SWFM019
Lines of Code Estimating Form
31 August 2015

	Lines of Code Estimating Form

	Instructions: This form defines the elements that are part of the source line of code count (SLOC) for your specific program. Fill out this form in conjunction with Develop Estimates and Size Estimate Form, as applicable. The form comes from the SEI Software Size Measurement: A Framework for Counting Source Statements [CMU/SEI-92-TR-20], and should be referenced for any further clarifications. Logical source statements are the standard for the Organization. Fill out the Lines of Code Estimating Template in conjunction with this form to refine your logical source statement definition. For each attribute (e.g. Statement Type, How Produced) check either the definition box or the data array box. The definition box distinguishes the rules for the attribute, while the data array box is for counts of individual data elements. Lastly, place a checkmark in the appropriate box for each line item, annotating it as either included or excluded in your SLOC count. Refer to A Framework for Counting Source Statements.

	

	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Measurement Unit:
	Physical source Lines
	
	
	
	

	
	Logical source statements
	
	
	
	

	
	
	
	
	
	
	
	

	Statement type
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	When a line or statement contains more than one type, classify it as the type with the highest precedence.
	
	

	
	
	

	1 Executable Order of precedence ->
	1
	
	

	2 Nonexecutable
	
	
	
	
	
	
	

	3 Declarations
	
	
	
	
	2
	
	

	4 Compiler directives
	
	
	
	
	3
	
	

	5 Comments
	
	
	
	
	
	
	

	5a On their own lines
	
	
	
	
	4
	
	

	5b On lines with source code
	
	
	
	
	5
	
	

	6 Banners and nonblank spacers
	
	
	
	6
	
	

	7 Blank (empty) comments
	
	
	
	
	7
	
	

	8 Blank lines
	
	
	
	
	8
	
	

	9
	
	
	
	
	
	
	

	10
	
	
	
	
	
	
	

	How Produced
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	1 Programmed
	
	

	2 Generated with source code generators
	
	

	3 Converted with automated translators
	
	

	4 Copied or reused without change
	
	

	5 Modified
	
	

	6 Removed
	
	

	7
	
	

	8
	
	

	Origin
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	1 New work: no prior existence
	
	

	2 Prior work: taken or adapted from
	
	

	3 A previous version, build, or release
	
	

	4 Commercial, off-the-shelf software (COTS), other than libraries
	
	

	5 Government furnished software (GFS), other than reuse libraries
	
	

	6 Another product
	
	

	7 A vendor-supplied language support library (unmodified)
	
	

	8 A vendor-supplied operating system or utility (unmodified)
	
	

	9 A local or modified language support library or operating system
	
	

	10 Other commercial library
	
	

	11 A reuse library (software designed for reuse)
	
	

	12 Other software component or library
	
	

	13
	
	

	14
	
	

	Usage
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	1 In or as part of the primary product
	
	

	2 External to or in support of the primary product
	
	

	3
	
	

	Delivery
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	1 Delivered
	
	

	2 Delivered as source
	
	

	3 Delivered in compiled or executable form, but not as source
	
	

	4 Not delivered
	
	

	5 Under configuration control
	
	

	6 Not under configuration control
	
	

	7
	
	

	Functionality
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	1 Operative
	
	

	2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
	
	

	3 Functional (intentional dead code, reactivated for special purposes)
	
	

	4 Nonfunctional (unintentionally present)
	
	

	5
	
	

	6
	
	

	Replications
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	1 Master source statements (originals)
	
	

	2 Physical replicates of master statements, stored in the master code
	
	

	3 Copies inserted, instantiated, or expanded when compiling or linking
	
	

	4 Postproduction replicates—as in distributed, redundant, or re-parameterized systems
	
	

	
	
	

	5
	
	

	Development status
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	Each statement has one and only one status, usually that of its parent unit.
	
	

	1 Estimated or planned
	
	

	2 Designed
	
	

	3 Coded
	
	

	4 Unit tests completed
	
	

	5 Integrated into components
	
	

	6 Test readiness review completed
	
	

	7 Software (CI) tests completed
	
	

	8 System tests completed
	
	

	9
	
	

	10
	
	

	11
	
	

	Language
	Definition
	
	Data Array
	
	
	Includes
	Excludes

	
	
	
	
	
	
	
	

	List each source language on a separate line.
	
	

	1 Separate totals for each language
	
	

	2 Job control languages ________________________________
	
	

	3 ________________________________
	
	

	4 Assembly languages ________________________________
	
	

	5 ________________________________
	
	

	6 Third generation languages ________________________________
	
	

	7 ________________________________
	
	

	8 Fourth generation languages ________________________________
	
	

	9 ________________________________
	
	

	10 Microcode ________________________________
	
	

	11 _______________________________
	
	

	Clarifications (general) Listed elements are assigned to
	Includes
	Excludes

	1 Nulls, continues, and no-ops statement type –>
	
	1
	
	

	2 Empty statements (e.g., “;;” and lone semicolons on separate lines)
	
	
	

	3 Statements that instantiate generics
	
	
	
	3
	
	

	4 Begin…end and {…} pairs used as executable statements
	
	1
	
	

	5 Begin…end and {…} pairs that delimit (sub)program bodies
	
	
	
	

	6 Logical expressions used as test conditions
	
	
	
	
	
	

	7 Expression evaluations used as subprogram arguments
	
	
	
	

	8 End symbols that terminate executable statements
	
	
	
	

	9 End symbols that terminate declarations or (sub)program bodies
	
	
	

	10 Then, else, and otherwise symbols
	
	
	
	
	
	

	11 Elseif statements
	
	
	
	
	1
	
	

	12 Keywords like procedure division, interface, and implementation
	3
	
	

	13 Labels (branching destinations) on lines by themselves
	
	
	
	

	14
	
	
	
	
	
	
	

	15
	
	
	
	
	
	
	

	16
	
	
	
	
	
	
	

	Clarifications (language specific)
	
	

	Ada
	
	

	1 End symbols that terminate declarations or (sub)program bodies
	
	
	

	2 Block statements (e.g., begin…end)
	
	
	
	1
	
	

	3 With and use clauses
	
	
	
	
	3
	
	

	4 When (the keyword preceding executable statements)
	
	
	
	

	5 Exception (keyword, used as a frame header)
	
	
	3
	
	

	6 Pragmas
	
	
	
	
	4
	
	

	7
	
	
	
	
	
	
	

	8
	
	
	
	
	
	
	

	9
	
	
	
	
	
	
	

	Assembly
	
	

	1 Macro calls
	
	
	
	
	1
	
	

	2 Macro expansions
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	

	6
	
	
	
	
	
	
	

	C and C++
	
	

	1 Null statement (e.g., “;” by itself to indicate an empty body)
	
	
	
	

	2 Expression statements (expressions terminated by semicolons)
	1
	
	

	3 Expressions separated by semicolons, as in a "for" statement
	
	1
	
	

	4 Block statements (e.g., {…} with no terminating semicolon)
	
	1
	
	

	5 “{”, “}”, or “};” on a line by itself when part of a declaration
	
	
	
	

	6 “{” or “}” on line by itself when part of an executable statement
	
	
	
	

	7 Conditionally compiled statements (#if, #ifdef, #ifndef)
	
	4
	
	

	8 Preprocessor statements other than #if, #ifdef, and #ifndef
	
	4
	
	

	9
	
	
	
	
	
	
	

	10
	
	
	
	
	
	
	

	11
	
	
	
	
	
	
	

	12
	
	
	
	
	
	
	

	CMS-2 Listed elements are assigned to
	
	

	1 Keywords like SYS-PROC and SYS-DD statement type –>
	3
	
	

	2
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	

	COBOL
	Includes
	Excludes

	1 “PROCEDURE DIVISION”, “END DECLARATIVES”, etc.
	
	3
	
	

	2
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	

	FORTRAN
	
	

	1 END statements
	
	
	
	
	1
	
	

	2 Format statements
	
	
	
	
	3
	
	

	3 Entry statements
	
	
	
	
	3
	
	

	4
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	

	JOVIAL
	
	

	1
	
	
	
	
	
	
	

	2
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	

	Pascal
	
	

	1 Executable statements not terminated by semicolons
	
	1
	
	

	2 Keywords like INTERFACE and IMPLEMENTATION
	
	3
	
	

	3 FORWARD declarations
	
	
	
	
	3
	
	

	4
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	

	Summary of Statement Types

	Executable statements

	Executable statements cause runtime actions. They may be simple statements such as assignments, goto’s,

	procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls, no-ops, empty statement and

	FORTRAN’s END. Or they may be structured or compound statements such as conditional statements,

	repetitive statements, and “with” statements. Languages like Ada, C, C++ and Pascal have block statements

	[begin…end and {…}] that are classified as executable when used where other executable statements would be

	permitted. C and C++ define expressions as executable statements when they terminate with a semicolon,

	and C++ has a <declaration> statement that is executable.
	
	
	
	

	
	
	
	
	
	
	
	

	Declarations

	Declarations are nonexecutable program elements that affect an assembler’s or compiler’s interpretation of

	other program elements. They are used to name, define, and initialize; to specify internal and external

	interfaces; to assign ranges for bounds checking; and to identify and bound modules and sections of code.

	Examples include declarations of names, numbers, constants, objects, types, subtypes, programs,

	subprograms, tasks, exceptions, packages, generics, macros and deferred constants. Declarations also

	include renaming declarations, use clauses, and declarations that instantiate generics. Mandatory begin…end

	and {…} symbols that delimit bodies of programs and subprograms are integral parts of program and

	Subprogram declarations. Language superstructure elements that establish boundaries for different sections

	of source code are also declarations. Examples include terms such as PROCEDURE DIVISION, DATA

	DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION, SYS-PROC and

	SYS-DD. Declarations, in general, are never required by language specifications to initiate runtime actions,
	

	although some languages permit compilers to implement them that way.
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Compiler Directives

	Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems) to perform

	special actions. Some, such as Ada’s pragma and COBOL’s COPY, REPLACE and USE, are integral parts of

	the source language. In other languages like C and C++, special symbols like # are used along with

	standardized keywords to direct preprocessor or compiler actions. Still other languages rely on

	non-standardized methods supplied by compiler vendors. In these languages, directives are often designated

	by special symbols such as #, $, and {$}.

