
 The Society of Cost Estimating and Analysis 15

An Exploratory Parametric Analysis of Production Cost 
Improvement in the Aerospace Industry*

Paul S. Killingsworth, M.S., CCE/A
Technical Expert, Tecolote Research, Inc. • pkillingsworth@tecolote.com

ABSTRACT
Decades after its observation and description by T. P. Wright (1936), unit cost improve-
ment is a well-documented characteristic of production processes. Since that time, how-
ever, it has remained chiefly an empirical phenomenon. Cost analysts have few objective 
tools to apply to the prediction of cost improvement in future production programs. This 
problem is particularly acute in the aerospace industry. In this arena, prime contractor 
and government cost analysts must provide estimates for multi-billion dollar programs 
involving new products and technologies, which may not be entering production for 
years. Current methodologies involve the use of analogies and standards that are subjec-
tive and often difficult to justify. The research described in this paper, making use of a 
dataset comprised of 30 diverse aerospace programs, investigated whether parametric 
methods can be employed to model variation in cost improvement. Using a simple theory 
of cost improvement based on the scale, complexity, and design stability of the products, 
it found that parametric models may have utility in predicting the cost improvement of 
future programs. 

INTRODUCTION
In the field of cost analysis, the terms “learning” and “cost improvement” refer to the ob-
served reductions in unit cost that occur during a production run for a complex end item.1 
For many years, cost analysts have fit downward sloping curves to plots of unit production 
costs, and have used the slopes to characterize the rate of cost improvement. Cost analysts 
in training spend much time learning about these curves, including how to properly plot 
average lot costs, and the differences between the unit and cumulative average computa-
tional approaches. This training is useful for answering such questions as, “What will be 
the cost of the next production lot (or unit) to be produced on an established production 
line?” In this case, there is an empirical observation of the relevant improvement rate, and 
it is assumed that this rate will continue to be applicable to the given production facility 
with its known tooling, workers, and management (AFSC, 1986, 7–96). In addition, cost 
analysts working for established manufacturers often will have an extensive corporate 
cost experience on which to draw, and when a new product, or new model of a product, is 
to be produced they will have an expectation for unit cost improvement in the various fac-
tory departments (Teplitz, 1991, 48). To date, this is essentially the recommended curve 
selection approach—to extend the observed historical cost improvement experience on 
the same product or a very similar product (AFSC, 1986, 7–80). 

1 In the literature, the term “learning” is often applied to learning on the part of workers performing direct labor in a produc-
tion process (Teplitz 1991, 8).  The term “cost improvement” has a more general meaning, and is often applied to improve-
ments in unit costs due not only to worker learning, but also to process improvements and greater management experience 
(Robbins 1986).  It is the latter, broader aspect that will be addressed in this paper.  
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The underlying assumption of these methods is that similar products produced using 
similar production methods should have the same or nearly the same cost improvement 
experience. Unfortunately, there are common situations in which methods based on these 
assumptions are difficult to apply. These situations include the production of new prod-
ucts when there is little corporate experience to draw upon, or the setup of new production 
facilities. Even more problematic is a task encountered by cost analysts for government 
procurement agencies and aerospace contractors. Here they often must provide an esti-
mate for a budget or corporate cost position on a prospective contract even before the 
request for proposals has been released. Later, during source selection, another related 
issue is encountered when bidders’ estimates are being evaluated by the government. Is 
the improvement rate used in the proposal reasonable? Or is the bidder trying to “buy-in” 
with an overly optimistic rate?2 As a result, the assumed improvement rates can become 
a source of controversy. Program advocates on one side press for “affordable” cost es-
timates (higher rates of learning), while on the other side independent reviewers and 
higher headquarters want “conservative” estimates (lower rates) in order to avoid over-
runs. The cost analyst is in the center of this discussion and faced with justifying one cost 
improvement rate that is acceptable to all. It is a difficult position, and it results from the 
fact that cost improvement remains essentially an empirical phenomenon. Current cost 
improvement “theory” can be more accurately described as a set of conjectures about the 
sources and effects of the various factors that influence the production process. But it is 
not objectively predictive. If it were, the theory would yield quantitative techniques that 
analysts could apply to their estimates. Such techniques could then be used to calculate 
“most probable,” “conservative,” or “optimistic” cost improvement rates, along with as-
sociated statistical confidence levels. 

This paper addresses cost improvement from the perspective of government and prime 
contractor cost estimators who are faced with the task of specifying defensible cost im-
provement rates for future production programs. Much of this experience applies to the 
defense aerospace business and their products (space vehicles, missiles, aircraft, avionics, 
etc.). In this arena, analysis is often performed on programs that will not enter into produc-
tion for years. They may still be in concept exploration or engineering development, with 
the production contractor yet to be identified. For these programs, the practical applica-
tion of the concept of cost improvement is not well-supported by the descriptive nature 
of the underlying theory. In short, there is a deficit of cost estimating methodology in this 
area. After some further discussion and definition of the problem, this paper will describe 
the results of an exploratory parametric analysis of cost improvement for a number of 
aerospace products, which indicate the possibility of developing a parametric approach 
to the issue of choosing a cost improvement slope. Such an approach, based on broad 
assumptions about the sources of cost improvement, could provide cost analysts with a 
better basis for estimating cost improvement rates in analytic environments like that of 
the defense aerospace industry. 

2 The term “buy-in” refers to the practice of understating estimated costs in order to make a contract bid more attractive.
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BACKGROUND
Cost Improvement Assumptions Can Be Decisive
The cost improvement rate applied to an estimate for a large production program can be 
important. Figure 1 shows the results of a sensitivity analysis performed on the cost im-
provement assumptions used for a recent space system acquisition program.3 The graphs 
represent lines of equal first unit (T1) estimates, showing the change in total production 
cost due to change in the cost improvement assumption. The program proposed a constel-
lation of more than 20 satellites, with a total production run of over 30. Program manage-
ment maintained that although cost improvement in satellite programs is considered to be 
low or even non-existent, a slope of 90% would be feasible given the quantities involved. 
This resulted in a production estimate of $13.4 billion (FY01$), as indicated by the circle 
on the graph. Higher headquarters, however, took a position (backed by a longstanding 
industry standard) that cost improvement for military space systems production is 95%. 
This yielded a production estimate of $15.2 billion, shown by the square. This higher cost 
of production contributed to the program being subsequently cancelled. 

It is interesting to note that the movement from a 90% to 95% improvement rate 
resulted in a production program increase of 13.4% (from $13.4 to $15.2 billion). An 
equivalent increase in cost while holding the cost improvement assumption steady at 90% 
would have required a 46% increase in the estimate for T1 (as shown by the upper curve). 
Most cost analysts will agree that the time and effort expended on the estimate for T1 in 
a program such as this far exceeds the time spent on the cost improvement assumptions. 
Changes in T1 as small as 5% are considered highly significant, yet the graph shows that a 
5% change results in a very small change in total production costs compared to the effect 
of changes in the cost improvement rate (as shown by the middle curve). This indicates 
that cost improvement assumptions are at least as important in determining total program 

3 The specific costs shown in the figure have been modified without changing the relative effect of changes in the cost im-
provement assumptions.

Figure 1. Satellite Program Life Cycle Cost as a Function of Cost Improvement Rate Assumption
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cost as the T1 estimate, leading an observer to suspect that the analytic emphasis on T1 
has more to do with the quality of the methodologies that can be brought to bear than with 
the relative importance of the two issues. 

Current Cost Improvement Methodologies Are Subjective
Despite the importance of cost improvement rates, cost analysts have few quantitative 
tools to apply to their estimation. For the program described above, program management 
cited analogous space programs that had 90% or better improvement rates while the re-
viewers questioned the validity of the analogies and cited other programs with lower rates. 
These kinds of controversies are common when it comes to cost improvement.

Cost analysts currently use a number of approaches for specifying cost improvement 
rates, all of which have a substantial degree of subjectivity. Cost estimating handbooks 
and texts often cite the high levels of uncertainty associated with forecasting these rates, 
and the need for detailed knowledge of the product and its manufacturing processes 
(AFSC 1986, 7-4). In his reference on learning curves, Teplitz (1991, 47) cites prior 
experience as one of the guides available to cost analysts in specifying a cost improve-
ment rate. Prior experience is a form of historical analogy, which draws on the cost his-
tory of specific firms manufacturing products similar to ones they have manufactured in 
the past. However, if no such highly specific analogies are available, this methodology 
becomes more difficult to apply. In addition, even a narrow product class such as ground-
launched tactical missiles has experienced production improvement rates ranging from 
75% to 85%.4 Satellite production programs have had a similarly wide range with some 
experiencing as much as 82.5% improvement, and others experiencing none, or negative 
improvement. Cost analysts looking for analogies in this environment will have many 
diverse ones from which to choose, and most likely a difficult time justifying their choice 
in any definitive sense. The wide ranges of cost improvement within product categories 
make analogy a difficult methodology to objectively apply. It also indicates that the as-
sumption that product type is a useful predictor of cost improvement rate is worthy of 
critical analysis and testing. 

Another approach cited by Teplitz (1991, 47) is that of relying on industry standards. 
These can range from specific standards for individual manufacturing operations, to broad 
rules that apply to entire classes of products. Unfortunately, even for the simplest, most 
focused operations, cost improvement rates can vary widely. For example, in an early 
effort to provide a set of industry standards, Nadler and Smith (1963, 115) gathered de-
tailed cost data on ten production processes being conducted in three companies. Table 1 
summarizes their findings. The wide ranges around the mean for most of these operations 
suggest that there were a number of factors affecting the cost improvement rates besides 
the process itself that were unaccounted for. 

At the other end of the spectrum there are cost improvement standards that have been 
applied as a matter of acquisition policy to the finished products of entire industries. 
Baloff (1966, 275) and Conway (1959, 39) referred to the “notorious 80% law,” which 
was assumed for many years to apply to all airframe manufacturing. A similar example is 
the 95% assumption currently attached to military satellite production. These standards 

4 A range of 75% to 85% cost improvement rates was observed in the dataset of nine tactical missile programs used in the 
analysis that follows.
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are based on industry consensus about reasonable cost improvement rates for classes of 
products—rates that can be used in the absence of other data. Often the standard is estab-
lished as a conservative estimate of the expected improvement rate, which will insure that 
budgets are set high enough to avoid overruns. For example, at the beginning of military 
satellite production in the 1960s there was skepticism on the part of many in the industry 
that any cost improvement could occur at all. However, it was concluded that some mini-
mal amount must take place, so 95% was allowed in contract negotiations. This rate has 
remained a standard assumption ever since.

The “industry standard” approach to cost improvement has some significant disadvan-
tages for both the contractor and the contracting authority. First, a contractor may firmly 
believe that it will achieve higher rates of cost improvement than its competitors, and bid 
its lower costs accordingly. The selection authority, however, will be rightly skeptical 
and ask for data supporting the higher rates of improvement. Unfortunately, the state of 
the art for estimating cost improvement is so limited that any deviation from the industry 
consensus rate is difficult to justify. The result is that the lower cost producer may not get 
the full benefit of its cost improvement processes in the source selection.

From the perspective of the contracting authority, the standard approach may help 
insure that the contracted cost fully covers the anticipated work, but it can also insure that 
the “worst case” production cost becomes a reality. As Young (1966, 410) observed years 
ago, although the contracting authority may think of the standard as a conservative “not-
to-exceed estimate,” it becomes a de facto goal for the contractor. The work expands to 
fill the budgeted hours, and an opportunity to achieve greater efficiency is lost by failing 
to incentivize the contractor to do better. Meanwhile, the industry standard rate becomes 
reinforced by another programmatic example.

In short, production cost improvement remains the same empirical phenomenon that 
was described in the early papers based on aircraft production experience (Wright, 1936) 
(Crawford n.d.) (Asher, 1956). It was not long after the original descriptions of the phe-
nomenon that research papers began citing the need for a theoretically-based calculation 
of cost improvement slopes and a movement away from empiricism (Levy, 1965, B-136) 

Table 1. Observed cost improvement rates 
for machine operations. 

(Nadler and Smith, 1963)

Process
Mean Rate  

(%)
Observed 
Range(%)

Power sawing 83.3 83.3–83.3

Milling 89.0 75.5–101.2

Drilling 87.4 70.5–101.6

Honing 100.5 91.1–117.5

Lathes 84.4 79.8–95.1

Deburring 91.9 76.8–115.2

Bench Inspection 89.8 75.3–107.1

Grinding 82.0 82.0–82.0

Assembly 80.4 79.9–80.8
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(Baloff, 1966, 275). No such theory has been forthcoming, however, and the estimation 
of cost improvement for future programs remains a methodological weak link in the cost 
analysis process.

A Parametric Approach to Cost Improvement
A cost analyst can have a number of objectives when applying an improvement rate to a 
production estimate. At the direction of management, it could be a conservative, “not to 
exceed” rate in order to assure that the allocated hours are sufficient. On the other hand, 
applying a manufacturing engineer’s knowledge of the value of production goals, the rate 
could be a difficult one to achieve that could serve to motivate continuous improvement 
in the production process. Clearly, neither rate is necessarily the actual one that will be 
experienced. What the analyst needs to know is the most likely rate along with the confi-
dence levels associated with alternatives. Parametric methods are well suited to provide 
this type of information. 

Most cost analysts are familiar with the use of statistical regression techniques to esti-
mate the coefficients of cost estimating relationships (CERs). In this application, scale-, 
complexity-, or performance-related parameters are correlated with the historical costs of 
items. The resulting relationships are used to estimate the costs of future items that are 
similar. Production CERs commonly yield the cost of a single unit of production, such as 
the first, 100th, etc., to which a cost improvement curve is applied to estimate the cost of 
an entire production run. An analogous parametric approach to cost improvement would 
make the rate itself another dependent variable to be estimated, based on parameters 
hypothesized to influence that rate. Such an approach may have useful predictive power, 
but even if this does not turn out to be the case, a parametric analysis would be a useful 
means to investigate certain questions about cost improvement, such as the relevance of 
product type in predicting the phenomenon.

RESEARCH OBJECTIVE AND QUESTIONS
The objective of the research described here was to investigate whether parametric analysis 
is a feasible approach to estimating cost improvement rates. If so, the “cost improvement 
relationships,” or CIRs, resulting from such an analysis could provide a useful addition to 
the cost analysis toolbox. With traditional CERs to estimate unit costs and CIRs to predict 
the rate of improvement of those costs during production, cost analysts would have a more 
complete set of analytic tools with which to conduct production estimates.5 

The following research questions were used to pursue the research objective:

• Can a theory of cost improvement causality be incorporated into the design of 
CIRs?

• What independent variables can be used in CIRs? 
• Are independent variables that are related to product type (e.g., satellite, aircraft, 

avionics, missiles) as predictive as those related to the production environment 
(level of automation, design stability, etc.)? 

5 In addition, another difficult analysis problem, that of characterizing the estimating risk associated with cost improvement 
assumptions, would have a more definitive answer due to the availability of statistics describing the distribution of cost im-
provement rates on which the CIRs were based.  
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As pointed out in the above discussion of problems associated with the analogy meth-
odology, the wide variation within product type classes makes it worthwhile to investigate 
whether cost improvement should be estimated without reference to product type, i.e., by 
using characteristics of the product and production environment that apply to a range of 
product types. A parametric analysis such as the one envisioned in this research would 
serve to test this hypothesis. 

DATASET DEVELOPMENT
To pursue the research objective it was necessary to compile data on cost improvement 
experienced by a number of diverse aerospace products. This was because the research 
did not assume that cost improvement is best estimated within the bounds of individual 
product classes. Instead, it remained open to the possibility that avionics production 
experience, for example, could be applied to missile or satellite production. As a result, 
data were sought on the cost improvement experience for spacecraft, missiles, avion-
ics, and aircraft. The exploratory nature of the research precluded an extensive effort to 
compile data directly from aerospace contractors and government agencies. Previously 
conducted studies were drawn on to develop a dataset representing as many programs of 
each product type as possible. The effect of this constrained data collection process was 
that availability was a greater determinant of inclusion in the study than representative-
ness or comprehensiveness. Nevertheless, data were available on 31 significant aerospace 
programs representing a range of spacecraft, missile, avionics, and aircraft systems.  
Table 2 shows the programs that were part of the initial analysis. 

The missile, avionics, and aircraft production data were obtained in the form of aver-
age lot costs. In each case, curves of the form Y = Axb were fit to the cumulative aver-
age plot points using logarithmic transformations and ordinary least squares regression 
(Tecolote, 2004). The slopes of these curves in log space were used to derive the rates 
used in the analysis. In a number of cases, most notably the missile and avionics systems, 
prototype lot data were also available. These lots were not used in the estimation of the 
full rate production cost improvement curves. 

Spacecraft Avionics
DMSP 5D-2 FO & 5D-3 AN/AAR-47 EO TWS
DSP I (14-22) Apache AH64-A TADS/PNVS
DSCS III (B4-B14) AN/ALR-45D RWR
MILSTAR 1 AN/APQ-128 TFR
GPS II/IIA (14-40) AN-ALQ-137
Additional Program AN-APR-25

Missiles AN-AAS-35V
Patriot AN-APQ-134
HARM AN-APQ-153
AMRAAM AN-APX-76
Stinger AN-APX-100
MLRS Fighter Aircraft
Hellfire AV8B
Phoenix F14
Javelin F15
ALCM F16

F/A18

Table 2. Programs included in cost improvement dataset.
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Data representing a number of potential predictive parameters were also collected. 
System weight, total production quantity, average lot size, production rate, number of pro-
totypes, and integration and assembly costs were obtained from various program docu-
mentation materials. Another parameter, the theoretical first unit cost (T1$), was obtained 
from the fitted improvement curves and normalized to FY2002 dollars using the standard 
inflation indices published by the Office of the Secretary of Defense (OSD). 

ANALYSIS
The analysis consisted of a series of regressions of the cost improvement slopes associ-
ated with the programs in Table 2 against parameters of interest from the perspective of 
product type and production processes. The first step was to consider the theoretical speci-
fication of the relationships, in terms of the functional form whose coefficients would be 
estimated. In the second step, the broad classes of influences on cost improvement rates 
were proposed, and specific parameters were identified in each of the classes. Finally, the 
coefficients of the relationships were estimated along with their associated statistics, and 
the results evaluated.

Function Specification
Although the steps of an analysis such as this can be laid out sequentially as described 
above, in execution the process is often an iterative one. The log-linear functional form 
was settled on after a consideration of the candidate parameters along with an examina-
tion of the curve fits that were achieved in the early exploratory regressions. It was clear 
that for those parameters correlated with cost improvement, such as production rate, the 
response of the dependent variable to changes in the parameters was proportionate and 
had negative returns to scale. That is, as production rate increased, the cost improvement 
rate also increased, but not indefinitely. Cost improvement increased at a decreasing rate. 
Since “higher” rates of cost improvement are actually represented by lower percentage 
values, the correlation between independent and dependent variables described here 
is a negative one.6 The function representing this response is a negative exponential 
form, with the exponent ranging between –1 and 0. These exponents are represented in  
Figure 2 as b1, b2, and b3.

Also under investigation in the analysis was the role of product type in determining 
cost improvement rates. This was modeled by using indicator variables signifying mis-
siles, avionics, and fighter aircraft. A zero setting for all three of these product types rep-
resented the fourth type, spacecraft. The hypothesized form of the function tested in the 
parametric analysis and CIR development is summarized in Figure 2.

Identification of Independent Variables
Consideration was next given to the nature of the underlying causality between possible 
independent variables and cost improvement rates. The purpose of this preparatory step 
was to propose the major dimensions of cost improvement potentiality, in order that pa-
rameters could be selected as surrogates for each. In this way, the CIRs would attempt 
to encompass the major influences on cost improvement. Three broad product charac-

6 An 80% improvement rate is “higher” than a 90% rate, since a doubling of production quantity with an 80% rate represents 
a 20% unit cost reduction compared with a 10% reduction for the 90% rate.
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teristics were identified to represent these dimensions. They were scale, complexity, and 
design stability. 

Scale, as exemplified by parameters such as weight and volume, is proposed with the 
straightforward assertion that larger products have greater potential for cost improvement 
than smaller ones, assuming other factors such as complexity are held equal. Larger prod-
ucts generally require more hours of fabrication, assembly, and integration labor, as well 
as more production steps. With more workers and more production steps, the opportunity 
for both autonomous worker learning and management-directed process improvements 
increases with product scale.

Complexity is more difficult to define and measure than product scale. A portion of the 
literature relates product complexity to the number of subassemblies and lower compo-
nents that must be integrated to manufacture the complete product. Taylor (1985) uses this 
definition of complexity in specifying a range of standard cost improvement rates for elec-
tronics assemblies, characterizing them as components, subassemblies, rack chassis, and 
full racks. Conway and Shultz (1959) used an alternative definition of complexity in their 
study of a complicated, low production rate product. They observed that the complexity 
of the product was indicated by the high degree of specialized labor and large propor-
tion of effort involved with integration, assembly and test. Yet another aspect of product 
complexity involves the processes used during manufacturing. For example, in the space 
business exotic materials such as beryllium and composites are considered more complex 
and time consuming to implement than standard materials such as aluminum. It is clear 
that a definition addressing every aspect of product complexity would be problematic. 
However, for the purposes of this analysis the presumed effects of complexity on unit 
cost were focused on rather than delineating an all-encompassing definition. Indirectly 
defined, the analysis assumed that more complex products would be more costly, have 
greater labor content, or require greater integration effort than other products of the same 
size and weight (scale). More complex products were assumed to have greater potential 
for cost improvement during production due to their specialized labor content and larger 
required integration efforts. This would be reflected by such metrics as dollars-per-pound 
or estimated T1 cost. 

The last dimension of cost improvement used in the analysis was design stability. One 
characteristic of the government acquisition process for defense aerospace products is 
that technology can change rapidly and operational requirements can be volatile. These 

CIC% = bo X1b1 X2b2 X3b3 b4
X4 b5

X5 b6
X6 �

  Where:  CIC% = cost improvement curve rate (%) 
X1, X2, X3 = independent variables related to 

scale, complexity, and design stability 
X4 indicator variable = 1 for missile, 0 otherwise 
X5 indicator variable = 1 for avionics, 0 otherwise 
X6 indicator variable = 1 for fighter aircraft, 0 otherwise 
bo = constant coefficient derived from regression 
bn = coefficients to be estimated by regression 
� = multiplicative error term 

Figure 2. Log-linear functional specification used for analysis.
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factors are often translated into design changes, even during production. Although sys-
tems with high production rates such as tactical missiles usually have relatively stable 
designs by the time they enter full-rate production, spacecraft, which have very low rates, 
often must incorporate significant design changes from one unit to the next. These design 
changes generally do not have the objective of enhancing manufacturability, but usually 
implement new requirements or more effective technologies. The result is to “reset” the 
cost improvement curve for the affected components or subassemblies. Therefore, it is 
assumed that products with stable designs have a greater potential for cost improvement 
than those that must incorporate many design changes during production.

In each of the three areas, specific parameters were identified to serve as surrogates 
for the general causal effects described above. Figure 3 lists these parameters along with 
their hypothesized effect on cost improvement. Larger total production quantity, lot size, 
and production rate were considered indicative of higher levels of design stability, since 
these aspects of production would tend to motivate stable designs to reduce cost. Larger 
numbers of pre-production prototype units would result in the identification of design 
problems before entering production, and would therefore also tend enhance the stability 
of the produced design. Complexity was assumed to be closely related to unit costs, result-
ing in the investigation of T1$; integration, assembly, and test (IA&T) cost; as well as the 
ratio of the two as possible complexity surrogates. A dollars-per-pound metric, T1$/lb, 
was also investigated, since more complex products were assumed to have higher unit 
costs than less complex products of the same weight. Finally, weight was used to represent 
the scale (size) of the products in the dataset.7

Pairwise Analysis
As an initial step, a pairwise analysis was performed to examine the strength of the direct 
linear correlations between potential independent variables and the dependent variable. 

Ln CI 
Rate

Ln Tot Qty -0.65
Ln Av Lot Size -0.61
Ln Prod Rate -0.56
Ln Prototype Qty -0.70
Ln T1 $ -0.09
Ln IA&T $ 0.23
Ln IA&T$ / T1$ 0.14
Ln T1$/lb -0.25
Ln Weight (lbs) 0.04
AIRCRAFT 0.05
MISSILE -0.73
AVIONICS 0.43
SPACECRAFT 0.28

Figure 3. Parameters investigated in analysis. Figure 4. Correlation coefficients.

7 Volume was unavailable for most of the data points.
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Since a log-linear functional specification was assumed, the coefficients were calculated 
using the logarithmically transformed values. The results are displayed in Figure 4. 
The parameters related to design stability (total production quantity, average lot size, 
production rate, and number of prototypes) all had promising levels of correlation with 
production cost improvement. The parameters related to complexity (T1$, IA&T cost, the 
IA&T/T1$ ratio, and T1$/lb) had less direct correlation with the cost improvement rate. 
T1$/lb, at –0.25 was the most correlated, and in the proper direction. Finally, weight, the 
sole parameter related to product scale, showed little direct correlation in this first inspec-
tion. Pairwise analysis, however, does not indicate whether a parameter explains a signifi-
cant portion of the variation left unexplained by the other parameters. This indeed was the 
case when weight was later included with other parameters in the specified model.

Of the indicator parameters related to product type, MISSILE was highly correlated 
with cost improvement; indicating that the tactical missile data points for the most part 
had higher rates of cost improvement than other products. 

Regression Analysis of the Specified Model
In the next step of the parametric analysis, a number of regression estimates of the speci-
fied model were run. Various combinations of the independent variables related to design 
stability and complexity were tested, along with weight and the three product-related 
indicator parameters. During the course of the analysis, one data point, MLRS, was found 
to be based on incomplete data and was excluded.8 This was the only outlier removed 
from the dataset.

Of the parameters related to design stability, prototype quantity had the most signifi-
cant coefficient (1-p value of 0.98). However, this parameter was not available for all of 
the data, including the majority of the avionics data points. Average lot size was also sig-
nificant (1-p value of 0.81), and was available for all of the data. For this reason, average 
lot size was retained in the model for subsequent analysis. It also had a lesser degree of 
multicollearity with the other parameters at later stages of the modeling activity.

Among the complexity-related parameters, IA&T cost was significant, but indicated 
a substantial degree of multicollinearity with the weight parameter and reduced its sig-
nificance when included in the model. T1$ and T1$/lb both had significant coefficients 
in these early model runs (1-p values of 0.99). T1$/lb served to enhance the significance 
of the weight parameter, and so was retained in the model. The weight parameter and 
product-related indicator variables were retained in these early estimates as part of the 
initial specification. 

Figure 5 provides summary statistics and an actual vs. predicted plot of the full-
specified model resulting from the initial trials. Although the results at this stage were not 
impressive from an overall modeling perspective, it was notable that both the technical 
parameters (average lot size, weight, T1$/lb) and the product type indicator parameters 
were significant, as shown by the t-statistics of their coefficients. None of the param-
eters could be considered candidates for exclusion, since all the t-statistics exceeded the  
0.7 (1-p) value criterion. However, the relative predictive power of the parameters was 
hard to judge, due to the high degree of multicollinearity between the technical and 
product type parameters. As might be expected, weight was positively correlated with the 

8 The MLRS datum was found to be based on non-concurrent lots with the intervening quantities unknown.
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Figure 5. Regression results for the specified model.

aircraft in the database, and negatively correlated with the avionics boxes. Lot size was 
positively correlated with the missiles, which are generally produced in greater quantities. 
The next step of the analysis explored the predictive power of the technical parameters in 
the absence of the product type indicator variables. 
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Regression Analysis of a Non-Product-Specific Model
Figure 6 summarizes the results when the model was estimated using the same dataset, 
with the product-related indicator variables excluded. In the absence of these parameters, 
the degree of multicollinearity decreased substantially. Generally, the remaining technical 
parameters (average lot size, T1$/lb, and weight) showed good significance and stabil-

Figure 6. Regression results for specified model without product indicator variables.
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ity with little multicollinearity between them. The overall predictive power of the model 
improved slightly, as indicated by a higher F-statistic; however, the adjusted coefficient of 
determination declined, and the standard error of the estimate remained essentially the same. 

By decreasing the multicollinearity, excluding the product-specific indicator vari-
ables improved the quality of the model. Nevertheless, the fit of the model to the data 
using the remaining technical parameters was still not especially good. Further analysis 
showed that the exclusion of a small number of data points would improve the model fit 
substantially. However, with the exception of the previously-discussed MLRS data point, 
none of these additional possible outliers were judged to be anomalous to the extent that 
exclusion could be justified. At this stage, although the value of parametric analysis to 
predict cost improvement rates appeared promising, it could not be said that this had been 
demonstrated with a robust model. In addition, although the product-specific indicator 
variables did not significantly enhance the fit of this particular model to the data, the value 
of product-specific analysis of the phenomenon was not disproved. 

Chow Test on Product Data Subsets
In a further effort to objectively gauge whether cost improvement should be modeled 
separately by product, a Chow Test (Pindyck, 1998, 133) was conducted on each product 
subset of the data. For each product, the following statistic was calculated,

Fk, N + M – 2K =  (ESSR – ESSUR) / k
 ESSUR / (N + M – 2k)

Where:
 ESSR  = Error sum-of-squares of restricted model
 ESSUR = Error sum of squares of unrestricted model
 N + M = Number of observations (30)
 k = Number of estimated coefficients (4),

which is F-distributed when the coefficients of the unrestricted and restricted models are 
jointly equal. The restricted model was the model shown in Figure 6, since its coefficients 
are in actuality restricted to being equal for all product subsets of the data. The error 
sum-of-squares of the unrestricted model (ESSUR) is the ESS of an identically-specified 
product-specific model with degrees of freedom N – k, plus the ESS of the same model 
estimated using the rest of the data with degrees of freedom M – k. The null hypothesis 
(H0) tested by this statistic is:

 H0: The coefficients of the restricted and unrestricted models are equal, i.e., 
that they are the same model.

The results of this test for each product regression are shown below in Table 3.

N M ESS (N) ESS (M) F p
Spacecraft 6 24 0.0019 0.0781 1.7669 0.1715

Missile 8 22 0.0011 0.0816 1.5296 0.2282
Avionics 11 19 0.0450 0.0250 2.8050 0.0507
Aircraft 5 25 0.0006 0.0917 0.7985 0.5390

Pooled Data 30 0.1057
Table 3. Chow test results.
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While the test does not conclusively reject the null hypothesis at the usual 0.05 or 0.10 
levels of significance, for three of the four products there is strong evidence that the prod-
uct models are based on different populations. For the spacecraft model, the test result 
could be expected only 17% of the time if the spacecraft data were in actuality consistent 
with the pooled data. For the missile model, the result could be expected with only 23% 
probability, and for the avionics model, with only 5%. The aircraft data appear to be con-
sistent with the pooled data; however this result is based on the smallest sample size. 

In the next part of the research, further analysis was focused on the separate product 

Figure 7. Regression results for spacecraft model.
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data subsets. Regression models were independently fit to each of these subsets, without 
the restriction of using the same specification or independent variables for all.

Regression Analysis of Product-Specific Models
In the development of separate models by product type, each model became a separate 
analysis. That is, each could have its own theory of causality, functional specification, and 
combinations of product-specific parameters. For the purposes of the exploratory analy-
sis, however, the original range of parameters related to scale, complexity, and design 
stability was used in the separate models. The chief problem encountered was the limited 

Figure 8. Regression results for missile model.
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degrees of freedom available in the data subsets. Six spacecraft data points were available, 
eight missiles, eleven avionics programs, and only five aircraft. For this reason, models 
with three parameters were judged to be unrealistic and possibly misleading. At most two 
parameters were used in the estimation of the product-specific models. Figures 7 through 
11 summarize the results. 

The fit of the product-specific models to the data is closer than for the models based 
on all the data, with substantially higher adjusted R2 values, and, except for the avionics 
model, lower standard errors. The scatterplots reveal the sparseness of the data, however, 
sometimes resulting in highly influential single data points. Definitive models of cost 
improvement for these products would clearly need to be supported by more data. Figure 

Figure 9. Regression results for avionics model.
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Figure 10—Regression Results for Aircraft Model 
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Figure 11. Summary of model results.
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11 below summarizes for comparison the statistics of the principal models estimated in 
the exploratory analysis. 

OBSERVATIONS AND FINDINGS
The purpose of the research was to investigate the feasibility of predicting cost improve-
ment in future production programs using parametric methods. Toward this end, three 
research questions were posed. 

• Can a theory of causality be incorporated into the design of CIRs? 

While this is an unavoidably subjective question, it is a necessary one when investi-
gating whether statistically-based parametric relationships can be applied to an empirical 
phenomenon that has not been previously modeled. Any statistical relationship can only 
be said to have predictive qualities to the extent that it incorporates a theory of causality 
that makes sense to the users of the relationship. This research proposed that the potential 
for production cost improvement can be encompassed by three dimensions; product scale, 
product complexity, and design stability. This scheme seemed to have predictive power 
with respect to cost improvement rates, both for the models based on the pooled data 
and for the product-specific models. The fact that this was observed in a relatively small 
dataset indicates that future research efforts using more extensive and representative data 
could find success in modeling more detailed descriptive theories.

• What independent variables can be used in CIRs? 

In CERs, the validity of using technical and performance parameters to predict the 
development or production costs of products is usually not questioned. However, at this 
early stage of thinking about CIRs, it is worthwhile asking whether “cost improvement 
drivers” can be found. In this research, although the use of weight to represent product 
scale was straightforward, trying to exemplify product complexity and design stability 
was more problematic. Dollars-per-pound was settled on as the surrogate for complex-
ity, while the average lot size was used for design stability. While the analysis showed 
that there was a degree of statistical correlation between these parameters and the cost 
improvement rates of diverse aerospace products, whether or not they actually represent 
the desired aspects of the causality theory remains a subjective analytic judgment. As 
research and consensus-building moves forward on how to embody cost improvement 
in statistical relationships, a key area of discussion and agreement clearly must be on the 
identification of appropriate parameters. 

• Are independent variables related to product type (e.g., satellite, aircraft, avionics, 
missiles) as predictive as those related to the production environment (level of au-
tomation, design stability, etc.)? 

When this question was posed at the outset of the research it was anticipated that CIRs 
would look like the Specified Model shown in Figure 5. This model incorporated a com-
bination of technical parameters and product-related indicator variables. It was assumed 
that if the indicator variables were not significant, then this would be evidence that cost 
improvement could be modeled without regard to product type. The analysis showed, 
however, that all the variables in the Specified Model were significant, albeit multicol-
linear. The exclusion of indicator variables in the “non-product specific” model shown in 
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Figure 6 reduced the multicollinearity, but the technical variables alone did not result in a 
close fit to the data. At this point, the results were inconclusive about the value of product 
type as a predictor of cost improvement. 

The results of the Chow Test conducted on the product-specific subsets of the data 
indicated that neither the Figure 5 nor the Figure 6 models might be appropriate. It in-
dicated that the products could be independent in terms of the intercepts and slopes of 
the models to be fit to their data. The relatively good fit statistics of the product-specific 
models shown in Figures 7 through 10 provided support to this hypothesis, although these 
models were based on fewer observations than is desirable. 

The research question was intended to address the value of product-related indicator 
variables, and the analysis results must be considered inconclusive with respect to this 
issue. However, this inconclusiveness led to additional analysis providing indications 
that product type is indeed an important element of cost improvement analysis, not as a 
stratifying variable, but as a subject for separate analysis. 

LIMITATIONS OF THE RESEARCH
The limitations of this work derive chiefly from its exploratory nature. In any cost re-
search, data collection and normalization are the most time consuming tasks, and it was 
in these areas that the effort described here was chiefly constrained. In order to streamline 
the process of dataset development, previously conducted studies were drawn on to com-
pile data on 31 production programs; six spacecraft, nine tactical missiles, 11 avionics 
systems, and five fighter aircraft. A more conclusive effort clearly would require a broader 
range of data in each product area.

Despite the diverse sources, efforts were made to insure consistency of the data across 
product types in terms of computational approach (cumulative average) and the use of a 
single base year for the dollar related parameters (FY2002). However, only limited in-
formation was available to insure that the content of the unit costs to which the improve-
ment curves were fit was consistent in terms of the treatment of direct and indirect costs, 
overhead, and so on. Future research efforts on this topic need to address the content of 
each data point in detail, as well as the strength and consistency of the cost improvement 
trends in each program.

Finally, future efforts should go beyond the limited number of independent parameters 
available in this study for prediction of cost improvement rates. Parts counts, numbers of 
workers per shift, levels of automation, numbers of engineering design changes, and so 
on could be useful parameters to investigate. 

CONCLUSIONS
This exploratory analysis was aimed at investigating whether a parametric approach 
to predicting production cost improvement is feasible. Keeping in mind the previously 
discussed limitations of the research, it appears that CIRs would represent an improved 
methodology for estimating cost improvement for future programs. The model specifi-
cation and parameters investigated in this research resulted in significant fits to the cost 
improvement data, particularly when the data was segregated by product type. Further-
more, although the product-specific models were hampered by fewer degrees of freedom, 
the improvement in the fit statistics for these models compared with the pooled data was 
significant. The research indicates that formulating cost improvement models within the 
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context of aerospace product types would probably yield the best results. An additional 
advantage of this approach is that it allows for the use of functional specifications and 
parameters that would be appropriate to the production environment, technology, or 
physical characteristics of the product. Nevertheless, the research did not demonstrate 
that non-product-specific models are infeasible. It may be that more general models, 
especially those that combine product types that have much in common, may have merit. 
Techniques such as the Chow Test could assist researchers in identifying products that 
should be modeled jointly. It is through more parametric analysis of the unit cost improve-
ment phenomenon that cost analysts will be able to move beyond the current subjective 
methodologies to a more theory-based, quantitative treatment.

Cost research aimed at extending the work begun in this study should focus on the 
following:

• Discussion and formulation of an improved theory of cost improvement that can 
be incorporated into CIRs

• The compilation of a larger and more consistent database of aerospace programs 
that have experienced cost improvement, along with a wider array of possible de-
scriptive parameters is clearly needed to support more definitive parametric analy-
sis of cost improvement.

• Formulation of CIRs to provide better predictors of future cost improvement than 
the current approaches used by the cost analysis community
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