
1

Comparing Acquisition Strategies: Open Architecture vs. Product Lines

Nickolas Guertin
PEO IWS

1333 Isaac Hull Ave., SE
Washington, DC

nickolas.h.guertin@navy.mil
202-781-3425

Paul Clements

Software Engineering Institute, Carnegie Mellon University
clements@sei.cmu.edu

512-567-1681

1. Introduction
An open architecture is a development methodology that employs published, widely accepted standards
for defining key interfaces within a system. Systems that are “open” have components that can be
provided by different vendors, allowing performance improvements and technology refreshments at a
faster pace than “closed” systems. This “open” approach for constructing systems can be augmented by
acquisition practices that leverage these “open” technical attributes to facilitate competition. This
paper gives an overview of open architecture acquisition approaches, and investigates whether open
architecture by itself is sufficient to provide the stated goals of rapid fielding, reduced cost, and
interoperability among systems. After that, we compare the open architecture approach to another
acquisition approach for systems, namely the product line approach. A product line is a set of systems
that share a common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a prescribed way [19].
Several U.S. DoD systems acquisitions are currently taking the product line approach. We provide an
overview of a various product-line-based acquisition strategies and discuss the relative advantages and
disadvantages of the product line approach. We argue that open architecture principles are an
essential ingredient of the product line approach for the DoD. Furthermore, the product line
methodology consists of robust set of practices that will generally yield more repeatable results of
increased performance and lower risk at minimal cost. The combination of the two approaches will
deliver more benefits to the acquisition organization than either approach alone. Finally, we highlight
the challenges associated with management of an open product line across multiple providers.

2. Open Architecture
An open architecture is an architecture that employs open standards for key interfaces within a system
[16]. Because the interfaces conform to publicly documented, consensus-based standards, any
competent supplier can provide conforming implementations for any module, allowing the owner of the
system to take advantage of competitive bids among suppliers who compete to provide each module.

2

The following principles characterize a set of business and technical practices that will lead to delivery of
increased capabilities in a shorter time-to-field at reduced costs:

• Modular designs with loose coupling and high cohesion that allow for independent acquisition
of system components, i.e., composability;

• Continuous design disclosure and appropriate use of intellectual property rights allowing greater
visibility into an unfolding design and flexibility in acquisition alternatives;

• Enterprise investment strategies that maximize reuse of system designs and reduce total
ownership costs;

• Enhanced transparency of system design through open peer reviews;

• Competition and collaboration through development of alternative solutions and sources; and

• Analysis to determine which components will provide the best return on investment to open,
i.e., which components will change most often due to technology upgrades or parts
obsolescence and have the highest associated cost over the lifecycle

Figure 1 Traditional vs. Open Architecture development approaches

The need to change the business environment must be the primary factor that drives the technical
approach. Accordingly, there are business case decisions to be made about how much investment each
principle warrants:

3

• The use of open standards for key interfaces is a critical aspect of insulating a program from
many future cost risks associated with upgrading and establishing some degree of vendor
independence. The most important business decisions lie in identifying the ‘key’ interfaces.
These typically involve architectural elements encapsulating the most important system
behaviors and/or business segments. This principle is highly correlated to the practices of
modular design with loose coupling and high cohesion; these help ensure that upgrades and
system maintenance can be performed with low cost and schedule risk. Economic benefit is
accrued on a system with a multi-year lifespan (i.e. not prototypes or limited production run
systems), and components that need to be upgraded or migrated to updated hardware over its
lifecycle.

• Continuous design disclosure is especially important for Government acquisitions, even though
this was, at one time in the past, looked on as a source of development overhead cost
challenges. There are two aspects of design disclosure: contract deliverables and access to the
evolving design and development products. This allows the program office to review the
evolution of the critical design elements as they evolve, and the ability to exercise data rights on
all design related information, even if not a formal deliverable. One of the most common
“lessons learned” we have heard is failure to get all the artifacts that are needed to support
competition. Formal deliverables should be limited to those things that require a review-
comment process or collaboration to ensure design synthesis will yield a result that can be
validated against the requirements. All other elements of a system design should be made
available to the customer to observe throughout the design process. Electronic access to the
design environment and publishing of design artifacts is very low in cost and should not be a
cause for cost growth by the developer. This is especially true for systems that will have a long
acquisition life and the design information will need to be made available to subsequent bidders
if system upgrades or maintenance will be competed on a recurring basis (e.g. every five years).

• Strategic reuse is fundamental to a Product Line Approach. Enterprise investment strategies
need to be formulated to determine the business basis for those reuse elements. It will likely
cost more to make something reusable (additional documentation, commenting, provision for
different boundary conditions, etc.) and governing the process of managing collaboratively
developed and co-dependant designs is challenging. The current state of practice in many DoD
acquisition domains is to build products where all design elements are tailor made to specific
solutions and few, if any, of the associated products are required to be built for strategic reuse.
This business practice is based on minimum emphasis on enterprise reuse, from sponsoring
organizations all the way to user communities.

• The Naval Open Architecture Contract Guidebook defines a “Peer Review” as “a refereed, open
process used to assess technical approaches proposed by or being used by vendors. An
‘independent peer review’ includes external membership and is structured to achieve a
balanced perspective in which no one organization is dominant. This assessment process
normally results in findings or recommendations presented to the decision maker with the

4

authority and responsibility to select or make the final course of action or decision. This kind of
open peer reviews are a technical management construct that has been hard to replicate across
a broad continuum and requires lots of communication, purposeful governance, and oversight.
Exposing peer competitors to the inner workings of each other’s products may require creative
intellectual property rights negotiations in order to get the benefits of peer reviews and create
the most innovative and capable products and producers while sustaining a robust marketplace
for innovative solutions.

• Development of alternative solutions and sources is a noted weakness of DoD’s acquisition
pattern of behavior. A pattern of continuous competition has been proven to establish better
pricing and performance. In a recent interview Dr. Jacques Gansler former Under Secretary of
Defense for Acquisition, Technology and Logistics) stated “By contrast, whenever we’ve had
competitive sourcing, we get more than a 30 percent cost savings, on average, with higher
performance, no matter who wins — and the government most often wins. Competition really
pays” [12]. In order to address this, Congress made specific provisions for requiring competitive
prototyping as a major aspect of the Weapon System Acquisition Reform Act of 2009 [20]. In
addition, some programs have been able to use a collection of contracting vehicles to establish a
framework for continuous competition that give the program manager additional acquisition
choices. There are historical cost references that can be used to justify establishing a second
source, especially at the early stages of system development. Having healthy competitive
tension at a more granular level throughout the design and integration process has some
additional positive, but intangible effects on developer behavior. Most program managers get
their best cooperation from their incumbents when there is a full-and-open solicitation on the
street.

The value proposition on the OA principles discussed here includes an analysis of how much change will
be needed throughout a system life-cycle. Underlying technologies may change faster than others
depending on the market-space from which they come, and the potential demand signal for capability
changes by the warfighter or customer need to be addressed. These two dimensions of change need to
drive a technology refresh strategy and a capability evolution strategy. These are two sides of the same
coin and need to be woven together to form a coherent program plan. However, many programs bent
on executing requirements for initial capability fail to address these dynamics. They must also address
how their business goals are aligned to the technical architecture, system
modularity/coupling/cohesion, design disclosure and data rights analysis, strategic reuse strategies,
transparency of system design, the need for a variety of alternative sources, and life-cycle cost models.

3. Open Architecture and Acquisition
The Navy has extended the work of the DoD Open Systems Joint Task Force (OSJTF) to more
comprehensively achieve the desired goals of open architecture as a part of the Naval Open
Architecture (NOA) effort. NOA is defined as the confluence of business and technical practices yielding
modular, interoperable systems that adhere to open standards with published interfaces. It is the goal

5

of the Naval Open Architecture effort to “field common, interoperable capabilities more rapidly at
reduced costs” [23].

The Naval acquisition community is working to adopt these principles. Fully doing so will require a
change in technical approach, but that is the easy part. Much harder is to change the business practices,
particularly in cross-stakeholder governance across a wide range of organizations. Government-to-
industry relationships can be most effective changed is through new competitively awarded contracts.
Changing internal government to government business behavior is harder, in that the contract between
parties is implied or weak, sometimes in a Memo of Understanding.

The number of programs adopting these principles has been based on two things; cultural barriers and
the practical limits of programmatic and technical constraints. The level of adoption has been highly
dependent on the drive by individual senior acquisition leaders to change business relationships through
steps that break from the long-held pattern of behavior that has been employed in the DoD for many
years. Adopting OA principles is a transformational challenge of the highest order.

The Navy and Marine Corps are incorporating OA into selected new start acquisition or upgrades to
existing programs. These programs are implementing Open Architecture for either new start
acquisitions or upgrades to existing programs where there is a clear business case for opening up the
system acquisition and technical characteristics to gain better value and warfighter performance. For
new-start acquisitions, there are compelling business cases for ensuring the design boundaries of the
system modules are fully disclosed and work to standards-based methods.

Many programs have adopted aspects of OA behavior, but few have taken a full OA plunge. The Navy
Submarine Program has achieved the most compelling example of cost improvements and warfighting
performance across the DoD . PEO Subs has spearheaded the practices of OA, specifically the Acoustic
Rapid Commercial-off-the-Shelf (COTS) Insertion (A-RCI) and incorporated those methodologies into
several other warfighting acquisitions for combat control, including imaging, radar, and others.

4. Product Lines
A software product line is “a set of software-intensive systems sharing a common, managed set of
features that satisfy the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [19].

Software product line practice is a proven and practical approach for software system development,
including DoD systems. There are dozens of well documented cases showing the significant, even order-
of-magnitude- improvements achieved in terms of cost, time to deployment, and quality [4]. In
addition, the international Software Product Line Conference maintains a “Software Product Line Hall of
Fame,” a collection of exemplary software product line examples that other organizations can emulate;
currently 18 members have been inducted [17].

Product lines result when builders and acquirers recognize that few systems are unique. This is true for
systems acquired by DoD, systems built by DoD contractors and suppliers, and systems built by industry

6

for private sector use. Building these systems individually is not good technical or business practice, and
in the DoD it results in expensive rework, unnecessary system duplication, failure to achieve
interoperability, and delayed and diminished operational capability. A product line approach exploits the
commonality among similar systems, and tremendous cost and schedule improvements and decreased
technical risk have resulted.

At its essence, fielding a product line involves

(1) development or acquisition of core assets, which are software, document, process, and
management artifacts engineered to be re-used, and

(2) development or acquisition of products using those re-usable core assets.

(3) management for planning and coordinating core asset and product development.

The development activities can occur in either order (new products are built from core assets, or core
assets are extracted from existing products). Often, products and core assets are built in concert with
each other. Core asset development has been traditionally called domain engineering. Product
development from core assets is often called application engineering. The entire effort is staffed,
orchestrated, tracked, and coordinated by management. Figure 2 illustrates this triad of essential
activities. The interactions among the symbols indicates not only that core assets are used to develop
products, but that revisions to or even new core assets might, and most often do, evolve out of product
development. The diagram is neutral about which part of the effort is launched first. In some contexts,

already-existing products are mined for generic assets⎯a requirements specification, an architecture,

software components, etc.⎯that are then migrated into the product line's asset base. In other cases,
the core assets may be developed or procured for later use in production of products.

Figure 2 The essential activities of a software product line

Product lines employ planned, strategic reuse across a family of products to produce savings in the
following areas each time a product is ordered:

7

• Requirements. Most of the requirements are common with earlier systems, and so can be used.
Requirements analysis is saved. Feasibility is assured.

• Architectural design. An architecture for a software system represents a large investment in the
form of time from the organization's most talented engineers. The quality goals for a system--
its performance, reliability, modifiability, etc.--are largely allowed or precluded once the
architecture is in place. For a new product birthed from the product line, this most important
design step is already done and need not be repeated.

• Components. Not only code can be reused, but also the internal designs for the architectural
components are reused from system to system, as is the documentation of those designs. Data
structures and algorithms are saved and need not be reinvented.

• Modeling and analysis. One product line organization reports that one of the major headaches
associated with the kinds of systems they build--namely, real-time distributed--has all but
vanished. When they field a new product in their product line, they have extremely high
confidence that the timing problems have been worked out, and the bugs associated with
distributed computing– synchronization, network loading, absence of deadlock—have been
eliminated because their performance models have been validated across the entire family [1].

• Testing. Test plans, test processes, test cases, test data, test harnesses, and the communication
paths required to report and fix problems are already in available.

• Planning. Budgets and schedules can be informed or reused from previous projects, and they're
much more reliable.

• Processes. Configuration control boards, configuration management tools and procedures,
management processes, and the overall software development process are in place, have been
used before, and are robust, reliable, and responsive to the organization's special needs.

• People: Because of the commonality of the systems, personnel can be fluidly transferred among
projects as required. Their expertise is applicable across the entire line. When operational
needs call for a rapid deployment of a system, the right supplier personnel can be brought to
bear immediately.

• Training materials: Since systems in a product line have a common look and feel, training is
simplified and training materials apply across the family.

These reuse opportunities lead to the advantages touted for a product line approach to software system
development, which include

• Reduced time to deployment. Turning out a new product in the product line is more akin to
generation and integration, rather than ground-up coding. Cummins, Inc., reports that systems
that used to take a year to complete now can be turned out in about a week [8].

• Reduced cost. For example, products in the National Reconnaissance Office’s Control Channel
Toolkit product line cost approximately 10% of what they otherwise would have [6].

• Increased productivity. For example, Cummins estimates that they are now turning out fourteen
times the number of products they were before, while using only two thirds the software
resources, for a productivity gain of 2100% [15].

8

• Higher quality. Product lines enhance quality. Each new system takes advantage of all of the
defect elimination in its forebears; developer and customer confidence both rise with each new
instantiation. The more complicated the system, the higher the payoff for solving the vexing
performance, security, and availability problems.

• Simplified training. Users competent in one member of the product line are generally
competent to use others.

5. Product Lines and Acquisition
Product line practice is gaining more and more traction every year in the DoD, gaining a foothold and
proving its merits in small systems to high-visibility systems of systems. DoD organizations that have
adopted the software product line approach include:

• the Navy’s Program Executive Office for Integrated Warfare Systems (PEO IWS) (Figure 3) [10]

• the National Reconnaissance Office [6]

• the Naval Undersea Warfare Center (NUWC) [7]

• the Army’s Technical Applications Program Office (TAPO) [5]

• the Army’s Live Training Transformation effort [14]

• The Navy’s PEO for Submarine’s products from the Submarine Warfare Federated Tactical
System family of systems (Figure 4)

9

Figure 3 PEO IWS product line approach for surface combat systems

Figure 4 PEO Submarines SWFTS model for cross-platform product commonality

In addition a growing number of commercial DoD contractors are gravitating to software product lines.
The Software Engineering Institute maintains a catalog of software product line experience reports
published in the open literature; that catalog currently includes 54 examples [4].

There are three overall product line acquisition approaches [1]:

1. The government can commission a supplier to develop a specific product (or products) using the
supplier’s own proprietary product line. This strategy involves acquiring products directly from
a supplier who has an existing product line and a demonstrated capability to build products in
the domain of interest. An example of this approach is [13].

2. The government can commission a government organization to develop a product line
production capability and build specific products. This strategy involves acquiring a completely
government-owned product line using the in-house capabilities of a designated government
acquisition organization. An example of this approach is [14].

3. The government can commission a supplier to develop a product line production capability and
perform integration of products from other vendors into the production line. This strategy
involves acquiring a complete product line production capability and developing derivative
products through contracting with one or more suppliers. An example of this approach is [6].

10

Major challenges include the fact that DoD’s acquisition policies and infrastructure are still largely
predicated on acquiring ‘one-of-a-kind’ stove-piped systems, and no institutionalized means exist for
funding the development and sustainment of a product line across multiple programs. Nevertheless,
successful DoD product lines are being created by acquisition authorities with vision and foresight
enough to overcome the difficulties and reap the benefits.

6. Comparing Acquisition Approaches
A product line approach can only be fruitfully applied in the context of building a family of systems,
whereas an open architecture approach works for even a single system that evolves over time. In a
context in which both are applicable, how do they compare?

Cost. Both approaches promise lower cost. Open architecture achieves its cost savings by engendering
and facilitating competition among suppliers. However, crafting of a competitive market out of a closed
and vendor-locked set of business relationships has been a major challenge in the past. Designing an
architecture to put into place separately acquirable elements requires thorough systems engineering
and marketplace awareness. The goal is to foment a true competition, in a situation in which there is a
high likelihood that the incumbent could be the only possible winner by dint of long involvement with
the legacy system. Meeting this goal is a business and engineering challenge, but failure amounts to
leaving in place an unassailable barrier to entry by new suppliers, who may not be able to provide the
right technical products or (even if they are) not be able to undercut the price at all. The product line
approach achieves its cost savings by amortizing the cost of the core assets across all of the products
that use them. Product line approaches have demonstrated repeatable per-product cost savings of 50%
[7] to 67% [5] to 90% [6]. The more general Open architecture approaches have demonstrated savings
up at this level, but with lower consistency. For example, the A-RCI program achieved a 5:1 estimated
cost savings over a ten year period [2]. Savings in an open architecture approach remain roughly
constant over the number of products, whereas savings in the product line approach increase with the
number of products. In product line development, one source of cost savings is higher productivity
among the developers. Developer productivity in a product line context has been shown to increase by
400% [21] to 500% [4] to 2100% [15].

Time to delivery. Open architecture approaches achieve reduced time to delivery by fostering
enterprise reuse and competition among vendors to bring greater innovation in product development
methodologies. Product line approaches achieve reduced time to delivery by pre-positioning the core
assets required to produce the next product (or next version of a product). The A-RCI project, the ability
to take robust solutions from the science and technology community and integrate them into tactical
sonar system in two years or less, a process that would have taken five years or more in the legacy
framework. Product line approaches have been shown to reduce time to delivery by 50% [5] to 60%
[13] to 67% [21] to over 90% [8][4].

Elimination of duplicate effort: DoD suffers from a plethora of almost-alike systems, developed in
isolation from each other. In the U.S. alone, over 80 companies, universities, and government
organizations are actively developing one or more of some 200 UAV designs [22]. In 2004, the General

11

Accounting Office was able to identify 2,274 separate DoD business systems (but nobody knows the true
number), a waste of billions of dollars [11]. In the vast majority of cases, such systems are all developed
and maintained separately, with poor or no acquisition interoperability among them. There is no
repeatable or systematic means to take advantage of the commonality of these systems and apply
common reusable components or features as a standard practice. Building and maintaining one system
at a time, compared to a proven product line approach, is a process laden with systemic inefficiency,
stretching development and sustainment budgets to the limit and leaving little left over to work on
imaginative new solutions. New software development reuse efforts, where attempted, are ad hoc,
repository based, and often devolve into a clone-and-own effort. Open architecture approaches, do not
directly address the problem of duplication (there may be several open but duplicate implementations
that are not strategically or financially aligned), whereas the product line approach gains its benefits by
exploiting situations in which duplication would otherwise occur.

Higher quality. Higher quality results from an OA approach through technical practices such as
Hardware/software independence, modularity with loose coupling and high cohesion, integrability,
upgradability and business practices such as, strategic reuse, especially the healthy pressure of
competition for component development as well as for system integration. Higher quality results from
the PL approach because errors wrung out of one system are automatically wrung out of other systems
in the same product line. In product line development, defects have been shown to drop by 50% [18]
90% [6] to 96% [21].

7. Open Architecture and Product Lines Together
While the two approaches differ in some fundamental ways, happily there is no reason why they cannot
work together. In fact, the two in combination might represent a “perfect storm” of acquisition leverage
that can systematically reduce cost, increase performance, and drive down risk. The ideal acquisition
occurs when both product lines and open approaches are applicable in the same acquisition context.
The focus of combining the two approaches lies in the architecture, but the challenge to achieving it lies
in the governance of the DoD acquisition community.

The architecture of a product line is one of its most important core assets, providing the blueprint for
how every product will be assembled and the parts (software components and supporting artifacts) it
will comprise. Interfaces of those parts are critical to the success of the product line’s architecture, for
only by mixing and matching instances of components suitable for different products can the product
line strategy work. Hence, product line architectures are open architectures, in a strict technical sense:
they have “published, accepted interfaces: to components “that can be provided by different vendors.”
Whether a product line architecture is an open architecture in the business sense (in other words,
whether the components for core assets and products really do come from different vendors) is a
matter of business policy within the organization that owns the product line. Some certainly are. For
example, Nokia’s product line for mobile phones is open outside Nokia, allowing external companies to
use Nokia’s core asset base to build their own phone products [24]. Hewlett Packard’s product line for
computer peripheral devices is open across widely disparate organizations within Hewlett Packard [21].

12

An acquisition combining the two approaches could employ strategy #3 in Section 5, overlaid with a
requirement that the architecture be open with publicly defined interfaces for the key elements. Here,
the government commissions one or more suppliers to develop a product line production capability and
build specific products. The production capability would include the architecture, openly defined;
populating the architecture with components applicable across the define scope of the product line
would be awarded on the basis of open competition.

Neither approach embodies unsolved technical challenges. The main hurdle for both is in the domain of
management and changing the way that organizations (government and private) do business. As
Machiavelli said, “There is nothing more difficult to take in hand, more perilous to conduct, or more
uncertain in its success, than to take the lead in the introduction of a new order of things.” The Defense
Research and Engineering “imperatives” [9]

• Accelerate delivery of technical capabilities to win the current fight
• Prepare for an uncertain future
• Reduce the cost, acquisition time and risk of our major defense acquisition programs
• Develop world class science, technology, engineering, and mathematics capabilities for the DoD

and the Nation

speak to a critical need for bold new ways to acquire and field systems for the warfighter. Product line
engineering and open architecture together promise the kind of outcomes necessary to address DoD
needs.

Product Lines, together with Open Architecture methodologies have great potential in DoD to unlock
opportunities for innovation, reduced risk, improve response to warfighter needs, and reduce costs.
However, this combined approach will require fundamental change in Program Office behavior,
acquisition leadership, resource community communication, warfighter interaction, and most
importantly changes in business practices. Moving out of vendor-locked expensive business
relationships to bring access to affordable innovation and flexibility requires a fundamentally different
technical and business approach. The best method to change government-industry business
relationships is by writing the desired behavior into the contract, a gradual, but achievable change
process. Changing internal government to government business behavior is harder, in that the
contract between parties is implied or weak. Program officers that do strategic reuse and combine
forces with another program to improve enterprise business value are making a bold move. The reward
mechanisms for acting on the best value for the Enterprise are not well established. Coordinating
budgets and aligning schedules across different resource sponsor offices is a daunting challenge that
needs further exploration, new methods, bold leadership, and sustained and steady hard work.

8. References
[1] Bergey, J., and Jones, L. “Exploring Acquisition Strategies for Adopting a Software Product Line Approach,”

Acquisition Research Symposium, Monterey, 2010.

13

[2] Boudreau, M., “Acoustic Rapid COTS Insertion: A Case Study in Spiral Development,” Naval Postgraduate
School, 30 October 2006 http://www.acquisitionresearch.org/_files/FY2006/NPS-PM-06-041.pdf

[3] Brownsword, L., and Clements, P. A Case Study in Successful Product Line Development, Technical Report
CMU/SEI-96-TR-016/ESC-TR-96-016, October 1996.

[4] “Catalog of Software Product Lines,” http://www.sei.cmu.edu/productlines/casestudies/catalog/
[5] Clements, P. and Bergey, J. The U.S. Army's Common Avionics Architecture System (CAAS) Product Line: A Case

Study, Technical Report CMU/SEI-2005-TR-019, September 2005.
[6] Clements, P., Cohen, S., Donohoe, P., Northrop, L. Control Channel Toolkit: A Software Product Line Case

Study, Technical Report CMU/SEI-2001-TR-030, October 2001.
[7] Cohen, S., Dunn, E., Soule, A. , Successful Product Line Development and Sustainment: A DoD Case Study,

CMU/SEI-2002-TN-018, September 2002.
[8] Clements, P., and Northrop, L. Software Product Lines: Practices and Patterns, Addison Wesley, 2003.
[9] “DDR&E Imperatives,” http://www.dod.mil/ddre/index.html
[10] Emery, K. “Surface Navy Combat Systems Engineering Strategy,”

http://www.nps.edu/Academics/Institutes/Meyer/docs/IWS%20OA%20Briefing%20to%20NPS%20March0410
.pdf

[11] FedSmith.com, “Billions Wasted…,” http://www.fedsmith.com/article/313/billions-wasted-dod-because-
duplicate-business-systems.html

[12] Jacques Gansler: “Global war” on contractors must stop,
http://blog.executivebiz.com/jacques-gansler-global-war-on-contractors-must-stop/7105

[13] Jensen, P. "Experiences with Product Line Development of Multi-Discipline Analysis Software at Overwatch
Textron Systems," Proceedings, SPLC 2007, Kyoto, September 2007, IEEE Computer Society.

[14] “Live Training Transformation (LT2),”
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=ba606e9dbff7c6d266cf16f2fd2a1bee

[15] McGregor, J., and Clements, P. “Better, Faster, Cheaper – Pick Any Three,” MIT Sloan Management Review,
submitted.

[16] “Open Systems Defined – Terms and Defiitions,” http://www.acq.osd.mil/osjtf/termsdef.html
[17] “Product Line Hall of Fame,” http://www.splc.net/fame.html
[18] Pronk, B. "Medical Product Line Architectures," Software Architecture. TC2 First Working IFIP Conference on

Software Architecture (WICSA1), 1999, 357-67. ISBN: 0 7923 8453 9.
[19] “Software Product Lines,” http://www.sei.cmu.edu/productlines/start/index.cfm
[20] “Summary of the Weapon Systems Acquisition Reform Act of 2009,”

http://levin.senate.gov/newsroom/release.cfm?id=308525
[21] Toft, P., Coleman, C., and Ohta, J.. "A Cooperative Model for Cross-Divisional Product Development for a

Software Product Line,'" Patrick Donohoe (ed.) Proceedings SPLC1, Kluwer Academic Publishers, 2000.
[22] “UAV Forum, Librarian’s Desk,” http://www.uavforum.com/library/librarian.htm,
[23] “Updated Naval OA Strategy for FY 2008,” https://acc.dau.mil
[24] Van der Linden, F., Schmid, K., and Rommes, E. Software Product Lines in Action, Springer, 2007, Ch. 12.

Author biographies
Nickolas H. Guertin, P.E. received a BS in Mechanical Engineering from the University of Washington and
a MBA from Bryant University. He is certified in Program Management and Engineering. Mr. Guertin
worked at three NAVSEA field activities in the areas of nuclear propulsion plan testing, heavyweight
torpedo depot engineering and sonar system development. Mr. Guertin’s experience in Open
Architected system development spans fifteen years across sensor and weapon systems. Mr. Guertin is
in the Program Executive Office for Integrated Warfare Systems and leads the transformation to change
the business, technical, and cultural practices for how the Navy and Marine Corps buys and builds
systems as a coordinated enterprise effort.

Dr. Paul Clements is a senior member of the technical staff at Carnegie Mellon University's Software
Engineering Institute, where he has worked since 1994 in software product line engineering and
software architecture documentation and analysis. Clements is the co-author of three practitioner-
oriented books about software architecture: "Software Architecture in Practice" (1998, second edition

14

2003), "Evaluating Software Architectures" (2001), and "Documenting Software Architectures" (2002,
second edition 2010). He also co-wrote "Software Product Lines: Practices and Patterns" (2001), and
was co-author and editor of "Constructing Superior Software" (1999). Before joining the SEI, he was a
senior software engineer at the U.S. Naval Research Laboratory in Washington, D.C.

(end)

