Rating

Description

YES Normal: Estimate maintenance of the total completed
 CI

NO Special: Estimate maintenance of the effective size
 (current changes) only

11. EFFORT TO COMPLETE

Completion of the following will allow us to model the effort remaining to complete development of your project. Please provide all requested information as carefully as possible.

Source Lines of Code (LOC)

The following are the latest verified SLOC counts we have in our estimate. If updated counts are available, please provide them. Also, please include the date for the updated counts.

	
	Latest Verified

SLOC Counts
	Updated Counts as

of __________

	New SLOC
	
	

	Existing SLOC

(not designed for reuse)
	
	

	Existing SLOC

(designed for reuse)
	
	

	Existing SLOC

(to be deleted)
	
	

	Total SLOC
	
	

Estimate to complete analysis

The following tables are provided to determine how much work remains to be completed for each developmental activity. Sub-elements of each activity category and their percentages relative to the total activity help you calculate remaining effort using an earned value concept. However, it is recommended that you use your own earned value system if one exists. You may tailor the earned value to your specific development process if it differs from the activities and sub-elements provided.

System requirements design

This development activity includes the creation of initial system requirements and related tasks. For systems comprised of hardware and software, this normally is the time when specific functions are allocated to software components.

Use this table to calculate the percent of the system requirements design phase at estimate to complete time.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	System Segment

Specification
	34%
	X
	
	=
	

	System Requirements

Review Preparation
	22%
	X
	
	=
	

	System Requirements

Review
	11%
	X
	
	=
	

	System Design Review

Preparation
	22%
	X
	
	=
	

	System Design Review
	11%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

value
	=
	

Software requirements analysis

This developmental activity includes the detailed software requirements analysis and synthesis. It uses information created during the prior system requirements design phase.

Use this table to calculate the percent of the software requirements analysis phase remaining at estimate to complete time.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	System Segment Design

Document
	3%
	X
	
	=
	

	System Requirements

Specifications
	23%
	X
	
	=
	

	Interface Requirements

Specifications
	17%
	X
	
	=
	

	Software Development

Plan
	17%
	X
	
	=
	

	Software Quality

Plan
	8%
	X
	
	=
	

	System Engineering

Management Plan
	17%
	X
	
	=
	

	Software Specification

Review Preparation
	11%
	X
	
	=
	

	Software Specification

Review
	4%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

Value
	=
	

Preliminary design

This developmental activity includes the division of software into packages or functions. Data flows between different program components may be defined, and the design is mapped into the software requirements.

Use this table to calculate the percent of preliminary design phase remaining at estimate to complete.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	Walkthroughs
	35%
	X
	
	=
	

	Preliminary Design

Review Preparation
	17%
	X
	
	=
	

	Preliminary or Architectural Design Review
	13%
	X
	
	=
	

	Software Test Plan
	35%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

Value
	=
	

Detailed design

This developmental activity includes the definition of software down to the single decision point.

Use this table to calculate the percent of the detailed design phase remaining at estimate to complete time.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	Design Document
	31%
	X
	
	=
	

	Interface Design

Document
	15%
	X
	
	=
	

	Environment

Definition
	3%
	X
	
	=
	

	Resource Acquisition
	15%
	X
	
	=
	

	Test Script
	24%
	X
	
	=
	

	Critical or Detailed

Design Review

Preparation
	6%
	X
	
	=
	

	Critical or Detailed

Design Review
	6%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

value
	=
	

Code & unit test

This developmental activity includes the coding and initial testing of the software by the programmers.

Use this table to calculate the percent of the code and unit (CSU) test phase remaining at estimate to complete time.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	Code Development
	 36%
	X
	
	=
	

	Internal Walkthroughs
	10%
	X
	
	=
	

	Unit Testing
	51%
	X
	
	=
	

	Software Library or
Configuration

Management
	 3%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

value
	=
	

Component integration & test

This developmental activity includes the integration of software units to form cohesive program components.

Use this table to calculate the percent of the Component (CSC) Integration and Test phase remaining at estimate to complete.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	Software Product

Specification
	 8%
	X
	
	=
	

	Test Reports
	30%
	X
	
	=
	

	Version Development

Document
	11%
	X
	
	=
	

	Test Readiness Review

Preparation
	 16%
	X
	
	=
	

	Test Readiness Review
	2%
	X
	
	=
	

	Test Drivers
	33%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

value
	=
	

Program test

This developmental activity includes the integration of software components into a program, and testing of the program as a whole.

Use this table to calculate the percent of the program (CI) test phase remaining at estimate to complete time.

	Activity
	% Of Total

Activity
	X
	% Activity

Complete
	=
	% Activity

Earned

	Functional and Physical

Audit Preparation
	 7.5%
	X
	
	=
	

	Functional and Physical Configuration Audit
	 2%
	X
	
	=
	

	Operator Manual
	3.5%
	X
	
	=
	

	User Manual
	 16%
	X
	
	=
	

	Software Programmer's Manual
	3.5%
	X
	
	=
	

	Firmware Support

Manual
	7.5%
	X
	
	=
	

	Computer Resources

Integrated Support

Document
	16%
	X
	
	=
	

	Production
	44%
	X
	
	=
	

	Sum Above Categories
	
	
	Total Earned

Value
	=
	

	
	% Remaining

	=
	1-Total Earned

value
	=
	

1

 NUMPAGES
3
 NUMPAGES
35

