MIW COI

UNCLASSIFIED

 30 April 2010

v. 1.0
MIW COI

UNCLASSIFIED

 19 February 2010

v. 0.9.1

Data Standards
Guidebook
(“MIW Data Standards Cheat Sheet”)

Mine Warfare (MIW)
Community of Interest (COI)
Prepared for:

Department of the Navy
Program Executive Office, Littoral and Mine Warfare (PEO LMW)
Washington Navy Yard, DC
Prepared by:

Mine Warfare Data Model Working Group
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Table of Contents

11.0 SCOPE

11.1 Overview

11.2 Purpose

21.3 Background

41.4 Assumptions

41.5 Document Overview

52.0 REFERENCED DOCUMENTS

63.0 Terms and Definitions

63.1 Data Model

73.2 Conceptual Data Model (CDM)

73.3 Logical Data Model (LDM)

73.4 Logical Schema (LS)

73.5 Physical Data Model (PDM)

94.0 LOGICAL DATA MODEL DEVELOPMENT PROCEDURE

94.1 The Template Model Purpose

94.2 The Logical Data Model Description

154.3 LDM Development Procedures

154.3.1 Understanding the MIW Template Model

174.3.2 Adding Data Entities to the MIW Template Model

184.3.3 Creating the XSD documents from UML using Enterprise Architect

244.3.4 Importing XSD into Enterprise Architect

244.4 Design Patterns and Their Use in the MIW COI Logical Data Model

244.4.1 Design Patterns in UML

244.4.2 Design Patterns in XML

265.0 LDM REQUIREMENTS FOR DATA EXCHANGE WITHIN MIW COI

265.1 Global Metadata Requirements

265.1.1 ISO 19115 or DDMS Compliance

275.1.2 Intelligence Community Metadata Standard for Information Security Marking (IC-ISM) Schema Attributes

315.2 Geospatial Location and Area Requirements

315.2.1 gml:PointType

315.2.2 gml:LineStringType

315.2.3 gml:CircleByCenterPointType

315.2.4 gml:EnvelopeType

325.2.5 gml:PolygonType

336.0 LDM REQUIREMENTS FOR DATA EXCHANGE OUTSIDE OF MIW COI

336.1 Introduction to UCore

346.2 UCore Package Metadata Requirements

356.2.1 ulex:DataItemID

356.2.2 ulex:DataItemReferenceID

356.2.3 ucore:DisseminationCriteria

356.3 Geospatial Location and Area Requirements

356.3.1 ucore:PointType

356.3.2 ucore:LineStringType

356.3.3 ucore:CircleByCenterPointType

356.3.4 ucore:EnvelopeType

366.3.5 ucore:PolygonType

366.4 Time Requirements

366.4.1 ucore:TimeType

377.0 QUALIFICATION REQUIREMENTS

377.1 Components

377.2 Terminology

377.2.1 Strictly Consuming System

377.2.2 Strictly Producing System

377.2.3 Editing System

377.3 Validation

387.3.1 Automated Validation

387.3.2 Manual Validation

398.0 LIST OF ABBREVIATIONS AND ACRONYMS

Table of Figures
3Figure 1 – Data Exchange within and outside MIW COI

6Figure 2 - Data Modelling Stages for MIW DMWG

10Figure 3 - MIW Template LDM

11Figure 4 - MIW::Abstract Product, MIW::Data Reference, and MIW::Metadata Reference

12Figure 5 - MIW MetadataEntity::Metadata

13Figure 6 - MIW Discipline Metadata

14Figure 7 - MIW::DataReference

15Figure 8 - MIW:InformationElement

16Figure 9 - Enterprise Architect Tree View

17Figure 10 - Bottom Characteristics Top Level Entities

18Figure 11 - Bottom Characteristics Data Entities

20Figure 12 - MIW Bottom Characteristics UML

21Figure 13 - Logical Schema for MIW Doctrinal Bottom Type Category

34Figure 14 - UCORE Message Structure

Table of Tables
3Table 1 - Data Specifications and Where to Obtain Them

19Table 2 - MIW Common Namespaces

27Table 3 - ISO 19115 to DDMS Mapping

1.0 SCOPE

1.1 Overview
This document establishes the requirements for the development of MIW Data Standards as agreed to by the Mine Warfare (MIW) Data Model Working Group (DMWG) within the MIW Community of Interest (COI).
The use of “shall” in this specification expresses a provision that is mandatory and testable/verifiable. “Should” and “may” are used whenever the provision is non-mandatory. “Will” expresses a declaration of purpose on the part of the Navy to mandate a requirement or provision that is not explicitly testable.

1.2 Purpose

One purpose of this document is to provide requirements and guidelines for Logical Data Model (LDM) development adopted by the MIW DMWG to support improved interoperability and open architecture implementation within the MIW COI. The purpose of an LDM is to develop XML schema that provide a standard format for data exchange between distinct information systems. The method, protocol and underlying mechanism of data exchange is outside of the scope of this document.
An LDM is a logical, platform independent, description of data. The MIW COI uses the Unified Modeling Language (UML) to describe LDMs. The UML based LDMs are used to generate physical data models in the form of XML schema which is used to exchange data between MIW COI systems.
Generation of XML schema from UML models is performed based on stereotypes of UML classes and relations. The stereotypes specify how UML classes and relations are mapped to XML attributes, elements, simpleTypes, complexTypes, etc.
The MIW LDM will provide the framework for producing several useful information exchange packages for the MIW COI. Each package is called a Logical Schema (LS). A Logical Schema is a data model of a specific problem domain expressed in terms of a particular technology. Whereas a LDM is platform independent, an LS is platform dependent. The LS will be produced using UML and the Enterprise Architect version 7.5 software. The benefit of modeling the LS in UML is because it is becoming more common for applications to generate significant amounts of code automatically from a UML management tool. The Logical Schemas will also allow interested parties to generate XML Schema Definitions (XSD) documents to govern XML based information exchanges between distinct information systems.
Another purpose of this document is to describe the method by which a model developer can convert an LDM implemented in UML to a physical, XML representation of the data contained in the model.

The intent of the requirements specified in sections 4.0 and 5.0 of this document is to standardize the format of certain common model elements, such as geospatial locations, security tagging and metadata. When geospatial locations, security tagging and metadata are present in a model, they must be modeled as described in this document. Model elements for which no requirements are provided in this document may be modeled at the implementer’s discretion.

The benefits of this approach include:

· Interoperability – Standard data exchange formats enable significant interoperability between software, information, and processes.
· Integration – Standard data exchange formats facilitate integration of multiple applications and information from disparate systems.
· Reuse – More effective reuse / combination of existing applications and systems.
1.3 Background

Generally, the MIW DMWG has agreed that:

· All LDMs and Logical Schemas (LS) will be documented in Unified Modeling Language (UML).

· Enterprise Architect (EA) shall be used for LDM development. Other modeling tools may be used, but interoperability with EA is not guaranteed.
· All LDMs and LSs will eventually support two messaging formats. The first format, called the MIW COI format, will be used for communication within the MIW COI, and will utilize Open Geospatial Consortium (OGC) standard schema where appropriate. This format is currently supported. The second format is the Universal Core (UCore) format, and it will be used for communication outside of the MIW COI. Table 1 below indicates where more information can be obtained for the specifications. Both messaging formats and their uses are illustrated in Figure 1.
· The MIW COI format will utilize Open Geospatial Consortium (OGC) Geography Markup Language (GML) standard schema where appropriate, the ISO 19115 Geographic Information – Metadata minimum required elements as described in this document and the Intelligence Community (IC) Information Security Marking (ISM) Implementation Guide. The metadata piece of this format for an XML based information exchange has been modeled using UML in the Logical Schema described in section 4.0 below.
· This UCore format has not been modeled using UML yet.

· All geospatial locations and areas in an LDM will be specified using Geography Markup Language (GML) geometric primitives when employing an XML based information exchange.

· Extensible Markup Language (XML) and Schema Definition (XSD) documents for both messaging formats will be generated automatically using EA.
A “Template” UML model with all classes, relations and stereotypes required to support development of LDMs and generate XML schema has been created. Currently, this model supports only the MIW COI messaging format. This model should be imported into EA to facilitate development of other models which meet the requirements specified in this document.
	Specification
	Web Location
	Comment

	OGC Geography Markup Language (GML)
	http://www.opengeospatial.org/standards/gml
	Freely available

	ISO 19115 Geography Information – Metadata
	http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020
	Available via License, fee applies

	IC Information Security Marking (ICISM)
	https://scie.stratcom.smil.mil/sites/RELWorkspace/DATA/MWG/defualt.aspx
	Freely available on SIPRNET

	Universal Core (UCore) 2.0
	https://www.ucore.gov/
	Freely available

Table 1 - Data Specifications and Where to Obtain Them

[image: image1]
Figure 1 – Data Exchange within and outside MIW COI

1.4 Assumptions

It is assumed that the reader of this document:
· Has a basic, working knowledge of UML.

· Has a basic, working knowledge of XML.
1.5 Document Overview

Section 1.0 of this document contains introductory material regarding the purpose and scope of this document.

Section 2.0 provides a list of applicable documents to this specification.
Section 3.0 describes the LDM development procedure.

Section 4.0 lists requirements for LDMs which support the MIW COI messaging format.
Section 5.0 lists requirements for LDMs which support the UCore messaging format.
Section 6.0 describes test and qualification requirements for LDMs.

Section 7.0 contains a list of acronyms used in this specification.

Section 8.0 maps model requirements to sections of this document.

2.0 REFERENCED DOCUMENTS
These documents are referenced either from this document or from other documents in this list.
[1] Universal Core 2.0 Baseline Documentation
[2] OGC 04-094 Web Feature Service Implementation Specification, v. 1.1.0, 3 May 2005

[3] OGC 08-079 OWS5: OGC® Web feature service, core and extensions, v. 0.9.0, 2008-09-12

[4] OGC 07-036 OpenGIS® Geography Markup Language (GML) Encoding Standard, v. 3.2.1, 2007-08-27

[5] OGC 07-022r1 Observations and Measurements – Part 1 - Observation schema, v. 1.0, 2007-12-08

[6] Department of Defense Discovery Metadata Specification (DDMS), v. 2.0, 16 July 2008.

[7] DOD 5200.1-r, Information Security Program, January 1997
[8] IC ISM Schema v 2.1, 19 August 2008
[9] Geography Markup Language (GML) simple features profile, v. 1.0, 2006-04-25.
[10] Mine Warfare (MIW) Command and Control (C2) Information Support Plan (ISP), 7 September 2007

[11] GSIP Metadata Profile Part 1: Data Discovery and Exchange Version 1.0 by Clifton Daniels, Hugh Bryant, and Paul Birkel

3.0 Terms and Definitions

3.1 Data Model

A data model in software engineering is an abstract model that describes how data is represented and accessed. Data models formally define data elements and relationships among data elements for a domain of interest. Though there is some blurring of concepts among the various data modeling communities, three levels of data models may be recognized: conceptual data models (the most abstract), logical data models, and physical data models (the most concrete level, expressing implementation details). It is typical in data modeling practice to develop the most abstract level first and move progressively toward the most concrete level. The following diagram graphically depicts the stages of data modeling proposed by the MIW DMWG for practice within the MIW COI.

[image: image2]
Figure 2 - Data Modeling Stages for MIW DMWG
3.2 Conceptual Data Model (CDM)

A conceptual data model, sometimes called a domain data model, is a map of concepts and their relationships. A CDM describes the things of significance to an organization (entity classes), about which it is inclined to collect information, as well as associations between pairs of those things of significance (relationships). In some data modeling schools of thought, a CDM may also capture characteristics (attributes) of the entity classes, though in other data modeling schools of thought this is left to the logical data model. Though conceptual data models may be developed by organizations within the MIW COI, they would be developed prior to the process described in this document and are thus outside this document’s scope.
3.3 Logical Data Model (LDM)

A logical data model is a graphical representation of an organization’s business requirements that uses the concept of entities, attributes, and relationships to describe things that are important to that organization or COI and how they relate to one another. An LDM uses business names (as opposed to abbreviations or actual field names) for attributes. It is independent of technology (platform, DBMS, XML, etc.) and is typically normalized to 4th normal form. In the process advocated here by the MIW DMWG, logical data models are expressed in UML using Enterprise Architect.
3.4 Logical Schema (LS)
A logical schema is a data model of a specific problem domain expressed in terms of a particular data management technology. Without being specific to a particular database management product, it is expressed in terms of relational tables and columns, object-oriented classes, or XML tags. It is interesting to note that within the perspective of the MIW DMWG, the notion of logical schema is less abstract than the notion of logical data model, due to the logical schema’s coupling to a particular data management technology (such as XML), but it is more abstract than the notion of physical data model. In the process advocated here by the MIW DMWG, logical schemata are expressed in UML extended by the UML Profile for XSD available as a UML extension within Enterprise Architect.
3.5 Physical Data Model (PDM)

A physical data model (e.g. a database design or an XML schema definition) is a representation of a data design which takes into account the facilities and constraints of a given database management system or data exchange technology. In the case of a database design, a complete physical data model typically includes artifacts required to create physical data relationships and achieve performance goals, such as indexes, constraint definitions, etc., and can be used to calculate storage estimates and may include specific storage allocation details. However, in the process advocated here by the MIW DMWG, the PDM comprises not a set of database design artifacts, but rather an XSD file or set of XSD files that precisely defines the data structure and content to be used in data exchange. These XSD files correspond exactly to the data structures expressed in the LS.
4.0 LOGICAL DATA MODEL DEVELOPMENT PROCEDURE
4.1 The Template Model Purpose
The template model presents a consistent structure to developers new to MIW COI data model efforts that allows them to rapidly integrate their data elements into an agreed upon structure without the need for significant rework of previously addressed design problems. The model guides data owners, producers, and developers on how to present any necessary metadata and data in an interoperable manner and provides data consumers with an overview of the standards and structures in use throughout the community.
4.2 The Logical Data Model Description
The current MIW template LDM is located on the MIW COI SharePoint site (http://www.miwcoi.org). Click on the MIW COI Working Groups and login with a username and password. In the upper left corner, select Shared Documents and navigate to the following location: Data Model Working Group -> Working Level Information -> MIW Data Models -> Draft Logical Data Models -> MIW Template Data Model (full).
The Logical Data Model (LDM) for the MIW COI was developed by selecting information specifications with enough depth when implemented to support multiple metadata, security, and geospatial data specifications. By utilizing targeted specifications and abstracting them for the purpose of gaining a technology independent LDM, the MIW COI has been able to ensure the single LDM design will support multiple Logical Schemas for information exchange.

The diagram in Figure 3 below shows a high level graphic of the MIW LDM using common UML notation. The attributes of most classes have been hidden to allow for more classes to fit on a page.
The root class is MIW::AbstractProduct. Then there are two aggregated classes: MIW::MetadataReference and MIW::DataReference. The general idea behind this high level separation of data and metadata is to facilitate the plug-and-play of various information exchange standards which will be described in more detail later in this document.

[image: image3.jpg]class MIW_Full

MWtnformationElement MW Product
1 o]
1 ' "
Ifthe dataset s being ransmitted in
25eperate file flom the metadata
Thi clae i used in the metadata to
indicate the filaname for the
dtazet,
[r—
[spasaiRepresentason: SpatiiRepresentason|
e pre—
Content Distibution:Distribution
= Contentinformation oot iean
ooy
o
DataQuality-DataGuaiity o
omtiran | sostemesinte
pRa——
Identifeation: Keywords Country
stsausityinto footiest)
<inesgeo.1 +country

Dataquality-Lineage
oot iesn

Identification:KeywordsDescriptive

oot iesn
metadataConstrints
T antfestoninio
Constraints:Constraints .
ooy i Identiication: KeywordsProductType
Identifcaton:identfication oatier
S
D ~ o) | voroductTypeKeyords
ssisConstaints
|Constraints::SecurityConstraints Identifcstion:KeywordsRegion
[0 = oot iean

“ragonkayords

dentifcstion:Dataldentifcstion
s

Jo.1

UML_ICISH:ACISM_Sscurity

Contaots

Bathymetry:BathymetryAtiibutedGria|

rom DataEntiy)

Botiom Charscteristics

rom DataEnti

Climatology:Climatclogy

Climatology.

DataEniy:
AbstractataEntity
rom DataEntiy)
— Imagery:imageryOverhesd
7} ~ {Esthymery Ll
A
i <
1 5, rom Datatntiy)
Wodels Impact Surfsces o

imagery:imageryMosaic

(from Datantty) rom Dataniy) rom DataEnti)

Figure 3 - MIW Template LDM

[image: image4.emf]class MIW_Full

MIW::InformationElement

MIW::AbstractProduct

MIW::DataReference

+ dataCollectionInfo: DataCollection

+ dataDistributionInfo: DataDistribution [0..1]

MIW::MetadataReference

+ disciplineMetadataInfo: AbstractDisciplineMetadata [0..1]

+ metadataInfo: Metadata

DataDistributionReference::

DataDistribution

If the dataset is being transmitted in

a seperate file from the metadata.

This class is used in the metadata to

indicate the filename for the

dataset.

1

0..*

1

1

Figure 4 - MIW::Abstract Product, MIW::Data Reference, and MIW::Metadata Reference

As shown in Figure 4 - MIW::Abstract Product, MIW::Data Reference, and MIW::Metadata Reference, the MIW::MetadataReference attributes are of type Metadata and AbstractDisciplineMetadata (both in green). Metadata is part of the Metadata Entity package and AbstractDisciplineMetadata is part of the Discipline Metadata package. The Metadata class is comparable to the ISO 19115 Geographic Information – Metadata MD_Metadata class. This class and its aggregates shown in Figure 5 below make up the required and optional metadata for all MIW information exchanges commonly referred to as Global Metadata.

[image: image5.emf]class MIW_Full

MetadataEntity::Metadata

{root}

Identification::Identification

{root}

Identification::DataIdentification

{leaf}

Identification::KeywordsCountry

{root,leaf}

Identification::KeywordsDescriptive

{root,leaf}

Identification::KeywordsProductType

{root,leaf}

Identification::KeywordsRegion

{root,leaf}

DataQuality::DataQuality

{root,leaf}

DataQuality::Lineage

{root,leaf}

Distribution::Distribution

{root,leaf}

«Abstract»

Content::

ContentInformation

{root}

Constraints::Constraints

{root}

Constraints::SecurityConstraints

{leaf}

Security::ICISM_Security

«Abstract»

SpatialRepresentation::SpatialRepresentation

{root}

1..*

dataConstraints

0..*

contentInfo

1..*

identificationInfo

0..*

spatialRepInfo

0..1

distributionInfo

+lineage0..1

+descriptiveKeywords

1..*

+productTypeKeywords

1..*

+regionKeywords

0..*

1..*

dataQualityInfo

0..1

1..*

metadataConstraints

+countryKeywords

0..*

Figure 5 - MIW MetadataEntity::Metadata
The DisciplineMetadata::AbstractDisciplineMetadata is optional metadata that is outside of the concerns of the ISO 19115 specification. This metadata applies very specifically to a discipline in which the MIW COI has a vested interest. ImageryOverhead is the only exception as Satellite Imagery is accounted for in the ISO 19115 specification. However it makes more sense in the MIW domain to include it with the discipline specific metadata. Some examples of other discipline metadata are shown in Figure 6 below.
[image: image6.jpg]class Main: General Discipline Metadata

Imagery-imageryMosaic

Climatology: Climatology

=+ leyerid: Layerdcods
+ mumosOtFans nt
+_histogramtecortType: int

Bathymetry-BathymetryAtributedGrid

= sesmConectanyps: DestrCarastonTypaCote
+ varicalUncadaintTyps: VartcslncsrisinyTypeCode

enaleraan: onar0.1]
raSz fost 0.1]

vt foat (0.1]

nagnt fost (0.1]

fows: it [0.1]

oz i (0.1]
omponentFiaCount: nt[0.1]
contmutingFieList: char 0.1]
meppingPraference: cnar 0. 1)
ntemolaton: cnar(0.1]
Gnanna: ener0.1)
xcuderort mt(0.1]
xcusasto: ot 10.1]
nerEsudzPot nt0.1]
merErcudstod: nt(0.1]

Imagery:imageryOverhead

uminstonEvatonAngs0_ 1} Rasl
HuminstonAzmuthAngiel0.1]: Res!
imsgingCondtion(0.1]: MO, ImsgingCondonCods
imsgeCuaityCade(0. 1: MO ldentfar
oudCoverParosniagel0.1]: Res!
processingLaveiCodsf0. 1}: ND_danter
comprassonGansrstonQuenityl0_ 11 Inizgsr
tranguiatonindicator0.]: Booksn
radbomatneCaioratonDatsAva a0, 1: Sovisn
emeraCarmrataninformatonvaisniy0. 1l Sosken
fimDistortoninfomstonAvarasiyl0 1) Savikan
lansDstorianinfomatonavaisity0. I Sovesn

Figure 6 - MIW Discipline Metadata
The MIW::DataReference (see below Figure 7 - MIW::DataReference) attributes are of type DataEntity::DataCollection and DataDistributionReference::DataDistribution (both in blue). The DataEntity::DataCollection class holds the set of data entities that make up an information exchange or product. As products get added to the model they will become additional specializations of the DataEntity::AbstractDataEntity class. For simplification the product packages have been included on the diagram instead of the actual product classes. The DataDistributionReference::DataDistribution class is required if the dataset and the metadata are delivered in separate physical files. For example, if a data producer delivers shape files to a data consumer, the data producer will employ the DataDistribution class in the MIW COI formatted XML manifest to indicate the name of the shape file for the dataset. Note that instantiations of the DataDistribution class are intended to exist separately from other specified metadata.

[image: image7.jpg]class Main: DataEnity

ML ICISHEICISM_Security
No 5
s
=

- AbstractDatanty
e =--
|+ dstaCotectonid: cnar
- omgnzior o soisPs
AN
' <
5 o
Botiom Characteristios i impact Sursoes

[Ciimatolosy
h

Eathymetry

Figure 7 - MIW::DataReference
The MIW::InformationElement is shown in Figure 8 - MIW:InformationElement below. This class is associated with the MIW::AbstractProduct class and serves as an eye toward the future. The Clinger-Cohen Act of 1996 directed the development and maintenance of a Federal Enterprise Architecture to maximize the benefits of information technology (IT) within the government. The DoD Architecture Framework (DoDAF) is a reference model to organize the enterprise architecture (EA) and systems architecture into complementary and consistent views. The DoDAF is organized around a shared repository to hold work products. The repository is defined by the Core Architecture Data Model (CADM) 2.0 which is essentially a common database schema. The Information Element class is part of the CADM and represents data subject to exchange. Clearly all the products the MIW COI is describing in this model fit into the category of “subject to exchange”. As systems on the Global Information Grid (GIG) become more integrated it is hoped this class will serve as a flag to help establish metrics which will support architecture planning, asset allocations and facilitate the benefits of a Federal Enterprise Architecture. The MIW Information Support Plan contains the current view of the MIW Architecture. This document is available on the MIW COI SharePoint site (http://www.miwcoi.org). Click on the MIW COI Working Groups and login with a username and password. In the upper left corner, select Shared Documents and navigate to the following location: MIW C2 ISP -> MIW C2 ISP Final (09-07-2007).
[image: image8.jpg]class InformationElement

InformationElement

formatonEment zanttar o
nformatonSiamentyarson: douse
“reatonbate: CI_Date

defmonTex: char
reusonDte: ©|_Dste 0.1]
\eiatonindestarcads: cnsr(0.1]

AbstractProdust

producType: ProducType_Cods
UcCease: enar(0.1]

country: cher[0.1]

r2gan. cnar(0.1]

Vo dsteTes 0.1]

veTo: dateTens 10.1]
configuratonMsnsgamentutnorty: char 0.1]
confguratonMsnsgamentsistus: char[0.1]
fineseotusa: enar(0.1]
produsiCantaznceLaver enar(0. 1]

Figure 8 - MIW:InformationElement
For more information on the MIW Logical Data Model, refer to the MIW Data Model Description document that can be found on the SharePoint site with the MIW Template Model.

4.3 LDM Development Procedures
As stated in previous sections, the purpose of this document is to provide a framework to facilitate communication among interested organizations within the MIW COI. A data modeler should become familiar with the existing MIW LDM described in the MIW Data Model Description document and diagramed in the MIW Template Model. The MIW LDM is represented using the UML 2.0 notation provided by Enterprise Architect (EA) version 7.5 developed by Sparx Systems. An organization interested in making their data models part of the MIW COI will need to submit their data model by making additions to the MIW Template Model using Enterprise Architect and submitting their additions to the MIW DMWG for review and acceptance.

4.3.1 Understanding the MIW Template Model

The MIW Template Model is a UML Class model with a root package called UML_MIW_LDM. The children of the root package are MIW, Metadata and Data. Below the UML_MIW_LDM package is the UML_ISO19115 and UML_ICISM packages for global metadata and security respectively. The reasoning behind breaking the packages up this way is because it promotes encapsulation and class reuse. This is beneficial because security may be attributed to any element and as the model matures it may become necessary to provide more detailed metadata and security at the data entity level as opposed to the current arrangement which is to provide metadata and security at the data collection level. The tree structure is shown in Figure 9 below.

[image: image9.png]= g Model
- [Class podel
= L UML_Mrw_Lom
i Ful
Bt
2 Wi
E iformtionlement
5 Product
(5] InformatonElement
{5 Dataeference
(5] vetadstaReference
(5] <enumeratons ProductType _Code
- [Metadata
Wan: Metadata Reference
=[] pata
wain: Data
J DataDistrbutiorReference
= [um_so1sns.
S Gobalvetadata Partial
F Gobalvetadata_Ful
Wain: bl Metadata
J tdenification
J Gitation
O Extent
J Constraints
J Dataqualty
J Distribution
J Content
L spatisepresentation
= L um_icism
8 Main: Securty
5 1C15M_Securty
{5] <enumerations ICISM_ClessfcationCode
[SD_MIW_CORE
' SD_MIw_METOC
' SD_MIW_CONTACTS
[xsD_15019139
CJ xep_1crsm
2 xeD_6ML

Figure 9 - Enterprise Architect Tree View
The MIW package is the container for the entities that join the data to the metadata while providing resource specific information not necessarily accounted for in the ISO 19115 metadata specification. For any resource or data domain being modeled, metadata should be inserted into the DisciplineMetadata package and data should be inserted into the DataEntity package. No modification should be made to the MIW, UML_ISO19115, UML_ICISM, or Data DistributionReference packages without the consent of the MIW DMWG.

There are also the six packages that begin with XSD. These are the containers for the Logical Schemas used to create the PDM (or XSD’s). The XSD_MIW_METOC package represents an example of how to create Logical Schemas within the Template Model. The XSD_MIW_CONTACTS package is the first standard created and modeled by the MIW DMWG. The remaining packages are the standards previously mentioned the MIW DMWG has agreed to utilize.

4.3.2 Adding Data Entities to the MIW Template Model

The first step is to create space for the new resource in the DisciplineMetadata and DataEntity packages. Throughout this example we will be using Bottom Characteristics to illustrate the process. Once space is created for the new resource, add the relevant data entities. One or more top level entities must be defined as a UML class. In the example of Bottom Characteristics in Figure 10 below there are five top level entities that have been added to the Bottom Characteristics package which is a child of the DataEntity package.

[image: image10.emf]bdd Bottom Characteristics_standalone

SedimentCategoryHFEVA32

MIW_DoctrinalRoughnessCategory

MIW_DoctrinalBottomTypeCategory MIW_DoctrinalBurialPercentCategory

MIW_DoctrinalClutterCategory

Figure 10 - Bottom Characteristics Top Level Entities
The second step is to define the attributes which properly describe the entity. It is important to include cardinality (multiplicity in the EA software), default values and definitions in the attribute description. In the example in Figure 11 below, the attribute perishability has a cardinality of [0..1] which means it is an optional attribute. Also, for each entity the attribute parameterField has a default value listed. The attributes are properly defined creating a more complete Model Description Document when the entities and attributes are exported to Rich Text Format RTF is exported. Finally, each entity is a generalization of the AbstractDataEntity class therefore relating the new entities to a DataCollection, GlobalMetadata and DisciplineMetadata if applicable.

[image: image11.jpg]class Bottom Characteristics

MIW_DostrinaiRoughnessCategory

paremetarria: cnar= RUF
roughnessCategory: RoughessCatagonCode
roughnassL sbat: char

contenee: ot

pershabity: int[0.1]

geomety: PaygenTyse

DataEnsty-AbstracamEntty

[+ dstaEnityio: cner
- dataCormctonis: ensr
+_orginstor. CI_ ResoonsiisParty

MIW_Doctrins!CluterCategory

MIW_DoctrinsiBurisiPercentCategory

E—————

uterianer cnar
Confence: ot
pershaity: int (0.1]
geamety. PaygonTyee

ctterCategory: CutterCatagonCode

parametaraK: char= WBUR
bursiCatagory: BursiCatagorCode
burslan: char

confeiznce: ot

pershebaty: it [0.1]

geomety: PaygenTyee

SedimentCategoryHFEVAS2

paramaterad: cher=SEDS

Sdmantiase: cnar
confinze: ot
pershabity: int (0.1]
geomety. PaygonTyee

sedimantCategory: SedimeniCatagoyHFEVASZCods

MIW_DoctrinsiBotiom TypeCategory

perametaa: shar= BTVPE
BottonTypaCsiagory: BottorTypaCategoryCods
botionTypsLabe: char

Confinze ot

persnabiay: nt (0.1]

geamety: PaygenTyse

Figure 11 - Bottom Characteristics Data Entities
Now repeat this process for any metadata that is specific to the new resource in the DisciplineMetadata package if there are any requirements beyond what is available in the ISO 19115 specification.

4.3.3 Creating the XSD documents from UML using Enterprise Architect

All information exchange packages in the MIW COI will contain both metadata about the contents of the package and a data payload. There currently exist many ways to structure these two important pieces which make it automatically useful to internal and external data consumers. The MIW DMWG has decided to focus on a few existing, well documented standards. Essentially the MIW LDM is mapped to these standards by means of a Logical Schema. The various standards targeted utilize XML encoding to realize their Physical Data Model (PDM) as XML Schema Definitions (XSD). The Logical Schema forms the bridge from the LDM to the PDM.

4.3.3.1 Creating a Logical Schema

As defined, Logical Schemas are a data model of a specific domain expressed in terms of a particular data management technology. For the purposes of the MIW COI data exchange standards this data management technology is the XML Schema Definition language (XSDs). Therefore the goal is to transform the UML from the LDM into UML whose stereotypes are meaningful to XSD formation (i.e. XSDcomplexType, XSDsimpleType, etc). One key aspect of the Logical Schema and XSD formation, along with the XSD stereotypes, is selecting a namespace. An XML namespace is used to provide uniquely named elements and attributes in an XML document. The namespace often takes the form of a Uniform Resource Locator (URL). However it is important to note that it is not necessary for the namespace pattern to resemble a URL or the URL formatted namespace be a “real” location on the world wide web. This is noted in the namespace for the IC ISM which uses a Uniform Resource Name (URN). The common namespaces identified by the MIW DMWG are listed below in Table 2:

	Name
	Prefix
	Namespace

	U.S. Mine Warfare
	miw
	http://www.miwcoi.org/

	U.S. Mine Warfare Common
	miwcom
	http://www.miwcoi.org/common

	Contacts
	miwctc
	http://www.miwcoi.org/contact

	NAVOCEANO MIW
	navomiw
	http://www.navo.navy.mil/xsd/miw

	Geographic MetaData
	gmd
	http://www.isotc211.org/2005/gmd

	GCO
	gco
	http://www.isotc211.org/2005/gco

	XML Schema
	xsd, xs
	http://www.w3.org/2001/XMLSchema

	Xlink
	xlink
	http://www.w3.org/1999/xlink

	Geography Markup Language
	gml
	http://www.opengis.net/gml/3.2

	IC ISM
	ism
	urn:us:gov:ic:ism:v2

Table 2 - MIW Common Namespaces
Once either a new namespace has been decided or an existing namespace is located you can begin creating your LS in Enterprise Architect.

Steps to create a new Logical Schema in EA

1. In the Template Model right click on the Class Model package.

2. Navigate to Add -> Add Package

3. Give the package a name and click OK.

4. Now right click on the new package in the Project Browser

5. Navigate to Add -> Add Diagram

6. Give the diagram a name and click OK

7. Double click on the new diagram so that it shows in the workspace

8. On the Toolbox menu click on More tools…

9. About mid-way down select XML Schema

10. Drag the Schema widget onto the workspace

11. Give the schema a name. Fill out the target namespace previously decided. Fill out the prefix for the target namespace. Indicate a location for the physical XSD file to be stored. Select OK.

12. Now right click on the new schema package in the Project Browser

13. Navigate to Add -> Add Diagram

14. Give the diagram a name and click OK

15. Now begin adding to the workspace using the LDM as a template.

It is useful to begin with your enumerations and XSD simple types because they are the foundation for the XSD complex types. By looking at the diagram for Bottom Characteristics features in Figure 12 below we can see there are enumerations and UML classes. The example described below is included in the MIW Template Model for reference purposes.

[image: image12.jpg]class Bottom Characteristics

DataEnsty-AbstracamEntty

< dataEnityD: cner
- dataCormctonis: ensr

+_orginstor. CI_ ResoonsiisParty

MIW_DostrinaiRoughnessCategory

persmetaaa: mnar= RUF
foughnassCategory: RoughassCategoryCods
roughnassLave: char

contenee: ot

pershabity: int[0.1]

geomety: PaygenTyse

SedimentCategoryHFEVAS2

< paameiara: cner=SEDS
+ sedimaniCategory: SedimanCategorHFEVAS2Code
 zadmaniiane char

 confizne: ot

+ persnebiy: nt[0.1]

geomety. PaygonTyee

<enumerstons

CluterCategoryCode

UNKNOWN
Low=1
MODERATE =2
HGH=3
NODATA = 888
LAND = 399

“enumrstons

BurialCategoryCode

UNKNOWN =0
zER0=1

26R0_T0_10=
1070 20=3
2070.75=4
7570100 =5
NODATA = 888
LAND = 398

GRAVEL

GRAVELLY,
GRAVELLY.

COARSE_S/

GRAVELLY,

SAND_SILT_CLAY =9

SANDY_GRAVEL
MUDDY_SANDY_GRAVEL
MUDDY_GRAVEL

VERY_COARSE_SAND = 21

NEDIUM SAND.
FINE_SAND:

VERY_FINE_SAND:
CLAYEY_SAND =26

SANDY_CLAY = 42
VERY_FINE_SIL
FINe SILT=

ROUGH_ROCK = 54
cosBLE =61
PEBBLE =62
MUDDY_SAND =55
SANDY_MUD = 56
NODATA = 888
LAND = 599

MIW_Doctrina(ClutterCategory MIW_DoctrinalBurialPercentCategory BN Deotinall Vimsta baoey
= et car~STRVPE
= e char= CoAT P a -
2 EotomTypaCategony. SotomTyseCategonyCade
3 i, Citartamgoncosn | |+ birwangoy. SuraChegancosa | [BetenTipeCeiagory: Setonipecatsgo
2 Gunaranet cnar iy g Srimin
Commm 2 contdance:
2 parananing 0.1
L el N
2 Geomaty PovaonTioe 2 Gy rovgortos
pr—
prE— pre— SedimentsguHEEVAT2Cade
RoughassCamgonCode | | BotomTypecategoncode
Roox

unaown=0 oo

Swoom- 1 ST sano-a

MongRATE =2 Shoy SiT-s

Rouch. Sir-5

NopaTA = 88 SaveY siT=s

Lo =550 STV Giav =7

ctav=s

2

3

15
"
_MUDDY_SAND = 13
“sanD=20

e

.

Ay

50
5

Figure 12 - MIW Bottom Characteristics UML
Focusing on the MIW Doctrinal Bottom Type Category feature, the steps above result in creation of a new NAVO_MIW schema and diagrams. After looking at the diagram in Figure 12, notice the MIW Doctrinal Bottom Type Category class only has one attribute of a non-standard type:BottomTypeCategoryCode. Therefore, in order to fully create the MIW_DoctrinaBottomTypeCategory complex type tone must have the BottomTypeCategoryCode which is an enumeration. This is why it is beneficial to start with the simple types and enumerations. In the Toolbox on the left-hand side drag onto the workspace an Enum widget. When the XSD enumeration Properties box pops up give the widget a name, verify its type, and begin entering the Values in the field separated by commas. Then select OK.

Note: The PolygonType attribute type refers to a type in the GML Simplified Features Profile Level 0 and 1. This profile has been included in the Template model under the XSD_GML package. The schema is named Gmlsf.

To begin modeling the MIW_DoctrinalBottomTypeCategory feature, drag the Complex Type onto the workspace. Give it a name and postfix the name with _Type. For example, the MIW_DoctrinalBottomTypeCategory feature will become the BottomTypeCategory_Type complex type. Now begin adding elements to the complex type by selecting the Element widget on the left and dragging it on top of the target complex type. Then give the element a lower camel case name (i.e. bottomTypeCategory) and select OK. If you want to change the Type of the element double click on it and in the XSD element Properties box select the UML button. Then select the new Type from the drop down box and click Save. Sometimes it is easier to go through and add all the elements then go back and change their information this way. This is also where you can change the display order for the elements in the complex type.

When modeling the features for the data domain it is important to include the Abstract Data Entity class because this class provides the primary key for all features and relates a given feature to its feature collection. Figure 13 below shows what the diagram for the MIW Doctrinal Bottom Type Category feature will look like.

[image: image13.jpg]class MIW_NAVO_BoftomChara

xSDoompiexTy:
Miw_common.:AbstractDataEntty_Type

XSDoompiexType:
DT_BottomType_Type

—
+ dataEntty: stmg
+ orginator. CI_ResponsvisParty_Type [0.1]

xsoe

parematerriel: stong

Zatagory. DOM_BatianType_Cat Tyee
abat: DOM_Burl LsbslTypa
Sonfetance: =g 0.1]

parshabity: stong [0.1]

gsometsy: PoygonTyee

XSDiopLeveEkments
OT_BottomType

Figure 13 - Logical Schema for MIW Doctrinal Bottom Type Category
4.3.3.2 Exporting the Logical Schema to XML Schema Documents (XSD)

Once the Logical Schema has been created an XSD document can be generated by right clicking on the schema package. Navigate to Code Engineering -> Generate XML Schema. Ensure the package is selected and click the Generate button. Once it is complete click the Close button. A fragment of the resulting XSD for this diagram follows.

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:navomiw="http://www.navo.navy.mil/xsd/miw"

 xmlns:miwcom="http://www.miwcoi.org/common"
 xmlns:navodom="http://www.navo.navy.mil/xsd/dom"

 xmlns:gml="http://www.opengis.net/gml"

 xmlns:gmd="http://www.isotc211.org/2005/gmd"

 xmlns:miw="http://www.miwcoi.org"

 xmlns:xlink="http://www.w3.org/1999/xlink"

 targetNamespace="http://www.navo.navy.mil/xsd/miw"

 elementFormDefault="qualified" version="0.1">
<xs:import namespace="http://www.opengis.net/gml"

 schemaLocation=".\gmlsf\gmlsf.xsd"/>
<xs:import namespace="http://www.navo.navy.mil/xsd/dom"

 schemaLocation="navo_metadata_domains.xsd"/>
<xs:import namespace="http://www.miwcoi.org/common"

 schemaLocation="miw_common.xsd"/>
<xs:element name="DT_BottomType_Type" type="navomiw:DT_BottomType_Type"/>
<xs:complexType name="DT_BottomType_Type">
 <xs:complexContent>
 <xs:extension base="miwcom:AbstractDataEntity_Type">

 <xs:sequence>

 <xs:element name="parameterField" type="xs:string"/>

<xs:element name="category"

 type="navodom:DOM_BottomType_Cat_Type"/>

<xs:element name="label" type="navodom:DOM_Burial_Label_Type"/>

<xs:element name="confidence" type="xs:string" minOccurs="0"/>

<xs:element name="perishability" type="xs:string" minOccurs="0"/>

<xs:element name="geometry" type="gml:PolygonType"/>

 </xs:sequence>

</xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="DT_BottomType" type="navomiw:DT_BottomType_Type"/>
</xs:schema>
This XSD will produce the following XML encoded segment.

<?xml version="1.0" encoding="UTF-8"?>
<navomiw:DT_BottomType ism:classification="U" ism:ownerProducer="USA"
xmlns:gco="http://www.isotc211.org/2005/gco"

xmlns:gmd="http://www.isotc211.org/2005/gmd"

xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:gsr="http://www.isotc211.org/2005/gsr"

xmlns:gss="http://www.isotc211.org/2005/gss"

xmlns:gts="http://www.isotc211.org/2005/gts"

xmlns:miwcom="http://www.miwcoi.org/common"

xmlns:navodom="http://www.navo.navy.mil/xsd/dom"

xmlns:navomiw="http://www.navo.navy.mil/xsd/miw"

xmlns:ism="urn:us:gov:ic:ism:v2"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.navo.navy.mil/xsd/miw
 XSD/miw_navo_metadata_small.xsd ">
 <dataEntityID>{E981BF3F-57C6-437B-QRST-1BC539A17BFH}</dataEntityID>
 <navomiw:parameterField>BTYPE</navomiw:parameterField>
 <navomiw:category>1</navomiw:category>
 <navomiw:label>A1</navomiw:label>
 <geometry>

<gml:exterior>

<gml:LinearRing>

<gml:posList>29.6330586666667 -86.2298278333333 29.6691746666667 -86.229827833333 29.669174666667 -86.185973833333 29.6330586666667 -86.185973833333 29.6330586666667 -86.22982783333333</gml:posList>

</gml:LinearRing>

</gml:exterior></geometry>
</navomiw:DT_BottomType>

Once fully populated, the resulting namespace can be used to populate any XML encoded message.
Note: The MIW DMWG has recognized some significant difference in results between what is imported into the EA software and what is exported. At this time, the DMWG recommends that you use the EA software to export your domain specific XSD’s from the Logical Schema created but DO NOT rely on the XSD that is exported for the XSD_ISO19139, XSD_ICISM, and XSD_GML sections. Please log on to the Share Point site and download the latest version of these XSDs.
4.3.4 Importing XSD into Enterprise Architect

If XSD files are available for the domain in question, it is very easy to import the XSD and link them up to the Template Model. Just create a package in the desired location to import the files. Right click on the package and navigate to Code Engineering -> Import XML Schema. When the Import XML Schema utility pops up, it will indicate the Root Package. Now navigate to the directory the XSD files are stored and select the file to be imported. (Note: If you click on “Import referenced XML Schema(s)” and you have referenced any items in the XSD_ISO19139 section it will try to re-import the entire ISO 19139. To save time, do not select “Import referenced XML Schema(s)”.) Now click the Import button.
4.4 Design Patterns and Their Use in the MIW COI Logical Data Model

The originator of the pattern, Christopher Alexander, defines a pattern as "a three part rule, which expresses a relation between a certain context, a problem, and a solution" in his book The Timeless Way of Building.
When designing any system the designer must make many decisions about how to solve design issues and problems. A single problem, documented with its most common and recognized good solution seen in the wild, is a single design pattern. Each pattern has a name, a descriptive entry, and some cross-references. A documented pattern must also provide an explanation as to why it is appropriate for the given problem. A collection of design patterns that relate to a particular field, such as UML modeling or XML schema development, is called a pattern language.
4.4.1 Design Patterns in UML

The standard design patterns in use throughout the object-oriented development world were codified in the book Design Patterns: Elements of Reusable Object-Oriented Software authored by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (often referred to as the Gang of Four or GoF). The Gang of Four presents 23 software design patterns as applied to object-oriented design and separates them into 3 primary categories: creational, structural, and behavioral. The structural and behavioral patterns have gained much popularity in UML modeling and are appropriate for solving problems related to class and object composition (structural) and object communication (behavioral).

4.4.2 Design Patterns in XML

The current state of design patterns in XML is less developed than in object-oriented development, and the XML development community is lacking a definitive pattern language. In addition to reference books such as Professional XML Schemas by Duckett, et. al., one resource currently available is XMLPatterns.com, which presents 28 design patterns for XML developers. The MIW COI DMWG has leveraged several of these design patterns in our current development efforts (the Template Model as well as the Contacts model):

· Catch-All

· A container element for dealing with unknown elements within the document.

· Collection Element

· Create a new element whose content model allows only instances of a single element type.

· Container Element

· A container has multiple elements as child elements. A new element type is created to group related elements.

· Domain Element

· A concept from domain analysis is made into an element.

· Envelope

· Provide a document type which is defined to be a holder for other, arbitrary XML data.

· Extensible Content Model

· Extensible Content Model

· Head-Body

· When a large amount of metadata needs to be included in an element the designer may create two children for the element, one for the metadata and one for the body of the document.

· Metadata First

· Metadata should appear in a document before the data which it is about.

· Multiple Document Types

· When a system needs to represent a range of different document types, each document type can be represented by a completely separate declaration.

· Reuse Document Types

· If document types already exist for the job at hand, they can be reused completely or parts of them can be reused.

· Separate Metadata and Data

· When documents contain content and data about the content, the two types of data should be clearly separated.

· Short Understandable Names

· Names of elements and attributes should be short and understandable by authors and developers of processing software.

5.0 LDM REQUIREMENTS FOR DATA EXCHANGE WITHIN MIW COI
This section lists the minimum set of metadata attributes required for the template model. There are three types of metadata attributes, each of which is described in a subsequent section. The types of attributes and their corresponding sections are:

· General metadata, section 5.1.1

· Security metadata, section 5.1.2

· Geographic reference meta data, section 5.2

5.1 Global Metadata Requirements

An LDM must contain the following items in order to meet the requirements for data exchange within the MIW COI.
5.1.1 ISO 19115 or DDMS Compliance

Each LDM should support creation of schema with metadata which conforms to either the ISO 19115 or the DDMS standard. ISO 19115 encompasses DDMS, and contains additional elements not found in DDMS. Because the MIW COI has adopted ISO 19115, DDMS conformance follows. Table 3 below maps DDMS elements to ISO 19115 elements.

	MIW LDM
	DDMS**
	Example

	AbstractProduct.productType
	
	

	AbstractProduct.startDate
	
	

	Metadata.fileIdentifier
	
	

	Metadata.contact
	
	

	Metadata.dateStamp
	
	

	Identification.citation
	
	

	Identification.abstract
	
	

	Identification.credit
	
	

	Identification.status
	
	

	Identification.pointOfContact
	
	

	DataIdentification.language
	
	“EN”

	DataIdentification.characterSet
	
	“Utf8”

	DataIdentification.topicCategory
	(M)Subject
	“elevation”

	DataIdentification.extent
	
	

	KeywordsDescriptive.keyword
	(M)Subject
	“navo BAG Persian Gulf”

	KeywordsDescriptive.type
	
	“theme”

	KeywordsProductType.keyword
	(M)Subject
	“bathymetry”

	KeywordsProductType.type
	
	“discipline”

	Citation.identifier
	(M)Identifier
	

	Citation.title
	(M)Title
	

	Citation.alternateTitle
	
	

	Citation.date
	(M)TemporalCoverage
	

	Citation.edition
	
	

	Citation.editionDate
	
	

	Citation.citedResponsibleParty
	
	

	DateCitation.date
	
	

	DateCitation.dateType
	
	

	ResponsibleParty.organizationName
	(M)Creator
	

	ResponsibleParty.role
	
	

	GeographicBoundingBox.westBL*
	(M)GeospatialCoverage
	

	GeographicBoundingBox.eastBL*
	(M)GeospatialCoverage
	

	GeographicBoundingBox.southBL*
	(M)GeospatialCoverage
	

	GeographicBoundingBox.northBL*
	(M)GeospatialCoverage
	

	SecurityConstraints.classification
	(M)Security
	

	SecurityConstraints.handelingDescription
	
	

	ICISM_Security.classification
	(M)Security
	

	ICISM_Security.ownerProducer
	(M)Security
	

* westBL is an abbreviation for westBoundingLongitude, eastBL is an abbreviation for eastBoundingLongitude, southBL is an abbreviation for southBoundingLatitude, northBL is an abbreviation for northBoundingLatitude

** The ISO19115 to DDMS mapping was taken from the GSIP Metadata Profile Part 1: Data Discovery and Exchange Version 1.0 by Clifton Daniels, Hugh Bryant, and Paul Birkel
Table 3 - ISO 19115 to DDMS Mapping

5.1.2 Intelligence Community Metadata Standard for Information Security Marking (IC-ISM) Schema Attributes
Each LDM shall support creation of a schema which will contain certain attributes from the IC-ISM schema that the MIW COI has agreed to include in all metadata. Some of these attributes are required in the IC-ISM schema, and some are optional.

The classification and ownerProducer attributes, which are required in the IC-ISM schema, should be included in the metadata portion of all MIW COI LDMs. If the classification is something other than unclassified, the releasableTo and disseminationControls attributes, which are conditional in the IC-ISM schema, should also be included in the metadata. IC-ISM guidance dictates that while only 4 attributes are required, data producers should populate as many of the 18 attributes as are applicable and possible for their data. See [7] and [8].
5.1.2.1 Classification
A single indicator of the highest level of classification applicable to an information resource or portion within the domain of classified national security information. The Classification element is always used in conjunction with the Owner Producer element. Taken together, the two elements specify the classification category and the type of classification (US, non-US, or Joint).
5.1.2.2 Owner Producer

One or more indicators identifying the national government or international organization that have purview over the classification marking of an information resource or portion therein. This element is always used in conjunction with the Classification element. Taken together, the two elements specify the classification category and the type

of classification (US, non-US, or Joint). Within protected internal organizational spaces this element may include one or more indicators identifying information which qualifies as foreign government information for which the source(s) of the information must

be concealed. Measures must be taken prior to dissemination of the information to conceal the source(s) of the foreign government information.
5.1.2.3 ReleasableTo

One or more indicators identifying the country or countries and/or international organization(s) to which classified information may be released based on the determination of an originator in accordance with established foreign disclosure procedures. This element is used in conjunction with the Dissemination Controls element.
5.1.2.4 Dissemination Controls

One or more indicators identifying the expansion or limitation on the distribution of information.
5.1.2.5 Classification Reason
One or more reason indicators or explanatory text describing the basis for an original classification decision.

5.1.2.6 Classified By
The identity, by name or personal identifier, and position title of the original classification authority for a resource.

5.1.2.7 Date Of Exempted Source

A specific year, month, and day of publication or release of a source document, or the most recent source document, that was itself marked with a declassification constraint. This element is always used in conjunction with the Type Of Exempted Source element.

5.1.2.8 Declassification Date

A specific year, month, and day upon which the information shall be automatically declassified if not properly exempted from automatic declassification.

5.1.2.9 Declassification Event

A description of an event upon which the information shall be automatically declassified if not properly exempted from automatic declassification.

5.1.2.10 Declassification Exception

A single indicator describing an exemption to the nominal 25-year point for automatic declassification. This element is used in conjunction with the Declassification Date or Declassification Event.

5.1.2.11 Declassification Manual Review (deprecated)
A single indicator of a requirement for manual review prior to declassification, over and above the usual programmatic determinations. The ability to indicate manual review was rescinded as of 1 February 2008 with complete removal from automated systems required by 31 March 2009 at which time this element will be removed from this ICS.

5.1.2.12 Derivatively Classified By

A citation of the authoritative source or reference to multiple sources of the classification markings used in a classified resource.

5.1.2.13 FGI Source Open

One or more indicators identifying information which qualifies as foreign government information for which the source(s) of the information is not concealed.

5.1.2.14 FGI Source Protected
A single indicator that information qualifies as foreign government information for which the source(s) of the information must be concealed. Within protected internal organizational spaces this element may be used to maintain a record of the one or more indicators identifying information which qualifies as foreign government information for which the source(s) of the information must be concealed. Measures must be taken prior to dissemination of the information to conceal the source(s) of the foreign government information.

5.1.2.15 Non-Intelligence Community Markings

One or more indicators of the expansion or limitation on the distribution of an information resource or portion within the domain of information originating from non-intelligence components.

5.1.2.16 Special-Access-Required Program Identifier

One or more indicators identifying the defense or intelligence programs for which special access is required.

5.1.2.17 SCI Controls

One or more indicators identifying sensitive compartmented information control system(s).

5.1.2.18 Type Of Exempted Source

A declassification marking of a source document that causes the current, derivative document to be exempted from automatic declassification. This element is always used in conjunction with the Date Of Exempted Source element.

5.2 Geospatial Location and Area Requirements
GML specifies several types of geometric primitives. The MIW COI has adopted the GML simple features profile [9]. This profile was selected over the UCore GML Profile after identifying the geometric needs of the MIW COI. GML Simple Features Profile provides support for a wide range of vector feature objects and has been proven to support many real world problems.
If an LDM contains a geospatial location or area that can be described with one of the GML geometric primitives presented in this section, then that GML geometric primitive should be used with a two dimensional Spatial Reference System (SRS). If these primitives can not adequately describe a geometric aspect of an LDM, the modeler is free to use any other GML construct. All applicable data, especially sensor-related data, should be geo-referenced in data models intended for use by the MIW COI.
Note: In the future, the MIW COI will consider adoption of OGC KML as a standard for representing geographic primitives. OGC KML is an XML schema which contains elements for geographic features such as points, lines, images and polygons. See http://www.opengeospatial.org/standards/kml.
5.2.1 gml:PointType

The Point element captures the coordinates of a single geospatial coordinate, with latitude, longitude, and optionally an altitude. Each geospatial location in an LDM should be specified as a gml:PointType. See [4] p. 61.

5.2.2 gml:LineStringType

The LineString element describes a line of points, connected in a linear fashion. This can be used to describe a track, a road, or any other linear geospatial construct. Each such construct in an LDM should be specified as a gml:LineStringType. See [4] p. 63.
5.2.3 gml:CircleByCenterPointType

The CircleByCenterPoint element describes a simple circle by specifying the coordinates of the center point and a radius. Each circular geospatial area in an LDM should be specified as a gml:CircleByCenterPointType. See [4] p. 70.

5.2.4 gml:EnvelopeType

The EnvelopeType element describes a simple bounding extent, by describing it in terms of an upper corner and a lower corner. Each rectangular geospatial area in an LDM should be specified as a gml:EnvelopeType. See [4] p. 60.

5.2.5 gml:PolygonType

The Polygon element describes a surface that is defined by a single surface patch. The boundary of this patch is coplanar and the polygon uses planar interpolation as its interior. Each geospatial area that is not a rectangle in an LDM should be specified as a gml:PolygonType. See [4] p. 77.
6.0 LDM REQUIREMENTS FOR DATA EXCHANGE OUTSIDE OF MIW COI
This section lists items which are required to be present in an LDM to support UCore messaging. UCore messages are used for transmission of data to interested parties outside of the MIW COI. Each subsection represents a basis for the requirement of the items which are presented in the subsection.
6.1 Introduction to UCore
As shown in Figure 14, UCore messages may be thought of as comprising several parts. The two parts of primary interest here are the Structured Payload and the Digest. The Structured Payload consists of domain specific information schema adopted by COI. The Digest is a common vocabulary and schema for metadata which provides a general, high level description of the Structured Payload by answering the questions who, what, when and where.
Many structured payload schema are derived from schema supported by standards organizations such as OGC. In order to facilitate generation of UCore messages, our LDMs will use some of the schema on which UCore schema are based.

[image: image14.emf]Publish Message

PD Message Metadata

Data Submitter Metadata

Data Item Package

Package Metadata

Digest

Structured Payload

Narrative

Rendering-Instructions

Attachment Link

Data Item Package

.

.

Attachment

Attachment

Attachment

.

.

UCORE Message Structure

Focus

Areas

Figure 14 - UCORE Message Structure
6.2 UCore Package Metadata Requirements

An LDM must contain these items in order to meet the requirements for UCore Package Metadata. A Package (more properly, a Data Item Package) is the logical base unit for information in a UCore message. An LDM will be contained within a UCore Package.
The items presented in this section represent only a subset of the items required for UCore Package Metadata. Only the items which must be present in an LDM are presented in this section. See [1] p. 53.
6.2.1 ulex:DataItemID

The DataItemID element is a unique identifier for the particular LDM. Though not globally unique, it must be unique for a data provider. Each distinct LDM should have its own unique DataItemID. See [1] p. 62.
6.2.2 ulex:DataItemReferenceID

The DataItemReferenceID system element is a human readable unique identifier that is meaningful to the system which owns the data. It may be the same as the Data Item ID. Each LDM should have its own unique DataItemReferenceID. See [1] p. 62.
6.2.3 ucore:DisseminationCriteria
The DisseminationCriteria element is used to attach security classification markings from the IC ISM standard to the Package. Each LDM should have a DisseminationCriteria. See [1] p. 62.
6.3 Geospatial Location and Area Requirements
UCore specifies several types of geospatial locations. The UCore classes presented in this section are all derived from the UCore GeoLocationTypes base class. All geospatial locations and areas in an LDM should be of one of the classes or types presented in this section.

6.3.1 ucore:PointType

The Point element captures the coordinates of a single geospatial coordinate, with latitude, longitude, and optionally an altitude. Each geospatial location in an LDM should be specified as a ucore:PointType, which is a wrapper for a GML Point. See [1] p. 134, and [4] p. 61.

6.3.2 ucore:LineStringType

The LineString element describes a line of points, connected in a linear fashion. This can be used to describe a track, a road, or any other linear geospatial construct. Each such construct in an LDM should be specified as a ucore:LineStringType, which is a wrapper for a GML LineString. See [1] p. 115, and [4] p. 63.
6.3.3 ucore:CircleByCenterPointType

The CircleByCenterPoint element describes a simple circle by specifying the coordinates of the center point and a radius. Each circular geospatial area in an LDM should be specified as a ucore:CircleByCenterPointType, which is a wrapper for a GML CircleByCenterPoint. See [1] p. 87, and [4] p. 70.

6.3.4 ucore:EnvelopeType

The EnvelopeType element describes a simple bounding extent, by describing it in terms of an upper corner and a lower corner. Each rectangular geospatial area in an LDM should be specified as a ucore:EnvelopeType, which is a wrapper for a GML Envelope. See [1] p. 103, and [4] p. 60.

6.3.5 ucore:PolygonType

The Polygon element describes a Polygon as a list of gml:pos position elements that describe the vertexes of the polygon. Each geospatial area that is not a rectangle in an LDM should be specified as a ucore:PolygonType. See [1] p. 135, and [4] p. 58.

6.4 Time Requirements
UCore specifies two types of time measurements, instant and interval. A single UCore class is used to express both an instant and an interval. All time measurements in an LDM should be of the class or type presented in this section.

6.4.1 ucore:TimeType

The UCore TimeType provides the ability to represent "When", either as an instant or interval in time, each with an optional uncertainty. TimeType also has security metadata, through the IC-ISM attributes. TimeType provides a substitution group that allows it to represent either a TimeInstant, or a TimeInterval. Each time instant or interval in an LDM should be specified as a ucore:TimeType. See [1] p. 156.

7.0 QUALIFICATION REQUIREMENTS

This section is intended to provide verification guidance to organizations developing applications against MIW COI data standards as well as provide testing guidance for developers of new standards. Test files and services should be hosted on the NSWC-PCD Test Lab servers as available. Results of testing should be published to and reviewed by the Data Model Working Group before final publication of the developed standard.

7.1 Components

The following components are required to adequately test standards developed with these guidelines.

1. A system capable of consuming data in accordance with the developed standard as defined in section 7.2.1. An editing system as described in section 7.2.3 may be used.

2. A system capable of producing data in accordance with the developed standard as defined in section 7.2.2. An editing system as described in section 7.2.3 may be used.

3. A toolset capable of automatically validating XML documents against a given XML Schema or DTD (e.g. XML Spy)

It is highly recommended that the consuming and producing systems be independently developed to ensure the validity of testing. A single system should not be used for both consuming and producing for test purposes.

7.2 Terminology
The following terminology is used to describe relevant test systems.

7.2.1 Strictly Consuming System

A strictly consuming system must be capable of ingesting files that conform to the developed standard. The system must be capable of detecting mal-formed, incomplete, or corrupted files as described in section 7.3.1 and rejecting them as invalid.

7.2.2 Strictly Producing System

A strictly producing system must be capable of generating a complete representation of data conforming to the developed standard. Files generated by the system must pass all validation methods described in section 7.3.1.

7.2.3 Editing System

An editing system must meet all criterion outlined in sections 7.2.1 and 7.2.2. The system must be able to ingest a file conforming to the developed standard and generate and equivalent file barring any metadata that is necessarily modified by writing a new file.
7.3 Validation
Both automated and manual validation should be performed as part of the testing process.

7.3.1 Automated Validation
Automated methods should be used to verify the correctness of the structure of the test files.
7.3.1.1 XML

All files generated for and during testing must be well-formed XML documents as described by the W3C XML 1.0 definition. This testing is to be accomplished by utilizing COTS toolsets (e.g. XML Spy and Enterprise Architect).

7.3.1.2 Schema

All files generated for and during testing must be validated against the schema of the developed standard. This testing is to be accomplished by utilizing COTS toolsets (e.g. XML Spy and Enterprise Architect).

7.3.2 Manual Validation
Manual methods should be used to validate the correctness of the content of the test files.
7.3.2.1 Completeness

All files generated for and during testing must contain all relevant data present in the originating source. This testing is to be accomplished by manual analysis and internal software testing/practices.

7.3.2.2 Accuracy

All files generated for and during testing must contain values and attributes consistent with source representations of value, precision, and definition. This testing is to be accomplished by manual analysis and internal software testing/practices.

8.0 LIST OF ABBREVIATIONS AND ACRONYMS

CDM

Conceptual Data Model

COI

Community of interest

DMWG

Data Model Working Group
GML

Geography Markup Language

EA

Enterprise Architect
KML

Keyhole Markup Language
LDM

Logical Data Model
MIW

Mine Warfare
OGC

Open Geospatial Consortium
PDM

Physical Data Model

RTF

Rich Text Format
UCore

Universal Core
UML

Unified Modeling Language
XML

Extensible Markup Language

Logical Schema (LS)

 Expressed in UML using the UML

Profile for XSD in Enterprise Architect

 Structure reflects LDM but is also

extended to reflect XSD constructs

Physical Data Model (PDM)

 Actual XSD files

 Precisely defines data structure and

content used for data exchange

Logical Data Model (LDM)

 Entities with Attributes

 Relationships (Associations)

 Normalized to 4th Normal Form

 Expressed in UML using

Enterprise Architect

Conceptual Data Model (CDM)

 Entities

 Relationships (Associations)

Note: CDM, if it exists, would be

developed prior to process described

in this document and thus is outside

this document’s scope

PAGE
i
UNCLASSIFIED

[image: image15.wmf]

EXTENDS (GML)

PAYLOAD (APP DOMAIN)

METADATA (19115)

OGC:WFS:FEATURE

ICISM

Contact Sharing

Within MIW COI

MIW COI

UCORE

Outside MIW COI

Contact Sharing

Outside MIW COI

