RDTM009
Supplementary Specification Template
7 July 2008
RDTM009
Supplementary Specification Template
 31 August 2015

Supplementary Specification Template

For

<Project Name>

Revision History

	Date
	Version
	Description
	Author

	<dd/mmm/yy>
	<x.x>
	<details>
	<name>

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

51.
Introduction

51.1
Purpose

51.2
Definitions, Acronyms and Abbreviations

51.3
References

52.
Functional Requirements

52.1
<Functional Requirement One>

63.
Usability

63.1
Navigation

63.2
Consistency

63.3
Language

63.4
Accessibility

73.5
Organization

73.6
Aesthetics

74.
Reliability

74.1
Availability

74.2
Mean Time Between Failures (MTBF)

74.3
Mean Time to Repair (MTTR)

85.
Performance

85.1
Response Times for Application Transactions

95.2
Page Code Size

95.3
Throughput

95.4
Capacity

95.5
Instrumentation

95.6
Degradation modes (what is the acceptable mode of operation when the system has been degraded in some manner)

96.
Supportability

96.1
Maintenance

106.2
Extensible

107.
Auditing

107.1
<Auditing Requirement One>

108.
Software Design

108.1
Requirements Modeling

108.2
Object-Oriented Analysis:

118.3
Object-Oriented Design:

129.
Development & Design Constraints

129.1
Software Language

129.2
Architecture and Design

1210.
Online User Documentation and Help System Requirements

1210.1
Online help

1210.2
Customer support center

1311.
Legal, Copyright, and Other Notices

Supplementary Specification Template

1. Introduction

The supplementary specifications along with the <use case model, the use case specifications, and the design model> will serve as the primary input to the developers, designers, and other groups working on the development and maintenance of the <application name> system.

1.1 Purpose

The purpose of the supplementary specification document is to capture the following information

· Feature sets and capabilities that need to be offered to the users.

· Quality attributes of the system such as usability, reliability, performance, and supportability requirements.

· General security requirements.

· Requirements such as design constraints, operating systems and environments.

1.2 Definitions, Acronyms and Abbreviations

· Refer to the project glossary document for all definitions of terms, acronyms and abbreviations.

1.3 References

· BES Process Directory (BPD)
· Net-Centric Enterprise Solutions for Interoperability (NESI) Part 5: Developer Guidance
·
Performance Recommendations for Automated Information Systems (AIS)
2. Functional Requirements

[This section describes the functional requirements of the system for those requirements that are expressed in the natural language style. For many applications, this may constitute the bulk of the SRS Package and thought should be given to the organization of this section. This section is typically organized by feature, but alternative organization methods, for example organization by user or organization by subsystem, may also be appropriate. Functional requirements may include feature sets, capabilities, and security.

If the functional requirements for the system are documented elsewhere in a requirements tool such as DOORS or RequisitePro, or in Use Case documents, then they can be merely identified by reference here.]

2.1 <Functional Requirement One>

[The requirement description.]
3. Usability

3.1 Navigation

· Use a recurring navigation bar that is consistent and appears in the same location on all the pages.

· The user should never arrive on a dead-end page with no further navigational options.

· Use short descriptive titles at the top of each page so the user has a clear understanding of where they are in the application.

· For pages that need to be printed assure that the output will be printable.

· If graphic images or icons are used as links, they should be representative of the information available from the link.

· Searches should be flexible to allow users to specify as little or detailed criteria for the search.

· Users should not be required to scroll excessively to view the content on a page.

· Help should be easily accessible from any page and clear instructions should be provided on all the different means by which the user can contact customer support for more information.

3.2 Consistency
· The presentation of information and the look and feel should be consistent throughout the entire application

· Text, buttons, and images that appear on multiple pages, should be placed in the same location on every page unless there is an overriding design factor.
3.3 Language

· Use domain language that the application users will be familiar with.

· Provide definitions in the help screens for terms that might need clarification.

· Use terms consistently across the application.

3.4 Accessibility

· Users should be able to seamlessly use all sections of the application after a single sign-on.

· The application should be accessible from <minimum supported browser. i.e. - Microsoft Internet Explorer v7.0> and above
· Users who are using a text only browser should be able to view and navigate the contents of the application.

3.5 Organization

· From the application homepage the user should have easy access to all the functionality that they are required to perform on a regular basis.

· The user should have a clear indication at the top of each page as to which section they are in.

· Application should be flexible to allow users to search for content using different search criteria.

· For information that is not real-time, user should be informed as to when the information was last updated.

3.6 Aesthetics

· Application users should be informed of any fields/information in the application that is editable by the user and should not have access to modify any fields/information that they are not authorized to.

4. Reliability

4.1 Availability

· The application and all application functionality will be available to its users on a

Uptime => Downtime/year

 < 99 => 87.66 hours >
 < 99.5 => 43.83 hours >
 < 99.9 => 52 minutes >
* Based on 365×24. Add on another 6 hours to average in the effect of leap years = 8766 hours per year.
· If any scheduled maintenance is necessary it will be performed during <a 4-hour window on Sunday morning from 6:00 am – 10:00 am CST>.
4.2 Mean Time Between Failures (MTBF)

· On average the application should be designed to meet a mean time between failures of <4 months or greater>.

4.3 Mean Time to Repair (MTTR)

· If system downtime occurs the system support staff should be notified immediately. This will be achieved by real-time monitoring of the systems.
· Any server hardware related downtime should be resolved and the service should be restored within a <one hour> time period.

· Any external services downtime should be resolved and the service should be restored within a <two hour> time period.
· Accuracy – specify precision (resolution) and accuracy (by some known standard) that is required in the systems output.

· Maximum bugs or defect rate – usually expressed in terms of bugs/KLOC (thousands of lines of code), or bugs/function-point.

· Bugs or defect rate – categorized in terms of minor, significant, and critical bugs: the requirements must define what is meant by a “critical” bug; for example, complete loss of data or complete inability to use certain parts of the functionality of the system.

· Application deficiencies – refer to the BPD Deficiency Reports Guide for definitions of deficiency priorities and their associated time limits.

5. Performance

Application developers should fully utilize the best practices and recommendations published in the Performance Guide for an Automated Information System (AIS).
5.1 Response Times for Application Transactions
The application shall provide a repeatable response and must provide acceptable response times to the user. The thresholds assume the government furnished infrastructure meets or exceeds the minimum DoD standards.
· Threshold: All functionality shall be repeatable with the same client presentation <100% of the time>
· Threshold: <90% of application transactions shall execute within 5 seconds>
· Threshold: <95% of application transactions shall execute within 7 seconds>
· Threshold: <97% of application transactions shall execute within 10 seconds>
· Threshold: <98% of application transactions shall execute within 15 seconds>
· Threshold: <99% of application transactions shall execute within 20 seconds>
· Threshold: <100% of application transactions shall execute within 120* seconds>
· Objective: <99% of application transactions shall execute within 5 seconds>

· Objective: <99% of application transactions shall have an internal transaction time of less than 2 seconds>

5.1.1 Long-running asynchronous tasks

Tasks such as scheduled reporting and data warehousing transactions add a performance load to the application. Performance requirements for these types of transactions must be tailored to the specific transaction characteristics and needs of the application. The general performance characteristics of the application assume that these tasks are running during off-peak hours, such as overnight. Thus, user response rates during business hours are not affected.

* - The completion or failure of any transactions over 120 seconds can not be measured due to current infrastructure (firewall/proxy) timeouts.

5.2 Page Code Size

The application shall be developed utilizing bandwidth reducing strategies/technologies. The thresholds are for measurement of pages after caching has occurred.
· Threshold: <90% of application transactions shall not exceed 30 Kilobytes>
· Threshold: <95% of application transactions shall not exceed 40 Kilobytes>
· Threshold: <97% of application transactions shall not exceed 50 Kilobytes>
· Threshold: <98% of application transactions shall not exceed 60 Kilobytes>
· Threshold: <99% of application transactions shall not exceed 80 Kilobytes>
· Objective: <99% of application transactions shall not exceed 30 Kilobytes>
· Objective: <99% of application transactions shall have a database transaction size of less the 2 Kilobytes.>
5.3 Throughput

· The system shall be capable of handling <50> transactions per second.

5.4 Capacity

· The system shall be capable able of supporting <1000> concurrent users.
5.5 Instrumentation

Instrumentation of the system source code helps support the requirement for application performance measurement and analysis. Performance measurement and analysis is the identification, collection and evaluation of performance measurements that support management information needs and process analysis and improvement.
· Threshold: <80% (a minimum of 10)> of the application’s transactions shall be instrumented

· Objective: <100%> of the transactions shall be instrumented
* If the application has less than 10 transactions, then all transactions will be instrumented.

* Any previously non-instrumented module that is modified for a release will be instrumented.
5.6 Degradation modes (what is the acceptable mode of operation when the system has been degraded in some manner)

6. Supportability

6.1 Maintenance

· The system will allow for scheduled downtimes on Sunday mornings from <6:00am – 10:00am CST> for performing maintenance on the systems.

6.2 Extensible

· The system should be built so that it can be extended to support additional functionality in future releases.
7. Auditing

[This section indicates any auditing requirements designed to ensure internal control integrity such as:

Detection and monitoring of system permissions or privileges assigned to all personnel (employees, contractors, partners) to provide any required audit trails of individual user activities.

Identification of risks of access control systems and documenting mitigation strategies to safeguard the system and increase integrity.]

7.1 <Auditing Requirement One>

[The requirement description.]
8. Software Design

The following are the minimum recommended activities for the software analysis and design activities.
8.1 Requirements Modeling

8.1.1 Goal
 Break down business-level artifacts in order to capture and define computer system's scope and responsibilities.

8.1.2 Activities
· Identify main business goals, processes, resources, and system features.

· Write use case descriptions with clear identification of actors and data exchanged between the system and the environment, and the context expressed through pre-conditions, post-conditions and invariants. Not OO specific.

· Draw use case diagram in order to depict relationships among use cases. Not OO specific.

8.2 Object-Oriented Analysis:

8.2.1 Goal
Decompose requirements artifacts and build a domain model. Try to establish a cognitive bridge between the computer system and its environment.

8.2.2 Activities

· Relate use cases with respect to their main concerns. This produces the first level of the system's decomposition into related functionality domains: domain subsystems. Show the decomposition on the use case diagrams using the UML package notation. Repeat this step for any identified domain subsystem. Not OO specific.

· For each domain subsystem, from use case specifications and use case diagrams, extract classes, attributes, and relationships among them. Show the decomposition using the UML class diagrams labeled as participants diagrams. Analysts should have good prior domain knowledge, which should be the main source for the domain concepts.

· For each use case, utilizing use case specifications use case diagrams, and analysis level participants diagrams, develop analysis level use case realization interaction diagrams. Main goals are capturing:

· How objects collaborate to accomplish functionality described in use cases.

· Definition of object interfaces.

· Objects' interaction timeliness and their relational properties.

· Develop state and/or activity diagrams for any additional processes or transactions with a high level of complexity.
Additional Notes:

All entities and artifacts have to take into account and be related to different constraints, business goals, business rules, non-functional requirements, and other artifacts captured during the requirements modeling phase.

8.3 Object-Oriented Design:

8.3.1 Goal
 Map domain model into design model taking into account internal system requirements and development resources.

8.3.2 Activities

· For each domain subsystem, from use case specifications, use case diagrams, and the analysis level class participants diagrams, add further detail to the classes, attributes, and relationships among the use case process by creating a more detailed design level class participants diagram. This should be the first step in transitioning from the functional to the design/development domain.
· For each use case, utilizing use case specifications, use case diagrams, and design level participants diagrams, develop design level use case realization interaction diagrams. Main goals are capturing:

· How objects collaborate to accomplish functionality described in use cases.

· Definition of object interfaces.

· Objects' interaction timeliness and their relational properties.

· Develop state and/or activity diagrams for any additional processes or transactions with a high level of complexity.

· Define the static view of the system’s run-time configuration of processing nodes and the components that run on those nodes in a deployment diagram. The deployment diagram should depict the hardware for the system, the software that is installed on that hardware, and the middleware used to connect the disparate machines to one another.
9. Development & Design Constraints

9.1 Software Language

<Java – The Java programming language is used to develop all the Enterprise Java Beans (EJB) components. Business logic should be handled in the business layer by the EJB components.>
<SQL – Structured Query Language (SQL) is used to access relational databases. All of the interactions with the database system are conducted using SQL.>
<HTML – The presentation layer for the application is built using HTML with JSP tags that make calls to the EJB components.>
<XML – XML is the standard used to exchange data between systems>.

<JavaScript – Language used to perform client side scripting activities.>
9.2 Architecture and Design

· Presentation Layer – There is a clear separation between the screens that interact with the user and the components that process all the data and deliver the information to the screens. The presentation layer is built using HTML with JSP tags. The web server supports and serves up this content.

· Business Layer – The business logic is captured mainly in the business layer by EJB components that process the data. The EJB components are developed using Java and are served up by the WebSphere application server.

· Data layer – Data that is stored in databases is retrieved using JDBC.

· Database – The Oracle relational database system responds to requests for either storing or retrieving information.

10. Online User Documentation and Help System Requirements

10.1 Online help

· All screens presented to the user should have a link to the online help system.

· Any terms used on the screens that might need more clarity for the users should be linked to a definitions page.

· The application will have a telephone number and email link that will let users communicate with help desk support.

10.2 Customer support center

· The customer support center is open <24/7> to assist users by phone, e-mail, or fax.

· All e-mail messages sent to customer support will receive an automatic response immediately and response from an individual within 24 hours.
11. Legal, Copyright, and Other Notices

[This section describes any necessary legal disclaimers, warranties, copyright notices, patent notice, word mark, trademark, logo compliance, Freedom of Information Act (FOIA), Privacy Act, or intelligence marking issues for the software.]
Page 13 of 13

