
The Watts New? Collection:

Columns by the SEI’s Watts Humphrey

http://interactive.sei.cmu.edu

The Watts New? Collection 1

Why Does Software Work Take
So Long? 2

Your Date or Mine? 10

Making Team Plans 16

Bugs or Defects? 21

Doing Disciplined Work 27

Getting Management Support for
Process Improvement 31

Making the Strategic Case for Process
Improvement 36

Justifying a Process Improvement
Proposal 43

Moving the Goal Posts 51

The Future of Software Engineering:
Part I 55

The Future of Software Engineering:
Part II 61

The Future of Software Engineering:
Part III 68

The Future of Software Engineering:
Part IV 72

The Future of Software Engineering:
Part V 78

Surviving Failure 84

Learning from Hardware: Planning 90

Learning from Hardware:
Design and Quality 94

Some Programming Principles:
Requirements 100

Some Programming Principles:
Products 105

Some Programming Principles:
Projects 110

Some Programming Principles:
People 113

Defective Software Works 118

Introduction

The Watts New? Collection

Since June 1998, Watts Humphrey, perhaps the best-known member of the SEI’s technical staff,

has taken readers on a process-improvement journey, step by step, in his column Watts New?

These columns for SEI Interactive have explored the problem of setting impossible dates for

project completion (“Your Date or Mine?”), planning as a team, using TSP (“Making Team

Plans”), the importance of removing software defects (“Bugs or Defects?”), applying discipline to

software development (“Doing Disciplined Work”), approaching managers about a process

improvement effort (“Getting Management Support for Process Improvement”) and making a

persuasive case for implementing it (“Making the Strategic Case for Process Improvement”).

In the last column in this volume, Watts presents an example of a process improvement proposal—

complete with the numbers to back it up (“Justifying a Process Improvement Proposal”). We don't

want to give away the ending but the five-year savings are about $10 million and the five-year

return on investment is 683%!

We think these columns are an important contribution to the software engineering literature. As

such, we have collected them into this complete set, which you can download as a PDF file. We

hope that having The Watts New? Collection in one volume will make it easier to implement

software process improvement in your organization.
news@sei http://interactive.sei.cmu.edu 1

June 1998

Why Does Software Work Take So Long?

In writing this column, I plan to discuss various topics of interest to software professionals and

managers. In general, I will write about issues related to engineering productivity, quality, and

overall effectiveness. Occasionally, I will digress to write about a current hot item, but generally I

will be pushing the process improvement agenda. Because my principal interest these days is

getting organizations started using the Personal Software ProcessSM (PSPSM) and Team Software

ProcessSM (TSPSM), readers should know that a not-so-hidden agenda will be to convince them to

explore and ultimately adopt these technologies.

Have you ever started what you thought was a two- or three-day job and have it stretch into a week

or two? Before deciding you are just bad at estimating, look at how you spent your time. You will

find you spend much less time on projects than you imagine. For example, on one project, several

engineers used time logs to track their time in minutes. They averaged only 16 to 18 hours a week

on project tasks. They were surprised because they all worked a standard 40-hour week.

This information soon turned out to be helpful. They were on a critical project and were falling

behind. When they looked at the data, they found the design work took 50% longer than estimated.

They knew they had a choice: either do the tasks faster, or put in more time. While there was

pressure to race through the design, skip inspections, and rush into coding, the team resisted. They

knew this would probably result in many errors and a lot of test time.

To meet their schedule, they needed to average 30 task hours a week. They all tried valiantly to do

this, but after Christmas, they realized that just trying harder would not work. They went on

overtime and are now starting early in the morning, working late some evenings, or coming in on

weekends. While they now average 30 task hours a week, they have to work over 50 hours a week

to do it. They are also back on schedule.

Because this team had detailed time information, they could recognize and address their problem

in time to save the project. The data identified the problem and pointed them toward the solution.

Without good data on where your time goes, your estimates will always be inaccurate and you

won’t know how to improve.

Working Harder

When people say they are working harder, they actually mean they are working longer hours.

Barring major technology changes, the time it takes to do most tasks is relatively stable. The real

variable is the time you spend on the tasks. But to manage the time you spend, you have to track it,

and practically nobody does. Consider the following:
2 http://interactive.sei.cmu.edu news@sei

1. Our lives are filled with interruptions.

2. Software people do many kinds of tasks, and only some contribute directly to our projects.

3. Our processes are often informal and our working practices ad hoc.

4. Even if we wanted to, it is hard to do demanding intellectual work for long uninterrupted
periods.

Interruptions

One engineer told me she had recently started to track her time and found she was spending much

more time on interruptions than on her real work. For example, on one task of 108 minutes, her

interruption time was over 300 minutes. This lost time, however, was not in big hour-long blocks

but from an incessant stream of little 5- and 10-minute interruptions.

Interruptions come from many sources:

• telephone calls

• other engineers asking for help

• a coffee or rest break

• supply problems (i.e., printer or copier out of paper)

• equipment problems (the network dies)

• a power failure or a snow storm (everybody leaves)

Every interruption breaks your train of thought and takes time away from your work. With

unplanned interruptions, you lose your place in the work and, when the interruption is over, you

have to reconstruct where you were. This also causes errors.

For example, when I am in the middle of a design, I am often working on several things at the

same time. While thinking through some logical structure, I realize that a name is misleading, a

type must be changed, or an interface is incomplete. If I am interrupted in the middle of this, I

often have trouble remembering all these details. While I have been unable to control the

interruptions, I have found that maintaining an issue log helps me remember what I was working

on when interrupted.

Non-Project Work

Most engineers also spend a lot of time on non-engineering tasks. Examples are

• handling mail
news@sei http://interactive.sei.cmu.edu 3

• setting up or updating their computing systems

• going to meetings

• looking for some specification, process, standard, or manual

• assisting other engineers

• attending classes

Few software development groups have adequate support. No one sets up or maintains his or her

development system, few have groups to handle product packaging and release, and there is no

clerical or secretarial support for mail, phone, or expense accounts. What is more, even when they

have such support, many engineers don't know how to use it. This means that most of us spend

more time on clerical and support work than on our principal development tasks. And every hour

spent on these tasks is an hour we can't spend on development.

Lean And Mean Organizations

Often our organizations pride themselves on having very small support staffs. An almost

universally accepted management axiom is that overhead is bad and should be eliminated. In the

resulting lean and mean organizations, the engineers do their own clerical work. This is not an

effective way to use scarce and expensive software talent.

By cutting overhead, management also eliminates the support staffs that funds in the overhead

budget support. While some of these groups are not the least bit interested in supporting the

engineers, many are. Eliminating them can have enormous costs. Among these costs is the time

every engineer must spend sorting through email, answering the phone, getting supplies, doing

expense accounts, and filing mail and documents. In addition to the lost engineering time, this also

means that most mail is not answered promptly if at all, phones go unanswered, supplies are

wasted or overstocked, and little if anything is properly filed or can be quickly found when needed.

Perhaps most expensive and annoying, every software engineer in such “lean and mean

organizations” must set up and maintain his or her personal computing environment. Just because

we have the skills to do this doesn't mean we should. Most of us could repair our cars or paint our

houses if we chose to, but it would take us longer than using someone who does this for a living.

And we have other things to do. Why should we have to handle our own computing support? The

principal reasons that engineers spend less than half their time doing the tasks they were trained

and hired to do is that, without adequate support, they have to support themselves. What is more,

few engineers enjoy or are very good at being part-time clerks and technicians.
4 http://interactive.sei.cmu.edu news@sei

Ad-Hoc Working And Planning

When no one has taken the time to define and document the organization’s practices and methods,

they must be maintained informally. When you come to a task that you haven’t done before or at

least not recently, you look around to see how it should be done. It takes time and a lot of

interruptions to find someone with the right experience and get their help. While this is vastly

preferable to bulling ahead without exploring prior experience, it does cut into the working week.

A related but slightly different problem concerns planning. When projects don’t make detailed

plans, and when engineers don’t know precisely where they fit into these plans, they must do what

I call continuous planning. In continuous planning, the key tool is not the PERT chart or Microsoft

Project, it is the coffee machine. When you finish a task, you go to your continuous planning tool

to have a cup of coffee. While there you decide what to do next. In the process, you talk to any

other engineers who are also doing continuous planning and see what they think. You will usually

get some good ideas, but if you don’t, you can always interrupt someone.

The common view is that planning takes too much time. By not planning, engineers can

immediately start on their programming work. While this immediate progress will feel good, you

won’t know where you are. Like driving in a strange country without a map, you have to stop at

every turn and decide where to go next. All these short stops will take far more total time than a

properly thought-out plan would have taken in the first place.

You Also Need An Occasional Break

Finally, creative development is hard work. When designing a product or a system, we need

uninterrupted time. But we cannot design complex products for more than a few hours at a time.

The same is true of testing, reviewing, inspecting, coding, compiling, and many other tasks.

One laboratory decided to set up a dedicated group of experts to inspect a large and important

product in final test. Every module that had test problems was sent to this group. For a while, they

cleaned up a lot of defect-prone modules. Then, one of them later told me, they could no longer see

the code they were inspecting. Everything began to blur. They even saw source code in their sleep.

Designing, coding, reviewing, inspecting, and testing are intensely difficult tasks. To have any

hope of producing quality products, we must occasionally take breaks. But, to be reasonably

efficient, and to do high-quality work, we need to control our own breaks, not take them when the

phone rings or when somebody barges into our office or cubicle. Studies show that when engineers

spend all their time on their principal job, their performance deteriorates. Some reasonable

percentage of time on other tasks such as planning, process improvement, quality analysis, or

writing papers can improve engineering performance. You will get more and better work done in

the remaining 75% of your time than you would have accomplished in 100% of dedicated time.1
news@sei http://interactive.sei.cmu.edu 5

So, Keep Track of Your Time

To manage your personal work, you need to know where your time goes. This means you need to

track your time. This is not hard, but it does require discipline. I suggest you get in the habit of

using the time recording log, shown in Tables 1 and 2.2 When doing so, enter the tasks and the

times when you start and stop these tasks, and also keep track of interruption times. If you do this,

you will soon see where your time goes. Then you can figure out what to do about it.

Manage Interruptions

Next, interruptions are a fact of life, but there are many ways to deal with them. Use “DO NOT

DISTURB” signs and establish an ethic where everybody (even the managers) respects them.

Forward phone calls or even unplug or turn off the phone. Also consider getting permission to

work at home for a day or two a week.

Another way to manage interruptions is to get in the habit of using an issue-tracking log. Then,

when you think of something you need to do, make a note of it in the log so you will remember to

do it later and you won't forget it when the phone rings. While you will still have to handle these

issues, you are less likely to forget them and you can do them at a planned time.

Also, use this same principle with interruptions. When someone calls in the middle of a design

problem, tell them you'll get back and then make a note on a sticky so you don't forget.

Learn to Use Administrative Support

Learn how to use support. While few engineers have a support staff to help them, many who do

don't know how to use them. If you have a support person, think about every clerical-type task

before you do it. Can this person do it for you? Even though it may take longer at first, use them

whenever you can. At first the result may need to be redone. But be patient and help the support

people understand your problems with their work. It will pay off in the long run.

Plan Every Job

Perhaps most important, learn to plan. Plan your own work and urge your teammates and the

project leader to start planning. Proper planning takes time, but it can save much more time than it

costs. You will end up planning anyway, but it is much better to do it in an orderly way, and not at

the coffee machine.

Vary Your Work

You can do demanding work only for so long. I lose my ability to do intense creative work after an

hour and a half to two hours. I need to stop for a break or even to switch to some other kind of
6 http://interactive.sei.cmu.edu news@sei

work. Further, during these intense sessions, frequent short interruptions offer no relief. It then

takes an extra effort to reconstruct my thought process.

What I suggest is to intersperse various kinds of work throughout your day. Do creative work

when you are most fresh and productive and then switch to your email or an administrative task.

Then perhaps do a design or code review possibly followed by a process-improvement task or data

analysis. By varying the task types, your creative work will be of higher quality and you will

actually get more done.

Define and Use a Personal Process

When you regularly make plans, a defined process will save a lot of time. The process provides a

framework for gathering historical data and a template for making plans. And, by using historical

data, your estimates will be more accurate.

Get and Use Historical Data

Finally, if you don’t have administrative or technical support, use your time log to see what this

lack costs you. Then tell your managers and show them your data. It might help them see the cost

advantages of adequately supporting their engineers. Remember that the amount of work you

produce is principally determined by two things:

1. the time the tasks will take

2. how much time you have available for these tasks

To manage your work, you must know where your time goes. Only then can you judge how much

work you can do and when you will finish it.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful suggestions I received from Dan Burton, Alan

Koch, and Bill Peterson.

Notes

1. For a brief discussion of this issue, see my book Managing Technical People, Innovation,
Teamwork, and The Software Process, Addison Wesley, 1997, page 186. A more complete
discussion is in Donald C. Pelz and Frank M. Andrews, Scientists in Organizations:
Productive Climates for Research and Development, Wiley, 1966, pp. 56, 65.
news@sei http://interactive.sei.cmu.edu 7

2. Concerning the Recording Log, see my book A Discipline for Software Engineering, Addison
Wesley, 1995. This log is also discussed in Introduction to the Personal Software Process, also
by me and published by Addison Wesley in 1997.

Table 1: Time Recording Log

Engineer Date

Program Module

Date Start Stop Interruption
Time

Delta
Time

Phase Comments

Table 2: Time Recording Log Instructions

Purpose • Use this form to record the time spent on each project task.
• Either keep one log and note the task and product element for each entry or keep separate logs for each

major task.

General • Record all the time you spend on the project.
• Record the time in minutes.
• Be as accurate as possible.

If you need additional space, use another copy of the form.

Header Enter the following

• your name
• today's date
• the project name
• the name of the program or other
• product element

If you are working on a non-programming task, enter the task description in the comments field.

Date • Enter the date when you made the entry.

Example • 4/13/98

Start • Enter the time when you start working on a task.
8 http://interactive.sei.cmu.edu news@sei

Example • 8:20

Stop • Enter the time when you stop working on that task.

Example • 10:56

Interruption
Time

• Record any interruption time that was not spent on the task and the reason for the interruption.
• If you have several interruptions, enter their total time.

Example • 37—took a break

Delta Time • Enter the clock time you actually spent working on the task, less the interruption time.

Example • From 8:20 to 10:56, less 37 minut4es or 199 minutes

Phase • Enter the name or other designation of the phase or step you worked on.

Example • planning, code, test, etc

Comments • Enter any other pertinent comments that might later remind you of any unusual circumstances regarding
this activity.

Example • Had a requirements question and had to get help.

Important • Record all worked time.
• If you forget to record the starting, stopping, or interruption time for a task, promptly enter your best

estimate.
news@sei http://interactive.sei.cmu.edu 9

September 1998

Your Date or Mine?

Congratulations, you’ve just been promoted. You get to lead the new project we just won. You will

have six engineers, but two of them are half time for a month or two. You can hire four more. The

delivery date is nine months.

What do you say?

Most engineers would say, “Gee thanks boss, I've always wanted to run a project and this sounds

like a great opportunity. I'll give it my best shot, but the date looks awfully tight.” If that's your

answer, you lose!

Who owns the nine-month date? When your boss offered you the promotion, whose date was the

nine months? It was the boss's date. But, when you said, “Boy that's a tough date, I'll do my best to

meet it,” whose date was it then?

Yours!

And don't ever forget it! You have just bought the ranch. Even though you had no intention of

doing so, and you didn't even have time to think about it, bang, it hit you out of the blue. And there

you are, the proud owner of a budding disaster.

So what else could you do? It turns out there is plenty you could do.

Getting Into Trouble

Projects usually get in trouble at the very beginning. They start with impossible dates, and nobody

has time to think, let alone do creative or quality work. All that counts is getting into test, and the

rush to test invariably produces a hoked-up product, a poor quality program, a late delivery, an

unhappy customer, and disgruntled management.

While the promotion looks good at first glance, it is only good news if you handle it right. To have

any chance of a successful project, there are things you must do right now. Before we talk about

what to do, however, let's discuss the causes and consequences of this all-too-common situation.

Pressure

The only way to manage development work is with pressure. Managers know that relaxed projects

rarely succeed. Projects can get into trouble by endlessly studying alternatives, not making
10 http://interactive.sei.cmu.edu news@sei

decisions, or loading up a product with nice features. These all seem like good ideas at the time,

but without pressure months can go by and nobody notices.

So expect pressure. Managers know they must push, and you can expect them to keep pushing, at

least if they are awake and doing their jobs. Their only questions are

What dates will they push for?

How hard should they push?

The Problems With Pressure

Schedule pressure causes all kinds of counterproductive behavior. People don’t plan their work,

they rush through their designs, and they don’t review their products. The big push is to

demonstrate progress to management, and the only thing management recognizes as progress is

getting into test.

Unfortunately, few managers really understand that this is the worst possible thing they could push

for. Most software engineers know that racing to throw a product into test is a mistake but they

don’t know how to fight the pressure. Then they feel compelled to rush through requirements and

design and to skip everything else but code and test. When they do, they know what will happen.

And of course it does.

While you can always say management was unreasonable, you will be responsible for being late

and producing a poor-quality product. Everyone can easily blame somebody else, but do you really

want to spend your life this way?

I Told You So

You know intuitively when a schedule is too aggressive. You have a queasy feeling in the pit of

your stomach. You can sense the dates are wildly optimistic, and you know this is a disaster just

waiting to happen. So you tell the manager, “That schedule looks awfully tight to me,” and the

manager responds, “But that is the date in the contract, or that's the date the customer demands, or

that's the date the boss committed.” So you say, “Ok boss, if you say so, I'll try but don't be

surprised if it takes longer.”

Now that you told the boss, if there are problems, you can always say I told you so. Unfortunately,

that won't help. The minute you walk out of the room, it is your date. You may have been worried,

but you took the job didn't you? Why did you take the job if you didn't think you could do it? If

you don't settle the issue right now, you will be the goat, no matter what you say about the date.
news@sei http://interactive.sei.cmu.edu 11

Negotiating Schedules

So you must take a stand. Most engineers are so focused on the job that they don’t think about what

the manager is saying. When managers say the delivery date is nine months, they are making a bid.

And you bought it without a counter offer. You’d never buy a house or a car or a boat this way.

You’d debate the number.

Think about it this way. Management has just said, “We have this key project, and the best date we

think you can make is nine months.” If you don't counter with another date, they will hold you to

nine months. Unfortunately, if you just guess a later date, they will ask you why. And if you don’t

have a good answer, they will either ignore your date or get somebody who won't argue.

Management doesn't know how long the job will take, and neither do you. If you knew, and if you

could convince them you knew, they would accept your date. If the project really will take 12

months, the last thing most managers want is a commitment to deliver in 9 months. You work for

them, and they will also be held accountable for your schedule. They could easily lose their jobs if

your project fails, and all you would lose is a chance to have another disaster. That would probably

be a relief, at least after this project.

Handling Pressure

You must start by convincing management that you know how long the project will take. To do

this, however, you must know yourself. This, it turns out, is not very difficult. It takes time and

some hard work, but when engineers make careful estimates, and when they use historical data to

make these estimates, they are generally pretty accurate.

The way you determine the date is to make a plan, and to make a very detailed plan. Since this can

take a lot of work, and since you want your team to be part of this planning process, you need to

get your new team to help you. This actually is the best possible approach. It will not only produce

the best plan, but the team will then be in a far better position to do the work. They will also be

committed to the schedule.

Then, when you have the plan, go back to management and tell them what the date really is. When

they argue with you, as they will, take them through your plan. Show them as much detail as they

will sit still for. Walk them through the numbers, and the task lists, and the historical data you used

for comparison. Talk about product sizes and productivity rates. Show them enough to really

convince them that you know what you are talking about.

Be Flexible But Firm

Once you have made the sale, and management accepts your plan, stop selling and move on to the

next subject. They will probably want to talk about alternatives. What would the date be with more
12 http://interactive.sei.cmu.edu news@sei

staff, or reduced requirements, or a phased-version delivery plan? They may want you to present

the plan to higher management, or to the customer. In fact, you will probably have to walk more

people through the plan, so keep it dusted off, and make sure your backup is solid. Expect people

to find any chinks or inconsistencies. Remember though, these are estimates. So tell them what

you think and why, but remember that no one knows as well as you do how long the job will take.

If anyone can convince you that your estimates are off, be willing to make adjustments. As long as

they have actual historical data to back up their opinions, and as long as these data are relevant to

your project, consider the new facts. Under no conditions, however, make any such decisions on

the spot. Any schedule change requires careful study and team agreement. So don’t change your

estimates without data and the time to review them with your team. Remember, almost all initial

plans are tight, so don’t cut your schedule without a very good story that the team agrees with.

Answering Management

So, when management says the date is nine months, the way to answer is to say, “That looks like a

great opportunity boss. Let me get the team together and we'll take a look. We'll make the best plan

we can, and be back to you in a couple of days.”

If you think the schedule will be longer than management wants, don't argue about it right now.

You don't have the ammunition to win that argument, and all that would do is convince

management that you have a bad attitude. If they think you are out to prove their date is wrong,

they won't let you make the plan. Remember, they don't believe you can give them a good date.

After all, nobody has made good schedules before, so why should you be first?

So start with a positive attitude, and really drive for a better date. In fact I once had a team come

back with a five-week better schedule than management had asked for, and they're still holding to

their plan. So give it an honest try, but then get the data to defend it.

How Does This Work

I have coached many development teams on how to do this, and it always works. Of course, we

have started by softening up management, and we have been there to help at the beginning. But

teams are surprised at how well this approach works and, after a good start, they can usually

continue working this way. Management also quickly discovers that informed and committed

teams do vastly better work. While most plans come in with longer dates than management wanted

and management always asks lots of tough questions, when teams have good plans they can

defend them. And when they defend their plans, they always convince management. Best of all,

they end up working to their schedule not management's.
news@sei http://interactive.sei.cmu.edu 13

So addressing the schedule problems up front really pays off, both for the engineers and for

management. While it takes management a few days to get over the shock, they will end up with a

software team that knows what they are doing. These teams can report their progress against

realistic plans, deliver on the agreed schedules, and produce fine products.

The Next Steps

So you need to know how to make a plan, how to present this plan to management, and then how

to defend the plan when it is attacked. Then, once you have done all this, all you have to do is

develop the product. But at least you will have a date that you and your team agree you can meet.

And, most important, you will have a well-thought-out plan to guide the work.

While these methods are not difficult, they are not obvious. If you need help in how to do this, one

place to look is at the various Personal Software Process (PSPSM) references that explain how to

make individual plans.

The SEI teaches PSP courses (see http://www.sei.cmu.edu/activities/psp/Publications.htm), and

there are a growing number of university and commercial courses available. We are also

introducing the Team Software Process (TSPSM), which shows teams of PSP-trained engineers

how to handle this planning and commitment process. TSP introduction also walks teams through

a launch process that produces their detailed plans and negotiates their schedules with

management.

Final Comments

While this all sounds logical and simple, everybody’s situation is different. If you remember two

basic principles, however, you should be able to handle almost any case. First, you are paid to do

what management wants you to do, so don’t refuse a direct order. Second, always be willing to

make a “best effort” but don't commit to a date without a plan. If management appears totally

unreasonable, however, read up on negotiating strategies before you get in over your head.1

Most managers will be reasonable and respect your desire to make a plan, but occasionally one

won't listen. While he or she could be totally unreasonable, it is more likely that higher level

managers are applying heavy pressure that your manager is unwilling to buck. You should

certainly try to turn such situations around, but that is normally very difficult. If you can't make

headway pretty soon, get out from under your gutless manager as quickly as you can.

1. Probably the best reference on this subject is Getting to Yes, by Roger Fisher and William Ury, Houghton Mifflin,

1981. I also summarize some key points about negotiating programming issues in Chapter 12 (Power and Politics)

of my book, Managing Technical People, Innovation, Teamwork, and the Software Process, Addison Wesley, 1
14 http://interactive.sei.cmu.edu news@sei

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful suggestions from Linda Gates, Alan Koch,

Warren Morrison, Mark Paulk, and Bill Peterson.
news@sei http://interactive.sei.cmu.edu 15

December 1998

Making Team Plans

At the team kick-off meeting, management told the engineers that the company critically needed

their new product in nine months. This group was introducing the Team Software ProcessSM

(TSPSM), and I had convinced management that the team should make a development plan before

they decided on the schedule. Management had agreed, and we scheduled a meeting for two days

later to review the engineers’ plan. Now, the 12-engineer team was assembled and ready to make

their plan. They had a lot of questions.

1. How do they make a plan when they don't know the requirements?

2. How detailed should they make the plan, and how much of the project
should they cover?

3. Suppose the plan doesn't finish in nine months; what do they do then?

And finally,

4. Since they knew so little about the product, could any plan they made
now be useful?

These questions are the subject of this column.

How Do They Make A Plan When They Don’t Know the Requirements?

The team was very concerned about the vague state of the requirements. While a couple of the

engineers had a general idea of what the product was to do, they did not see how they could make

a realistic plan without much more detail. I was coaching this team and pointed out that they could

make an accurate plan right after final product delivery. Their plan would be most accurate then,

but it would be least useful. On the other hand, they most needed a plan at the beginning of the

project, but it would necessarily be least accurate. So, while they did not yet know very much

about the product, they agreed to make the best plan they could produce.

Plan Accuracy

Clearly, the more you know about a product's requirements and design, the more likely you are to

make a good plan. Thus, plans will always be least accurate at the beginning of a project, and they

should get progressively more accurate as the work progresses. This suggests three things. First,

you must plan, even if you don't know very much about the job. Second, you should recognize that

the initial plans will be the least accurate. And third, you need to continually remake the plans as

you learn more about the work.
16 http://interactive.sei.cmu.edu news@sei

How Detailed Should They Make the Plan, And How Much of the Project
Should They Cover?

Planning is much like designing a product. It is a good idea to start with an overall architecture or

process and then to lay out the entire structure. What development tasks are required, in what

order, and how long will they take? Until you have an overall framework, a detailed plan could

address the wrong tasks or focus too much effort in the wrong places.

For example, I was assigned to a project some years ago. There had been many small schedule

changes, but everybody thought the project was on schedule. Nobody had ever produced an overall

plan. However, when we did, we found that testing time had been dangerously reduced. The

project was in serious trouble.

Without an overall plan, it is hard to see the cumulative impact of many small schedule slips. They

all add up, however, and without an overall perspective, the latter phases will invariably be

squeezed. So, while detailed plans are essential, they must be made in the context of an overall

plan that runs from the start date all the way to the final product delivery. Therefore, the first step

must be to make an overall plan.

Start With the Process, Then List the Products And Make An Estimate

Once the engineers agreed to make an overall plan, they had to decide on what development

process to use. By starting with the organization’s overall process framework, they defined their

specific project process in less than an hour.

Next, they defined the products to be produced by each process phase. They estimated the sizes of

the requirements and design documents and postulated an overall product structure. They judged

what components would be required and how big each component was likely to be. Each engineer

contributed to these discussions, and they compared this job with others they had worked on. It

was surprising how much relevant information the 12 of them had.

Next, the team had to figure out the effort required to develop each of these products. Again, every

engineer contributed his or her views. In some cases, they had real data for similar jobs. In other

cases, they made overall judgments based on general recollections. In the end, they came up with

estimates for every product. While some of these estimates were guesses, they were informed

guesses made by experienced engineers who had previously done similar work.

Make the Schedule

The last overall planning step was to produce the schedule. Here, the engineers estimated how

many hours they each had available for the project each week. Since many had prior obligations

that would continue, they allowed time for this other work as well. When they were done, they had
news@sei http://interactive.sei.cmu.edu 17

an estimate of the total hours the entire team would have available for each project week. Then

they spread the work over these hours to produce the schedule.

By this time, the engineers had a pretty good idea of how big the job was. Thus, they were not

surprised that the project would take much longer than the 9 months that management wanted. The

full schedule actually turned out to be 18 months. At this point, the team had defined the complete

process that they would use, produced a product list, made product-size estimates, and generated

an overall plan—all in one afternoon. While they were still concerned about the plan's accuracy,

they knew this was a big job, and there was no chance they could do the work in 9 months. They

also had a lot of data to back up their 18-month schedule.

Next Came the Detailed Plan

The next step was to look at the work that lay immediately ahead. On the morning of the second

day, the team made a detailed plan for the requirements phase. First, they examined the

requirements process and broke it into the steps needed to produce, review, and correct each

requirements product. To make sure their detailed plans fit into the overall plan, they started with

the overall estimates and then estimated the engineering hours for each step. They then named an

engineer for each task, and each engineer then used the same overall planning data as the starting

point for a personal plan for the immediate next phase.

When the team put these plans together, the result was a shock. The combined detailed plans took

much longer than the top-down plan for the same work. How could this be? The same engineers

had made the plan and they had used the same product list, size estimates, and development rates.

The problem was unbalanced workload. The lead engineers were involved in every step of the

work, and the less experienced engineers often had little to do. While the lead engineers could

likely produce the best products and everyone felt that they should participate in every product

review, this made them a serious bottleneck.

After some discussion, the team agreed to unload much of the lead engineers’ work. By balancing

the workload, the less experienced engineers got much more to do and the lead engineers

concentrated on the most critical parts of the job. The final balanced plan produced the same

schedule as the overall plan, and the team now felt they had a sound basis for doing the work. At

this point, it was noon of the second day, and the team had all afternoon to assess project risks and

to prepare a presentation for the management meeting.

What Happened

When the team presented their plan the next morning, management was impressed with the plan,

but unhappy with the schedule. They really did need the product in 9 months, but, after
18 http://interactive.sei.cmu.edu news@sei

considerable discussion, they were convinced that the 18-month schedule was the best that the

team could do.

The team followed this plan in doing the job. The requirements phase took several weeks longer

than planned and the design phase also took a little longer. But, the team stuck to their guns and

did a quality job. As a consequence, there were fewer late requirements and design changes,

implementation took less time than planned, and testing took practically no time at all.

In the end, the team finished the job 6 weeks ahead of the original 18-month schedule. Because of

the well-thought-out design and the high product quality, marketing was able to contain the

customer problem, and the product was a success.

Teamwork

Teams have a great deal of knowledge and experience, and when they are all involved in

producing their own plans, they will invariably do a first-class job. After all, they will do the work,

they have the most at stake, and they will derive the most benefit from having a realistic plan. With

a detailed plan, teams know precisely how to do the work, and they feel obligated to finish on the

dates to which they committed.

Closing Comments

First, early plans are invariably less accurate than those made later. The reason is that engineers

often overlook tasks, they don’t allow enough time to clear up requirements problems, and they

assume that they will work full time on the job. Also, in many organizations, management fails to

protect their teams from the normal turmoil and disruption of a running business. Thus, when you

consider all the pressures in working software organizations, the early team plans are almost

always aggressive. Thus, even if an earlier date is critically important, it is invariably a mistake to

cut these initial plans. If the problem is severe, the team should make a new plan with different

resource assumptions or work content. The best approach, however, is to wait until the end of the

requirements phase to replan. Then everyone will better understand the work, and they can make a

more accurate plan.

Second, there are lots of estimating tools and methods. While I am partial to the PROBE method

described in one of my books,1 estimating is a largely intuitive process. So, use whatever methods

help your intuition. However, do not rely on some magic tool to produce the plan. While the

detailed printout may look impressive, plans are only as good as the thought that went into them.

Remember that the principal benefits of planning are the engineers’ shared knowledge of how to

1. A Discipline for Software Engineering, Addison Wesley, 1995.
news@sei http://interactive.sei.cmu.edu 19

do the work and the team’s commitment to the plan. Use whatever tools and methods you have

available to help make the plan and to check your results, but use these tools only to support your

planning, not to replace it.

Third, to help you work efficiently and to coordinate your work with your teammates, you need a

detailed plan for the work immediately ahead. While you can rarely produce a detailed plan for an

entire development job, you should start with an overall plan and then produce a detailed plan for

the phase you are about to start.

Fourth, when management is unhappy with your team’s plan, don’t change it without making a

new plan. When you do, however, make sure you get different resource and work-content

assumptions. Without changes in their planning assumptions, teams invariably think of previously

overlooked tasks and end up with a longer schedule.

Finally, remember: if you cannot plan accurately, plan often. Plans are only as good as the

knowledge on which they are based. As you gain new knowledge, produce new plans. As long as

the previous plan is useful, however, don't bother making a new plan. But, the moment the plan

ceases to provide helpful guidance, make a new plan.

The Commercial

While the methods I have described are not complex, they are not obvious. That is the purpose of

the Team Software Process that we have developed at the SEI. It provides the guidance that teams

need to follow these methods on the job. The catch, however, is that to use the TSP, engineers need

to be trained in the Personal Software ProcessSM (PSPSM), and their management needs overall

training and guidance on how to lead and guide TSP teams.

Acknowledgements

First, I would like to thank Walden Mathews for asking some perceptive questions about planning.

The answers to his questions provided the basis for this column. Also, in writing papers and

columns, I make a practice of asking associates to review early drafts. For this column, I

particularly appreciate the helpful suggestions of John Goodenough, Mark Paulk, Bill Peterson,

Marsha Pomeroy-Huff, and Dave Zubrow.
20 http://interactive.sei.cmu.edu news@sei

March 1999

Bugs or Defects?

One of the things that really bothers me is the common software practice of referring to software

defects by the term “bugs.” In my view, they should be called “defects.” Any program with one or

more defects should be recognized as defective. When I say this, most software engineers roll their

eyes and feel I am out of my mind. But stick with me and you will see that I am not being

unrealistic.

To explain why the term “bug” bothers me, I need to pose three questions. First, do defects really

matter? Second, why not just worry about the important defects? And third, even if we have to

worry about all the defects, why worry about what we call them?

Do Defects Really Matter?

To answer this question, we first need to find out if defects are or can be serious. To do that, we

must define what we mean by “serious.” Here, while there will be wide differences of opinion,

there is almost certainly a basis for general agreement. First, if a defect kills or seriously injures

someone, we would all likely agree that it was a serious defect. Further, if a software defect caused

severe financial disruption, we would all probably agree that it too was a serious defect.

Lastly, there are lots of less significant problems, such as inconvenience, inefficiency, and just

plain annoyance. Here, the question of seriousness obviously depends on your point of view. If

you are the one being inconvenienced, and if it happens often, you would likely consider this

serious. On the other hand, if you are the supplier of such software, and the inconveniences do not

cause people to sue you or go to your competitors, you would probably not judge these to be

serious defects. However, if these defects significantly affected the bottom line of your business,

you would again agree that these too were serious defects.

So we are left with the conclusion that if defects cause loss of life or limb, result in major

economic disruption to our customers or users, or affect the profitability of our businesses, these

are serious defects.

Do They Matter To You?

The real question, however, is not whether defects matter in a theoretical sense but whether they

matter to you. One way to think about this would be in terms of paying the costs of dealing with

defects. Suppose you had to pay the discovery, recovery, reporting, repairing, redistribution, and

reinstallation costs for every defect a customer reported for your programs. At IBM in my day,

these costs averaged around $20,000 per valid unique defect. And there were thousands of these

defects every year.
news@sei http://interactive.sei.cmu.edu 21

Of course, the problem is not who made the mistake but why it wasn’t caught by the process. Thus,

instead of tracing customer-discovered defects back to the engineers who injected them, we should

concentrate on fixing the process. Regardless of their causes, however, defect costs can be

substantial, and if you had to personally pay these costs, you would almost certainly take defects

pretty seriously.

Why Not Just Worry About The Serious Defects?

At this point, I think most people would agree that there are serious defects, and in fact that the

reports of serious defects have been increasing. Now that we agree that some defects are serious,

why not just worry about the few that are really serious? This question leads to a further question:

Is there any way to differentiate between the serious defects and all the others? If we could do this,

of course, we could just concentrate on the serious problems and continue to handle all the others

as we do at present.

To identify the serious defects, however, we must differentiate them from all the others.

Unfortunately, there is no evidence that this is possible. In my experience, some of the most trivial-

seeming defects can have the most dramatic consequences. In one example, an executive of a

major manufacturer told me that the three most expensive defects his organization had

encountered were an omitted line of code, two characters interchanged in a name, and an incorrect

initialization. These each caused literally millions of dollars of damage. In my work, some of my

most troublesome defects were caused by trivial typing mistakes.

How Many Defects Are Serious?

Surprisingly, the seriousness of a defect does not relate to the seriousness of the mistake that

caused it. While major design mistakes can have serious consequences, so can minor coding

errors. So it appears that some percentage of all the defects we inject will likely have serious

consequences. But just how many defects is this? And do we really need to worry that much about

this presumably small number?

Based on my work with the Personal Software ProcessSM (PSPSM), experienced programmers

inject one defect in about every 10 lines of code (LOC) [Humphrey 95]. While these numbers vary

widely from engineer to engineer, and they include all the defects, even those found in desk

checking or by the compiler, there are still lots of defects. And even for a given engineer, the

numbers of defects will vary substantially from one program to the next. For example, when I have

not written any programs for just a few weeks, I find that my error rate is substantially higher than

it was when I was writing pretty much full time. I suspect this is true of other programmers as well.

So engineers inject a large number of defects in their programs, even when they are very

experienced.
22 http://interactive.sei.cmu.edu news@sei

Won’t the Compiler Find Them?

Now, even though there are lots of defects, engineers generally feel that the compiler will find all

the trivial ones and that they just need to worry about the design mistakes. This, unfortunately, is

not the case. Many of my programming mistakes were actually typing errors. Unfortunately, some

of these mistakes produced syntax-like defects that were not flagged by the compiler. This was

because some of my mistakes resulted in syntactically correct programs. For example, typing a “)”

instead of a “}” in Pascal could extend a comment over a code fragment. Similarly, in C, typing

“=“ instead of “= =“ can cause an assignment instead of a comparison. From my personal data, I

found that in Pascal, 8.6% of my syntax defects were really syntax like, and in C++, this

percentage was 9.4%.

Some syntax-like defects can have serious consequences and be hard to find. If, as in my case,

there are about 50 syntax defects per 1000 lines of code (KLOC), and if about 10% of them are

actually syntax like, then about 5 or so defects per KLOC of this type will not be detected during

compilation. In addition there are 30 to 50 or so design-type defects that will not be detected

during compilation. So we are left with a large number of defects, some of which are logical and

some of which are entirely random. And these defects are sprinkled throughout our programs.

How About Exhaustive Testing?

Next, most engineers seem to think that testing will find their defects. First, it is an unfortunate fact

that programs will run even when they have defects. In fact, they can have a lot of defects and still

pass a lot of tests. To find even a large percentage of the defects in a program, we would have to

test almost all the logical paths and conditions. And to find all of the defects in even small

programs, we would have to run an exhaustive test.

To judge the practicality of doing this, I examined a small program of 59 LOC. I found that an

exhaustive test would involve a total of 67 test cases, 368 path tests, and a total of 65,536 data

values. And this was just for a 59 LOC program. This is obviously impractical. While this was just

one small program, if you think that exhaustive testing is generally possible, I suggest you

examine a few of your own small programs to see what an exhaustive test would involve. You will

likely be surprised at what you find.

Just How Many Defects Are There?

So now, assuming you agree that exhaustive testing is impossible, and that some of these defects

are likely to be serious, what next? First, we find that the programs that engineers produce have a

lot of defects, at least before compilation and unit test. Also, we find that compilation and unit

testing cannot find all of the defects. So a modest percentage of the defects are left after unit

testing. But how many are likely left, and do these few defects really matter?
news@sei http://interactive.sei.cmu.edu 23

Here again, the data are compelling. From PSP data, we find that engineers typically find between

20 to 40 defects per KLOC when they first test their programs. From my personal experience, I

also find that unit testing typically finds only about 45% to 50% of the defects in a program. This

means that after unit test, programs will typically still have around 20 or more defects per KLOC

remaining. This is an extraordinary number. This means that after the first unit testing, programs

will typically have a defect every 50 or so LOC! And after integration and product test, there

would still be 5 to 10 or more defects left per KLOC. Remember, all of these defects must be

found in system testing, or they will be left for the customer.

Consider Some Data

Just so you know that this is not an exaggeration, consider some data from the Jet Propulsion

Laboratory (JPL). This organization develops the spacecraft that NASA sends to explore the solar

system. One of their internal reports listed all the defects found in the system testing of three

spacecraft [Nikora 91]. These software systems all had about 20 KLOC, and they were each tested

for two or more years. The cumulative defects per KLOC found during this testing by week are

shown in the figure. As you can see, they all had from 6.5 to nearly 9 defects per KLOC found in

system test, and that does not guarantee that all the defects were found. In fact, from the figure, it

seems pretty obvious that some defects remained. Note that these data were taken after the

programs were developed, compiled, unit tested, and integration tested.

Figure 1: Spacecraft system test defects/KLOC

This, by the way, should not be taken as critical of JPL. Their programmers are highly skilled, but

they followed traditional software practices. Normal practice is for programmers to first produce

the code and then find and fix the defects while compiling and testing.
24 http://interactive.sei.cmu.edu news@sei

But Why Not Call Them “Bugs”?

So, by now, you presumably agree that some defects are serious, and that there is no way to tell in

advance which ones will be serious. Also, you will probably agree that there are quite a few of

these defects, at least in programs that have been produced by traditional means. So now, does it

matter what we call these defects? My contention is that we should stop using the term “bug.” This

has an unfortunate connotation of merely being an annoyance; something you could swat away or

ignore with minor discomfort.

By calling them “bugs,” you tend to minimize a potentially serious problem. When you have

finished testing a program, for example, and say that it only has a few bugs left, people tend to

think that is probably okay. Suppose, however, you used the term “land mines” to refer to these

latent defects. Then, when you have finished testing the program, and say it only has a few land

mines left, people might not be so relaxed. The point is that program defects are more like land

mines than insects. While they may not all explode, and some of them might be duds, when you

come across a few of them, they could be fatal, or at least very damaging.

We Think In Language

When the words we use imply that something is insignificant, we tend to treat it that way, at least if

we don’t know any better. For example, programmers view the mistakes they make as minor

details that will be quickly found by the compiler or a few tests. If all software defects were minor,

this would not be a problem. Then we could happily fix the ones we stumble across and leave the

rest to be fixed when the users find them. But by now you presumably agree that some software

defects are serious, that there is no way to know in advance which defects will be serious, and that

there are growing numbers of these serious defects. I hope you also agree that we should stop

referring to software defects as “bugs.”

Finally, now that we agree, you might ask if there is anything we can do about all these defects?

While that is a good question, I will address it in later columns. It should be no surprise, however,

that the answer will involve the PSP and TSPSM (Team Software ProcessSM) [Webb 99].

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful suggestions of Dan Burton, Bob Cannon, Sholom

Cohen, Frank Gmeindl, and Bill Peterson.

References

[Humphrey 95] Humphrey, Watts S. A Discipline for Software Engineering. Reading, Ma.:
Addison Wesley, 1995.
news@sei http://interactive.sei.cmu.edu 25

[Nikora 91] Nikora, Allen P. Error Discovery Rate by Severity Category and Time to
Repair Software Failures for Three JPL Flight Projects. Software Product
Assurance Section, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109-8099, November 5, 1991.

[Webb 99] Webb, Dave & Humphrey, W.S. “Using the TSP on the TaskView Project,”
CROSSTALK, February, 1999.
26 http://interactive.sei.cmu.edu news@sei

June 1999

Doing Disciplined Work

Over the years, I have often been asked about how to get management support for process

improvement. Typically, engineers want to use better software methods; but they have found that

either their management doesn’t care about the methods they use or, worse yet, some managers

even discourage them from trying to improve the way they work. In addressing this subject, I have

decided to break it into two parts. The first part concerns disciplined work: what it is, and what it

takes to do it. Then, in later columns, I will address the problems of getting management support

for process improvement.

In discussing disciplined work, I answer five questions. First, what do we mean by disciplined

work? Second, why is disciplined work important? Third, what are the elements of disciplined

engineering work? Next, if you have the basic training and motivation to do disciplined work, why

can’t you just do it? And finally, what kind of support and assistance do you need to consistently do

disciplined work?

What Is Disciplined Work?

Discipline is an aspect of behavior. It involves consistently using sound methods. Discipline is

defined as an activity or regimen that develops or improves skill; acting in accordance with known

rules and proven guidelines. Disciplined behavior is generally needed whenever human error can

cause harm, substantial inconvenience, or expense. The disciplined behaviors are then designed to

reduce human errors, prevent common mistakes, and improve the consistency of the work. Also,

many people are surprised to find that disciplined behavior generally improves efficiency, saves

time, and even facilitates creativity.

Why Is Disciplined Work Important?

In every advanced field, you get better and more consistent results by using proper methods and

applying known and proven techniques. This is true in factories, development organizations, and

even research laboratories. No one would agree to an operation by a doctor who had not finished

medical school, spent years as a resident, and been board certified. Similarly, when hiring an

accountant, you would not consider someone who did not have a CPA certificate and was properly

licensed. If you had to go to court, you could not use a lawyer who had not passed the bar and been

qualified to practice in the state. Anyone doing biomedical or nuclear research knows that

disciplined behavior can be a matter of life and death.

While the software field is too new to have qualification mechanisms like those in many other

fields, we now know the practices required for good software engineering. In addition, we also

know that when software engineers use these methods, they consistently produce quality products

on their committed schedules and for the planned costs. Unfortunately, however, these methods are
news@sei http://interactive.sei.cmu.edu 27

not yet generally taught in university curricula. Thus, to advance in this field, engineers need to get

their own training and to develop their personal skills.

What Are the Elements of Disciplined Engineering Work?

Disciplined software engineering involves more than just producing good technical results. As is

true in other advanced fields, you need to address every aspect of the job. While technical

competence is essential, you also need to consider the customer’s needs, handle business concerns,

and coordinate with your teammates. If, for example, you handle the technical concerns but ignore

those related to the customer, you will likely produce a product that solves the wrong problem.

While you might not lose your job, it is never good for an engineer’s career to be associated with a

failed project.

Proper attention to customer-related issues requires understanding the requirements before starting

the design, maintaining close customer contact throughout the work, and planning and negotiating

every change with the customer. Important business issues involve planning, tracking, and

reporting on the work; focusing on quality from the beginning; and identifying and managing

risks. Key teamwork issues relate to agreeing on goals, making and meeting commitments, and

reviewing and supporting teammates’ work. Finally, your team needs a logical development

strategy, a sound architecture, a comprehensive design, and a set of rigorously followed standards

and methods.

Getting the Needed Skills

There are various ways to obtain the skills needed for disciplined work. While some of these skills

can be learned in university programs1, many must be learned through on-the-job experience.2

Instruction in disciplined personal and team software methods can also be obtained from the SEI

and its transition partners, but that requires your management’s support. While qualified training is

the route that I would suggest for anyone who can follow it, a principal concern of many engineers

is that they can’t get management support.

Why Not Just Do It?

While getting training is important, consistently using the methods that you know is even more

important. Unfortunately, it is also much more difficult. A growing number of engineers are being

1. Available PSP courses teach planning, process, measurement, and quality methods, using my text: A Discipline for

Software Engineering. If you can’t get into such a course, you could learn the basics from the PSP introductory text,

Introduction to the Personal Software Process.

2. I have written a textbook for a new teamworking course. It is called Introduction to the Team Software Process, and

it teaches the basics of the TSP. This book will be available from Addison Wesley in late 1999.
28 http://interactive.sei.cmu.edu news@sei

trained in disciplined engineering methods, but many of them find that even though they know

how to do good software work, they are unable to practice what they know. The reason is that

disciplined work is very hard to do, particularly when you try to do it by yourself. Here, there are

two contributing elements: lack of personal discipline and inadequate coaching and support.

Personal Discipline

How many times have you decided to do something but never really did it? Like New Year’s

resolutions, there are lots of things we know we should do like quitting smoking, not eating

between meals, exercising every day, and many others. We kid ourselves that we could do these

things if we really had to, but somehow we never do.

The problem here is that most of us try to maintain strict personal disciplines all by ourselves. For

example, can you visualize working for years to become a concert-quality pianist in a deaf world?

When the quality of your work is invisible and nobody knows or cares how you perform, it is

almost impossible to follow rigorous personal disciplines. This is why professional athletes and

performing artists have coaches, trainers, conductors, or directors.

Even at the pinnacle of their fields, professional performers need the help and support of a

cheering section, the constant push and motivation of a coach, and the demanding guidance of an

informed and caring trainer. This is not just a nicety; it is absolutely essential. We humans are a

group species. We work best in groups, and we have great difficulty performing alone. We need

somebody who knows and cares.

Coaching and Support

I was fortunate to be on a marvelous team when I was in college. Our coach had been on the U.S.

Olympic wrestling team; and he was an energetic, enthusiastic, and terribly demanding coach.

Nobody wanted to disappoint him. We all worked harder than any of us had ever worked before. In

our first year, he took a team of rookies to the AAU championship of 13 states. What was most

interesting to me was that the next year I transferred to a different school. The wrestling coach was

a nice guy, but he was not demanding or enthusiastic. Not only didn’t the team do well, I didn’t

either. Superior coaching makes an extraordinary difference, and it is necessary for any kind of

disciplined personal work.

What Kind Of Support Do We Need?

The issues that we face in software engineering are severalfold. First, our field has not yet

developed a tradition of disciplined work. Thus we must change an industry-wide culture. Second,

coaching is not a common management style. Managers in software, as in other fields, feel more

natural acting like straw bosses. Few know how to use, build, and develop the skills of their

people. But this is the essence of management: helping and guiding people to do the best work that
news@sei http://interactive.sei.cmu.edu 29

they are capable of producing. When people don’t perform as well as they should, managers should

help them develop their skills and motivate them to rigorously use the methods they know.

In software engineering, good work requires engineering discipline, and disciplined work requires

coaching. In a subsequent column, I will discuss getting managers to act like coaches.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful suggestions of Bob Cannon, Bill Peterson, and

Mark Paulk. I also thank Jean-Marc Heneman for his questions and comments on this topic.
30 http://interactive.sei.cmu.edu news@sei

September 1999

Getting Management Support for
Process Improvement

Over the years, I have often been asked about how to get management support for process

improvement. Typically, engineers want to use better software methods but they have found that

their management either doesn’t care about the methods they use or, worse yet, even discourages

them from trying to improve the way they work. In addressing this subject, I have decided to break

it into two parts. The first part, which I covered in the June 1999 issue of SEI Interactive, concerns

disciplined work: what it is, and what it takes to do it. In this column I address the problem of

getting management support for process improvement.

Obtaining Broad Management Support

Perhaps the biggest problem in starting an improvement effort is getting management support. The

first and most important step is to get senior management backing. Without support from the very

top, it is generally impossible to make significant changes. Next, however, you will need active

involvement from all the appropriate managers, particularly those managers who directly

supervise the work to be impacted by the change.

The reason for broad management support is that significant improvement programs generally

involve substantial changes in the way people work. If you don’t change the engineers’ working

practices, you can change the organizational structure and all its procedures, but nothing much will

really change. Thus, to have a substantial impact on an organization’s performance, you must

change the way the engineers actually work. While this is possible, it is very difficult, and it

requires the support of all levels of management. Senior managers must establish goals and adjust

reward systems. Intermediate managers need to provide funding and change priorities. And most

important, the working-level managers must make the engineers available for training, support

process development, and monitor the engineers’ work to make sure they follow the improved

practices. So, how do you get this kind of support? To address this question, we discuss three

issues:

1. Why do you want to make changes?

2. Which managers do you need support from?

3. Why should those managers support you?

Why Do You Want To Make Changes?

Since you are reading this column, you are probably interested in making process changes, and

these changes are undoubtedly in the way your organization develops or maintains software. This

means you are probably talking about some kind of process improvement, like getting a Capability
news@sei http://interactive.sei.cmu.edu 31

Maturity Model® (CMM)® program underway or introducing the Personal Software ProcessSM

(PSPSM) and Team Software ProcessSM (TSPSM). Whatever the approach, you will be changing

the way software work is done.

The first question to address is: why? That is, why do you want to improve the software process,

why should management support you in improving the software process, and why should the

organization care about how software is developed? These are tough questions, but they are the

very first questions managers will ask. You need to be able to answer these questions, and

depending on which managers you talk to, they will ask these questions differently. This leads us

to the next question.

Which Managers Do You Need Support From?

Depending on the size of your organization, there could be many management levels. Typically,

the manager from whom most of us need support is the manager immediately above us. While

there are lots of levels to discuss, let me assume that this immediate manager runs a project or a

department. Unless you are in a very small organization, this manager probably works for some

higher-level manager, and this higher-level manager probably works for some manager at an even

higher level. Up there somewhere there should be a senior-level manager or executive who is

concerned with the overall business, how it performs now, and how it will perform in the future.

This senior manager is concerned with where the business stands competitively, how new

technology will impact its products and services, and the changing needs of its customers.

The reason the manager’s level is important to you is that improvement programs focus on long-

term issues that are the principal concern of senior-level executives. Unless the managers below

the executive level are specifically charged with working on process improvement, most of them

will view improvement efforts as a distraction at best or, at worst, as a drain on critical resources.

The reason for this negative view is that process improvement deals with the overall performance

of an organization. It concerns competitive capabilities, long-term cost effectiveness, development

cycle-time improvement, and customer satisfaction. These are strategic issues that generally only

concern the most senior executives. Even in the departments, laboratories, or divisions of large

corporations, the performance measures for division general managers, laboratory directors, and

department managers are invariably concerned with immediate short-term results: delivering

products on time, managing tight budgets, or responding to customer-related crises.

While these issues are critically important, and they often spell the difference between

organizational failure and success, a total concentration on these topics will not change the way

organizations perform. If the organization is not cost competitive, or if it produces lower quality or

less attractive products, a focus on current performance will not improve the situation. The

immediate problems may be fixed and the burning issues resolved, but the organization will
32 http://interactive.sei.cmu.edu news@sei

continue working pretty much as it always has. It will thus continue producing essentially the same

results and generating essentially the same problems and issues. This brings us to the definition of

insanity: doing the same thing over and over and expecting a different result.

Generally, only the managers who think strategically will support a process-improvement

program. These are usually managers who have broad business responsibilities and are measured

by total organizational performance. They probably have multiple functions reporting to them, like

product development, marketing, manufacturing, and service.

Even senior managers, however, do not always think strategically. Most organizations, after all,

are owned by stockholders who are interested in the stock price. And since the stock price is

heavily influenced by quarterly financial results, even the most senior managers cannot afford to

ignore short-term financial performance. Unfortunately, many of these managers don’t worry

about much else.

Why Should This Manager Support You?

Now we get to the critical question: Why should any manager support you? In general terms, there

are three reasons why managers might be willing to support you:

1. What you want to do supports their current job objectives.

2. What you want to do will make them look good to their immediate and higher-level managers.

3. What you want to do is so clearly right that they are willing to support you in spite of its
impact on their immediate performance measures.

Getting Help From a Senior Manager

The relative importance of these reasons changes, depending on where the manager resides in the

management chain. At the very top are the managers who are most likely to focus on long-term

performance. This means that they will often support process improvement for all three reasons.

Thus, if you can show that process improvement will have a significant long-term benefit, you will

likely get support. You can generally accomplish this by showing how similar improvements have

benefited other organizations or, better yet, how they have benefited other parts of your own

organization.

For the CMM, for example, show how improvements in CMM level have improved the

performance of other software organizations. Also, show where your organization stands

compared with other organizations in your industry. For the PSP and TSP, you could show data on

quality, productivity, or employee turnover and how such changes could impact your organization.
news@sei http://interactive.sei.cmu.edu 33

If you can get the attention of a senior manager, and if you have your facts straight, the odds are

you can get this manager to seriously consider the subject of process improvement. Frequently this

is when you might get an outside expert to give a talk or to do an assessment. While you may have

to settle for a small initial step, the key is to get some action taken. Once you can get the ball

rolling, it is usually easier to keep it in motion.

If the manager you are dealing with is not at the senior executive level but one level lower, this

manager is probably not measured on strategic issues. Such managers would know, however, that

their immediate manager had such a measure. Thus, your manager is not likely to be motivated by

reason 1 but might be persuaded to support you for reason 2. Thus, by proposing something that

will make him or her look good to higher-level managers, this manager will personally benefit

while also helping you to get the improvement ball rolling. What you want to ask for from this

manager is help in taking the improvement story upstairs.

Getting Help At the First Management Level

Finally, the most common problem is dealing with a manager who is fairly far down in the

organization. This manager not only is not measured on strategic issues, but his or her immediate

manager is not either. This means that strategic objectives are not likely to be very compelling. At

this point, you only have two choices:

• Convince this manager that the improvement is a strategic necessity for the organization.

• Show how the improvement effort can help to address immediate short-term concerns.

While the latter is often the approach you must take, it has a built-in trap. The reason is that if

improvement is aimed at solving a short-term problem, as soon as the short-term pain is relieved,

the need for improvement is gone. This is like taking aspirin for a splitting headache. If the

headache is indeed a transient problem, that would be appropriate. If the pain is the first symptom

of a stroke or a brain tumor, however, the delay could be fatal. While promptly taking an aspirin

may usually be helpful for a stroke, you had better also see a doctor right away.

In the software process, the problems in most organizations are more like strokes and brain tumors

than they are like headaches. While you may have no choice but to sell the improvement effort as a

short-term solution, try to move to strategic issues as soon as you can get the attention of someone

upstairs.

The next questions concern making the strategic case for improvements, making the tactical case,

and moving from a tactically based to a strategically based improvement program. These will be

topics of future columns.
34 http://interactive.sei.cmu.edu news@sei

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton, Jean-

Marc Heneman, Julia Mullaney, and Bill Peterson.
news@sei http://interactive.sei.cmu.edu 35

December 1999

Making the Strategic Case for Process Improvement

In my previous column, I wrote about management support for process improvement and how

your approach should change depending on the manager you are dealing with. The questions left

open were how to make the strategic case for improvement, how to make the tactical case for

improvement, and how to move from a tactically based to a strategically based improvement

program.

In this issue, I describe how to make the strategic case for process improvement. I start on the

assumption that you can get the ear of a senior manager. You may work directly for this manager,

or you may have obtained an appointment to make a presentation on the subject. In any event, you

now have an appointment to see a senior manager. How do your prepare and what do you say?

The General Improvement Case

The approach to follow for almost any type of improvement effort would be much the same:

• Clearly define what you propose.

• Understand today’s business environment.

• Identify the executive’s current hot buttons.

• Make an initial sanity check.

• Start the plan with two or three prototypes.

• Estimate the one-time introduction costs.

• Determine the likely continuing costs.

• Document the available experience data.

• Estimate the expected savings.

• Decide how to measure the actual benefits.

• Determine the improvement’s likely impact on the executive’s current key concerns.

• Identify any other ways that the proposed improvement could benefit the business.

• Produce a presentation to give this story clearly and concisely.

Defining the Proposal

Before you do anything, define exactly what you want the executive to do. The best guide that I

have found is to actually prepare an implementation letter for the executive’s signature. Then in

the meeting, if he or she says, “Great, let’s do it,” pull out the letter and hand it over as a proposed

implementation instruction. While this reaction is not likely, the exercise will help you to produce
36 http://interactive.sei.cmu.edu news@sei

a clear statement of what you intend to propose. Also, if you are several management levels

removed from this executive, you should describe the letter as a proposed draft instruction that you

have not yet reviewed with your immediate management. Better yet, show the draft letter to your

manager first and get his or her suggestions on improving it.

Understand Today’s Business Environment

In preparing for the presentation, remember that there is no magic formula for convincing senior

managers. Every case is different. The approach must vary depending on the situation and the

executive’s current priorities. If, for example, this executive has just cut resources to meet a profit

goal or the organization has just lost a major contract, this might not be a good time to propose an

additional expense. So, plan your improvement strategy with a clear appreciation of what is

happening right now in the business.

Identify the Hot Buttons

Next, find out what this executive is most concerned about. Since most executives give lots of

talks and issue many statements and announcements, this is generally fairly easy to do. With few

exceptions, executives use every available occasion to plug the topics they feel are highest priority.

So get copies of some of this executive’s recent announcements and presentations, and look at the

common themes. You will usually see a fairly consistent message. The manager may frequently

mention profitability, or market growth, or development cycle time. Because executives are

concerned with many things, he or she will almost certainly make many points. But if there is an

overriding concern, much like a television commercial, this topic will pop up every time there is an

opportunity. Once you know the executive’s current hot button, figure out how the process

improvement you propose would address that concern, then make sure the improvement

justification addresses this topic.

Make an Improvement Sanity Check

In preparing an executive proposal, the first step is to gather the known facts about the costs and

benefits of the proposed improvement program. As soon as you have the data, make an initial

sanity check: Does the proposed process improvement directly address the executive’s key

concerns? If not, are the cost savings significant enough to justify the executive’s listening to the

proposal? If the improvement directly addresses something the executive has been pushing for,

then cost will not be a key concern. If cost savings are important, however, are the proposed

savings large enough to be convincing?

Most executives know that improvements are rarely as effective as first proposed and that there are

always hidden costs. A good rule of thumb is that improvements with savings of 2 or more times

are usually impressive while numbers below 25% are likely to be ignored or subjected to very
news@sei http://interactive.sei.cmu.edu 37

close scrutiny. If cost is important and you are not proposing a significant cost saving, consider

putting off the presentation until you can make a stronger case.

Prototype Introduction

If the proposed improvement passes this sanity check, the next step is to analyze the costs of

introduction. It is almost always a good idea to start an improvement program with one or more

prototype tests. This not only reduces the initial introduction costs, it also maximizes your chances

of success. Just about any change will affect both engineer and management behavior, and these

changes are rarely natural or easy. Thus, many people will likely have initial problems following

the new methods. To be successful, you must identify and resolve these problems at the very

beginning. The longer it takes people to properly use the new methods, the more the introduction

will cost and the longer it will take to show benefits. The principal advantages of starting with a

prototype program are that the initial costs are lower and it is easier to watch a few limited pilot

programs to make sure they are getting the needed support and assistance.

One major risk in any improvement program is that the prototype project could be cancelled or

redirected. To protect your project from this risk, try to get two or three trial projects underway.

That way, if one is killed or redirected, you will still have the others to fall back on.

Introduction Costs

While you will almost certainly follow a gradual introduction strategy, it is a good idea to show

both the prototype and the total introduction costs. The reason is that the introduction strategy will

probably change several times before you are done and you don’t want to keep changing the cost–

benefit story. Emphasize that you are presenting the total introduction costs for the entire

organization, but that the initial costs for the prototype program will be much lower.

In any significant improvement, there will be initial introduction costs as well as continuing costs

for sustaining the improvement. Since any process-improvement introduction will require some

executive and management time, you need to make an appropriate allowance. Generally, however,

the major costs will be the time to train and support the engineers. Even the introduction of a new

tool takes training and support, so don’t gloss over the introduction costs; they can amount to very

big bucks.

For example, with a new programming language, a minimum of two weeks of intensive training is

usually required, often followed by a period of close consultation during initial use. Similarly, a

new tool will require an initial training session of several days plus guided practice sessions and

continuing professional support for at least a few weeks.
38 http://interactive.sei.cmu.edu news@sei

In estimating these costs, remember one key guideline: Your story will be judged by its weakest

point. If someone finds an error or a serious underestimate anywhere in the story, the assumption

will be that similar errors infect the entire story. So be careful about making low estimates or

assuming that some costs are insignificant. If you don’t know the facts, find someone who does.

Above all, don’t make unsupported assumptions; your entire presentation could be discredited.

In addition to executive, manager, and engineering time, trainers and expert assistance will almost

invariably be needed. This can add a significant cost, particularly if you plan to use outside

assistance. On the other hand, the costs of building internal experts and trainers can be very large,

and few executives will want to make such a significant commitment, at least until the proposed

improvement has been proven with early tests.

The Continuing Costs

After the improvement has been introduced, there will be ongoing support costs. You may need

continuing training to cover engineering turnover or staff growth. Expert assistance and support

may also be needed. These costs can be substantial, so it is important to identify them. Describe

them clearly up front and then justify them. If you don’t give a complete cost story, management

will sense that there are hidden costs and likely assume that these costs are much greater than they

actually are.

The Process-Improvement Benefits

Next, we turn to the benefits. Here, you must address two points: first, how long will it take for the

improvement program to recover the introduction costs, and second, how will the improvement

address the executive’s principal concerns? If you can show that the improvement will pay for

itself, then the other benefits would be pure gravy. So start by making the cost case.

The way to make the cost case is to first gather the available facts on improvement benefits. Here,

you are at a disadvantage. Costs are always easier to prove than savings. Executives know this,

however, probably better than you do. After all, they spend much of their time justifying changes.

So don’t worry about proving an ironclad case; executives will rarely demand it. But they will

want a logical story that hangs together and looks complete and realistic.

Improvement Experience

So, first, what are the available facts? Unfortunately, there are few statistically sound improvement

studies, even for accepted process-improvement methods. While there may be some available

analyses, you will probably have to rely on anecdotal evidence. This may not be as precise as a

comprehensive statistical study, but such evidence can be even more convincing. The best case

would be one in which someone in your industry has implemented the same improvement and

described its benefits in a talk or a paper. If you can find a suitable example, summarize the general
news@sei http://interactive.sei.cmu.edu 39

findings in the executive presentation, but then emphasize the results reported by your

competition.

Calculating the Savings

There are many ways to save money. In the final analysis, however, most software cost savings

result from personnel reductions. For example

• By introducing a design inspection program, you can eliminate defects early in the process and
save considerable rework.

• A measured quality program can reduce the numbers of defects found in test and shorten
testing time.

• A configuration-management system can save development time by ensuring that correct
program versions are always available.

• A change-control system can reduce the number of uncontrolled changes and save
development time.

While these savings are all real, they all have the disadvantage of being very hard to prove, either

in advance or after the fact. As a result, the most convincing argument is generally that the XYZ

Corporation cut their test time by x%, or that the ABC Company reduced customer-reported

defects by y%. Starting from these numbers, you can then generally show the amount of money

you would save if your organization had similar results.

Measuring the Benefits

In concluding the presentation, discuss how the prototypes will be designed to measure the

improvement benefits. For example, if the proposed improvement is intended to reduce

development cycle time, discuss how to demonstrate that it does. A common problem, however, is

that few organizations have data on their current operations. Thus, even if you conduct a highly

successful prototype experiment, you may have no way to show that it was successful. That is, you

will have lots of “after” data but no “before” data with which to compare it. As part of the

proposal, raise this issue and suggest ways to handle it.

Even when organizations have little or no data on their current operations, there are usually a few

things that you can measure. For example, data are often available on the length of time by which

projects have missed their planned delivery dates. There are also often records of the numbers of

defects found in system test or reported by customers. Similarly, data can generally be found to

calculate the percentage of the development schedule that is spent in integration and system test.

Another good measure is the total development hours divided by the total lines of delivered source

code. While no single measure can characterize the quality of an organization’s processes, there

are many possible measures that can be obtained from most accounting and project-reporting

systems.
40 http://interactive.sei.cmu.edu news@sei

Because you need to apply these measures to the existing projects, it is important to start looking

around for available data even before you make the proposal. Then you can use these data in

justifying the proposed improvement. Also, you can be reasonably sure that there will be a way to

measure the benefits when you are done.

Other Benefits

While cost savings are important, not all improvements can or should be cost justified. For

example, if you can show that the change will improve schedule accuracy and predictability,

reduce cycle time, or make your organization more competitive, management will often approve

the proposal, even if it does not clearly save money. The key is to convince management that the

improvement is good for the business and then, if possible, show that it will also pay for itself. If

you cannot prove the savings story, however, don’t give up. If the other benefits are compelling,

management may be willing to proceed anyway.

Stay Tuned

In the next issue, I will use an example to show how to structure and give an executive

presentation on process improvement. Following that, subsequent columns will deal with how to

make the tactical case for improvements and then how to move from a tactically to a strategically

based improvement program.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton,

Marsha Pomeroy-Huff, Jim McHale, Mark Paulk, and Bill Peterson.
news@sei http://interactive.sei.cmu.edu 41

Letter to Business Week

Finally, I want to take the opportunity in this column to share with readers a letter I wrote to

Business Week, in which I was quoted in the Dec. 6, 1999, issue:

To the Editor of Business Week

November 29, 1999

Dear Sir,

The article “Will Bugs Eat Up the U.S. Lead in Software?” nicely characterized the software

quality problem and the fact that U.S. industry is slow to recognize and address it.

Unfortunately, the article also implied that I was single-handedly responsible for the current

work to address this problem.

While I did initiate and lead the work to produce the first version of the Capability Maturity

Model (CMM), it was fully developed by a joint effort of the SEI, U.S. industry, and the

Department of Defense. My more recent work on personal and team software process

improvement also involves a team of SEI professionals and a growing number of industry and

academic participants.

The U.S. needs more people who are concerned about this problem and willing to devote their

lives to addressing it. It is thus important to recognize those who are already participating in this

work and to encourage more to join us.

Watts S. Humphrey

SEI Fellow

Software Engineering Institute

Carnegie Mellon University
42 http://interactive.sei.cmu.edu news@sei

March 2000

Justifying a Process Improvement Proposal

My December 1999 column described how to make the strategic case for process improvement. In

this column I provide an example of how to do this. This column thus assumes that you have the

ear of a manager or executive who thinks strategically and will consider investments that will

likely take a few years to pay off. In the next column, I will talk about dealing with tactically

focused managers.

The Financial Justification Process

The financial justification process has five phases:

The December 1999 column generally discussed these steps. This column walks you through a

hypothetical case study in which Tom Jones develops a proposal to introduce the Team Software

Process (TSP)SM.

Phase 1: Decide What to Do

Tom reviewed the situation in his organization and found that management’s top priority was to

reduce development cycle time. He decided to do this by introducing the TSP. He also talked to

experts about the TSP introduction strategy and found that it had the following seven steps:

Phase 1 Decide what to do.

Phase 2 Estimate the likely costs.

Phase 3 Estimate the likely improvement benefits.

Phase 4 Produce the improvement proposal.

Phase 5 Close the deal.

Step 1 Hold an executive seminar for selected top managers and executives from the division or laboratory. Tom estimated
that there would be 20 attendees.

Step 2 Give a half-day planning session to determine the improvement plan. Tom assumed that 10 of the first-day
attendees would participate.

Decision 1 Tom assumed that these first two phases would be successful but decided to include a decision step to reduce the
required initial commitment.

Step 3 Train the involved managers in the Personal Software Process (PSPSM) and TSP management methods. Tom
planned to include the team leaders, the managers of the team leaders, and several other managers below the
executive level. He assumed there would be 10 managers in this course.

Step 4 Provide PSP training to all the engineers who will be on the teams. Tom assumed there would be 2 teams with 8
engineers per team, or 16 engineers.
news@sei http://interactive.sei.cmu.edu 43

Phase 2: Estimate the Likely Costs

After Tom defined the proposed introduction program, he estimated its costs in four parts:

• Labor costs

• Internal support costs

• Consulting, training, and external support costs

• Lost opportunity costs

Estimating the Labor Costs

For the labor costs, Tom estimated the number of people to be involved in each of the introduction

steps as shown in Tables 1 and 2. Because the TSP launches in step 7 would be part of the project,

however, he did not count them as training time.

Table 1: PSP and TSP Introduction Program Training

Next, Tom checked with the financial people and found that the cost for a day of engineering time

was about $1,000 and that a manager or executive day cost about $2,000. While these rates seemed

high to him, finance explained that they included all the costs for overhead, support, vacation,

medical benefits, sick time, workers’ compensation, insurance, retirement, Social Security, and

Step 5 Provide general PSP training to any team members who are not programmers. This would be systems, hardware, or
test personnel, for example. He assumed that the first two TSP teams would be software only and that there would
be four system-requirements team members in this category.

Step 6 Tom planned to train two engineers to be PSP instructors so they could support the two TSP teams, handle training
for any team turnover replacements, and support further TSP introduction. These two instructor candidates would
also attend PSP training in step 4, bringing that total up to 18.

Step 7 The final introduction step Tom planned was to launch the two TSP teams.

Decision 2 Assuming that these initial team launches were successful, Tom planned to ask management to proceed with
broader TSP introduction.

Step Item People Prep.
Time

Class
Days

Engineer
Days

Manager
Days

1 Executive Seminar 20 1.0 20

2 Planning Session 10 0.5 5

3 Manager PSP Training 10 0.3 4.0 43

4 PSP Course I & II 18 2.5 7.0+7.0 297

5 General PSP Course 4 0.5 3.0 14

6 Instructor/Coach
Courses

2 10.0 20

Totals 331 68
44 http://interactive.sei.cmu.edu news@sei

taxes. Using these numbers, Tom calculated that the labor costs to train the two TSP teams and

their managers would be $331,000 + $136,000 = $467,000.

Table 2. Total TSP Five-Year Costs

Support Costs

Tom found that each TSP team would need coaching support of about 20% of the time of a TSP

instructor/coach. These costs would add about 80 engineer days per year or $80,000 a year.

Finally, any new or replacement engineers on the teams would have to be trained. Assuming an

annual turnover of 20%, that would be about three engineers to train per year at 14 days of training

each, or another 42 days of training and $42,000 per year.

External Costs

The costs for the external instructors and consultants for any improvement program are typically

fairly large, but they are generally much smaller than the labor costs. These external costs would

include delivering the courses listed in Table 1, launching and supporting the initial TSP teams,

several team relaunches, and occasional consultation and assistance.

Without going out for external quotes, Tom assumed that the external support costs for this initial

effort would add between 25% and 75% to the first-year labor costs, with the level of introduction

cost determined by how rapidly management wanted to introduce the TSP.

Cost Item Cost Calculation Total Cost

Internal introduction costs $1,000*331 engineering days

$2,000*68 manager days

$467,000

TSP coaching costs 2 engineers*40 days*1 year $80,000

External introduction costs 25% to 75% of internal costs $136,750 to
$410,250

Total one-year costs $683,750 to
$957,250

TSP coaching costs 2 engineers*40 days*4 years $320,000

Turnover training 3 engineers*14 days*4 years $168,000

Total five-year costs $1,171,750 to
$1,445,250
news@sei http://interactive.sei.cmu.edu 45

Lost Opportunity Costs

Tom realized that while the engineers and managers were being trained they would not be

developing or supporting products. To account for these costs, he would reduce the anticipated

first-year cycle-time improvement by the three-week engineer training time.

Phase 3: Estimate the Likely Improvement Benefits

In estimating the improvement benefits, Tom found data on the benefits that other organizations

had enjoyed with the TSP, and he also obtained data on the current performance of his

organization. Finally, he used these data to estimate the likely improvement benefits for his

organization.

Identify Available Improvement Data

Tom learned that Hill Air Force Base, on its first TSP project, increased productivity by 123% over

the same team’s prior project [Webb]. Hill AFB also cut test time from 22% to 2.7% of

development time, or a reduction of 88%.

He also found a presentation by Teradyne on its TSP results [Musson]. Through the use of the TSP,

Teradyne cut final test and field defects from a rate of 20 defects per thousand lines of code

(KLOC) to 1 defect/KLOC. Historically, final test and field defects had cost Teradyne an average

of 12 engineering hours per defect to find and fix.

By using the TSP, Tom also learned that Teradyne had reduced engineering and customer-

acceptance test time from nine months for an earlier project to five weeks for the TSP. Engineering

and acceptance test defects were cut from 5 defects/KLOC to 0.02 defects/KLOC, with no further

defects found by the customers.

In addition, he found that a Boeing TSP project had cut test defects by 75% from the prior project

average and reduced system test time by 96% [Vu].

Organizational Performance Data

To calculate the TSP benefits for his organization, Tom next needed data on how much time these

development groups spent in test, the level of defects in the various test phases, and the cost of

diagnosing and fixing each defect. With these data, he could then estimate the likely savings from

introducing the TSP.

Tom assumed that the 16 engineers on the 2 trial projects would develop a total of about 80,000

lines of code in 12 months. He also found that the time typically spent in integration and system

test was currently about 40% of the development schedule and that the defect levels in test and
46 http://interactive.sei.cmu.edu news@sei

field use were much like those at Teradyne, or 20 defects/KLOC. He assumed that these 20 defects

were split with 10 in integration test, 5 in system test, and 5 after product shipment. He also

assumed that the engineering cost to diagnose and fix these defects was about 1.5 days per defect.

Estimate the Likely Cost Savings

As shown in Table 3, Tom now estimated the likely savings. First, for the reduction in test defects,

he projected that the integration and system test defect/KLOC would be reduced from 15 to 1, for

a savings of 14 defects/KLOC. For the total 80,000 lines of code planned for these two projects, he

calculated that this would save 14*80 = 1,120 test defects. At a cost of 1.5 engineering days for

each defect, this would be a reduction of 1,680 engineering days or $1,680,000.

Table 3. Estimated Savings

To check these savings, Tom also looked at test-time reductions. The Boeing results showed a test-

time reduction of 96% and Hill AFB reported an 88% reduction. Tom assumed that the TSP would

reduce his organization’s integration and system test time by 85%, or from 4.8 months to 0.7

months for a 12-month project. This 4.1-month savings, at 21 working days per month and 16

engineers, came to a savings of 1,378 engineering days. At the typical engineering day rate of

$1,000, the test time savings were then $1,378,000. Since this estimate was a little lower than the

$1,681,000 savings based on defect reduction, he decided to use the lower number in the

justification calculations.

In addition, Tom also felt that there would be a maintenance cost reduction. For field and customer

defects, the Teradyne data showed a reduction from 5 defects/KLOC to 0.02 defects/KLOC. For

the 80,000 lines of code planned in his organization, he estimated a reduction of 398 customer-

reported defects. At 1.5 engineering days each, this would be a maintenance-cost savings of

Item Change Days Savings

#1 Integration/system test defects - 1,120 defects 1,120*1.5=1,680 $1,680,000

#2 Test time - 4.1 months 4.1*21*16=1,378 $1,378,000

#3 Maintenance costs -398 defects 597 $597,000

#4 First-year savings (#2+#3) $1,975,000

#5 First-year costs (Table 2) $957,250

#6 First-year ROI (100*#4/#5) 206%

#7 Five-year savings (#4*5 years) $9,875,000

#8 Five-year costs (Table 2) $1,445,250

#9 Five-year ROI (100*#7/#8) 683%
news@sei http://interactive.sei.cmu.edu 47

$597,000, for a total savings of $1,975,000 in one year. He then compared this to the maximum

one-time improvement cost of $957,250 to give a one-year return on investment of 206%.

Finally, Tom assumed that the initial two TSP teams would continue to use the TSP on subsequent

projects. For the next four years, additional costs would be needed to cover training for

engineering turnover ($168,000) and 20% of the time for the two PSP instructor/coaches

($320,000). The five-year savings would then be $9,876,000 and the five-year improvement cost

would be $1,445,250, for a return on investment of 683%.

Cycle-Time Benefits

Next, Tom used the reduction in test time to estimate cycle-time improvement. With the assumed

12-month project schedule and 40% of the schedule spent in test, normal testing time would be 4.8

months. By assuming an 85% reduction in test time, he estimated that the 4.8 months would be

reduced to 0.7 months. Thus, the typical 12-month schedule would be cut to eight months, or about

a 32% cycle-time reduction. For the first year, he also reduced this 4.1-month cycle time

improvement by the three-week initial team training time, for a net of 3.35 months schedule

savings.

Phase 4: Produce the Improvement Proposal

At this point, Tom had completed the estimating work and needed to produce a brief management

presentation. He decided on the following seven-part outline:

Presentation
Part 1

Opening summary. On one chart, he briefly summarized the problem, how he proposed to address it,
and the likely benefits.

The problem To improve cycle time and not increase costs

The solution Introduce the Team Software Process (TSP)

Likely benefits A 32% reduction in cycle time

A $2 million one-year savings, $10,000,000 in five years

A $950,000 one-time introduction cost

About $500,000 in subsequent four-year support costs

A one-year return on investment (ROI) of 206%

A five-year ROI of 683%

Presentation
Part 2

The proposal. He briefly described the proposal.

He first asked for a minimum commitment to steps 1 and 2 of the introduction program.

Second, assuming that the first two steps were successful, he proposed to proceed with the two-
team TSP pilot program.

Third, after the two teams were underway and the early experience was satisfactory, he planned to
proceed with broader TSP introduction.
48 http://interactive.sei.cmu.edu news@sei

Phase 5: Close the Deal

Tom’s final step was to make the presentation and get the order.

Closing Comments

While this example is for a specific process-improvement method, the principles are quite general.

To relate this example to the discussion in the December column, the five phases in this example

relate to the topics in the December column as follows:

Presentation
Part 3

Description of the TSP. As backup, he prepared a brief description of the TSP and its objectives.

Presentation
Part 4

Summary of the TSP benefits obtained by other organizations. Also as backup, he prepared a summary
of the available data.

Presentation
Part 5

Summary of the introduction plan. As backup, he made a list of the principal phases and decision points
in the introduction plan.

Presentation
Part 6

Summary of the estimated cost savings. As backup, he made a summary of the cost savings
calculations with the key assumptions and supporting data. He also reviewed these figures with finance
before the presentation.

Presentation
Part 7

Summary of the estimated cycle-time reduction. As backup, he included a summary of the cycle-time
improvement calculations with the key assumptions and supporting data.

Phase 1 Decide what to do:

Clearly define what you propose.

Understand today’s business environment.

Identify the executive’s current hot buttons.

Make an initial sanity check.

Phase 2 Estimate the likely costs:

Start the plan with two or three prototypes.

Estimate the one-time introduction costs.

Determine the likely continuing costs.

Phase 3 Estimate the likely improvement benefits:
news@sei http://interactive.sei.cmu.edu 49

I hope this example will help you make your own business case. If you have questions, I suggest

you look at the December 1999 column, which contains a more generic discussion of these same

topics.

Stay Tuned In

In the next issue, we will discuss the issues of convincing tactically focused managers and

executives to start a process-improvement program. Following that, a subsequent column will deal

with how to move from a tactically based to a strategically based improvement program.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Sholom Cohen,

Frank Gmeindl, Julia Mullaney, Jim Over, Mark Paulk, and Bill Peterson.

References

[Musson] Robert Musson, presentation at the 1999 Software Engineering Institute
Symposium, Pittsburgh, PA, August 30 to September 2, 1999.

[Vu] John Vu, presentation to the U.S. Department of Defense on the Boeing
process-improvement program.

[Webb] Dave Webb and W. S. Humphrey, “Using the TSP on the TaskView Project,”
Crossstalk, vol. 12, no. 2, February, 1999, pp. 3 - 10.

Document the available experience data.

Estimate the expected savings.

Decide how to measure the actual benefits.

Determine the improvement’s likely impact on the executive’s current key concerns.

Identify any other ways that the proposed improvement could benefit the business.

Phase 4 Produce the improvement proposal:

Produce a presentation to clearly and concisely give this story.

Phase 5 Close the deal.
50 http://interactive.sei.cmu.edu news@sei

July 2000

Moving the Goal Posts

In this column, I talk about the nature of process improvement and why it is such a dynamic and

challenging field. The future will be much like the past in many respects, but it will also be very

different. However, as we look ahead, there are some reasonably reliable guides that can help us to

address the problems we will face.

Brownian Motion

Just about every time I visit an engineering organization, the people tell me, “We’re different.” Of

course they are. We are all different, but what is surprising is how often truly different

organizations behave in the same way. However, it is also surprising how often seemingly similar

organizations, when faced with nearly identical conditions, behave quite differently. People are

both predictable and unpredictable. Much like Brownian motion in physics, there is no way to

precisely predict individual behavior. However, on average, overall behavior is highly predictable.

So, what does this mean for process improvement? Essentially, the following:

• First, there is no one best way.

• Second, every situation is different. Each solution must consider the people and their
backgrounds, beliefs, and circumstances.

• Third, the lessons of the past are the only practical guides we have for the future. While we
cannot predict precisely what will work in any specific case, we can establish highly reliable
general guidelines.

• Fourth, the principles behind the quality movement are just as sound today as they were in the
past. Those who argue that the new Internet age changes all the old truths will continue
reliving the same history that many of us have painfully survived.

What these lessons tell us is that a single-minded approach to solving any human problem will

almost certainly be wrong, if not for everybody, at least in many cases. There is no single best

answer. People are extraordinarily creative, both in the ways that they solve problems and in how

they create problems. Therefore, we must recognize that problems will change, and we must

continually seek newer and better ways to address the problems that we face at each point in time.

When the Problems Change, the Solutions Must Also Change

The other day, I read the following newspaper headline: “The quality of U.S. automobiles lags

behind Japan and Europe.” As Yogi Berra once said, this is “déjà vu all over again.” After 20-plus

years, can quality still be a problem for Detroit? It almost certainly is, and the best way to tell is

that the General Motors board of directors cut executive bonuses. That is a guaranteed way to get

management’s attention.
news@sei http://interactive.sei.cmu.edu 51

GM, Ford, and Chrysler have been working on quality improvement for more than 20 years, but

they still have about 150 defects per 100 new cars. However, unlike 20 years ago, these are not

primarily manufacturing defects. Most are design problems. Detroit solved the quality problems of

20 years ago, and if the Japanese had not kept moving the goal posts, Detroit would be in fat city.

But the world did change, and Detroit is still dead last in the quality sweepstakes.

The world changes, and it does not change all by itself. Everything we do changes it. In another

lesson from physics, Heisenberg showed that you can know a particle’s location or its velocity but

not both. When you measure one, you change the other. People are just like that. As soon as you

fix the process, the problem changes. Does that mean that we should give up? Not at all; it just

means that we cannot relax. We must keep thinking, and resist the temptation to blindly rely on the

solutions and formulas of the past. Continue to follow the same principles, certainly, but don’t

blindly follow the same path. Sooner or later it will lead to a dead end.

Finding the Goal Posts

While process problems are often unique, they all stem from human failings, and these are

common to all of us. Because the same human failings have persisted through the ages, we cannot

expect to eliminate them. The process improvement challenge is to devise ways to live with and

compensate for normal human behavior. We must recognize, however, that soon after we

compensate for a given set of failings, human nature will find creative countermeasures. So, in

spite of all our efforts, the battle for improvement will continue indefinitely. Hopefully, however,

technology will keep improving and each step will move the goal posts a little further down the

field.

Human Failings

While software professionals are marvelously creative and highly energetic, we sometimes feel

lazy or want to take a break. We are also a race of procrastinators, and when we can’t avoid or put

off some difficult or unpleasant task, we try to replace it with an easier task or get someone else to

do it. If we find that we still must do the job, we tend to do it as quickly and superficially as we can

get away with. This means that for every complex and difficult task, the process improvement

challenge is to devise ways to get people to consistently do their work in a highly professional

way.

What makes this so challenging is that once we figure out some way to do this, it is only a matter

of time before people devise a clever way around our fancy new process. Take estimating, for

example. The Capability Maturity Model® (CMM) calls for engineers to be involved in and agree

with the project estimate. However, soon after an organization puts a new planning procedure in

place, some group will almost certainly find an estimating method that uses expert estimators or

complex and arcane tools. Experts will then make the estimates and the engineers won’t be
52 http://interactive.sei.cmu.edu news@sei

involved. Even though this destroys the intent of the planning process, unless processes are

defined very carefully, people will adopt new practices that conform to the letter of the defined

process but not to its intent.

What this Means for Process Improvement

What this means for you and me is that process improvement must not be directed at only the

process. The principal objective must be to change human behavior. However, to change human

behavior, we must consider and compensate for normal human failings.

For example, we now find that even in CMM Level 5 organizations, people have learned to

compensate for their new processes. In some of the Level 5 organizations I have visited, the

measurement and process analysis work is handled by the process and quality groups, and the

engineers continue to work essentially as they did at Level 1. This totally misses the point of CMM

Levels 4 and 5, which is to have engineers use data, not just gather and report it. This implies that

even the goal posts defined by the CMM levels must be moved to keep pace with our rapidly

changing technology.

In the last analysis, to improve engineering performance, organizations must change the behavior

of the engineers and their managers. If you find that some change has stopped producing the

desired results, find out why and then devise another improvement to solve the new problems.

The Implications for the Future

We have made great strides in the last 10 or more years, and we must continue to build on our

successes. However, the goal posts are moving, and the problems we will face in the future will

almost certainly be different from those of the past. Think of it this way: You could build a 10-foot

boat in your garage, but a 1,000-foot ship would require entirely different tools, technologies, and

processes. Similarly, in transportation, going from 3 to 300 miles per hour requires several changes

in technology. In the software business, we think nothing of factors of 100. We use the same tools,

methods, and processes for a program with 10,000 lines of code (LOC) as we do for a 1,000,000-

LOC programming system.

Our ability to master the software-intensive technologies of the future will be largely guided by the

ability of engineering teams to match their behavior to the more demanding tasks they will face.

We cannot expect that our current tools, technologies, and processes will be adequate in the future.

The challenges will keep increasing, and we must continually evolve our methods to keep pace.

We must think of process improvement in multi-dimensional terms and include the educational

system, as well as industry. An informed customer community will also be important, and we must

consider all levels of the engineering organization: executives, managers, teams, and engineers.
news@sei http://interactive.sei.cmu.edu 53

Much as in the automobile industry, we must retain the solutions of the past, but we must broaden

our perspective to consider all the relevant aspects of the problem.

While it is always risky to predict the future, some trends are now pretty obvious:

• Systems will get larger, more complex, and more integrated.

• Engineering teams must also become more highly integrated.

• Compatibility, reliability, usability, privacy, and security will be increasingly important.

• While schedules must be as short as possible, they must be absolutely reliable.

• The quality of every engineer’s personal work will be even more important than it has been in
the past.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Noopur Davis, Jim

McHale, Don McAndrews, Julia Mullaney, and Marsha Pomeroy-Huff.
54 http://interactive.sei.cmu.edu news@sei

First Quarter, 2001

The Future of Software Engineering: Part I

In this and the next few columns, I discuss the future of software engineering. This column focuses

on trends in application programming, particularly as they concern quality. In subsequent columns,

I address programming skills, trends in systems programming, and the implications of these trends

for software engineering in general. While the positions I take and the opinions I express are likely

to be controversial, my intent is to stir up some debate and hopefully to shed light on what I

believe are important issues. Also, as is true in all of these columns, the opinions I express are

entirely my own.

Current Trends

Some 50 years ago when I finished graduate school, I started to work with computers. For almost

all of the intervening time, people have been dreaming up new and better ways to use computing

devices and systems. While the volume of application development has grown steadily, so has the

list of applications that people want to develop. It seems that the more programs we write, the

more we understand what we need, and the more programs we add to the application-development

backlog. So far, the rate of growth in application demand has continued to accelerate.

As economists say, unsustainable trends are unsustainable. However, to date, there is no sign that

this growth in demand is slowing. I suspect that it will continue for the foreseeable future, though

we will certainly see changes in the types of application programs. The reason for this growth is

that application programming is a very effective way to meet many kinds of human needs. As long

as people continue devising new and cleverer ways to work and to play, we can expect the growth

in computer applications to continue. The more we learn about computing systems and the more

problems we solve, the better we understand how to address more complex and interesting

problems. Therefore, because human ingenuity appears to be unlimited, the number of programs

needed in the world is also essentially unlimited. This means that the principal limitation on the

expanding use of computing systems is our ability to find enough skilled people to meet the

demands.

In discussing these topics, I break the software world into two broad categories: applications and

systems. I won’t try to clearly define the dividing line between these categories because that line is

both indistinct and changing. By “application programming,” I refer to solving human problems

with computing systems. Here the focus is on defining the problem and figuring out how to solve it

with an automated system. Systems programming focuses on how to provide automated systems,

aids, tools, and facilities to help people produce and run application programs. In looking toward

the future in these areas, I believe that the two most significant issues concern software quality and

the demand for skilled people. I address application software quality first.
news@sei http://interactive.sei.cmu.edu 55

Application Program Quality

The quality of application software today is spotty at best. A few programs are of high quality and

many are downright bad. The discussion of application quality has two principal parts. First,

computers are being used for progressively more critical business applications. This means that,

even at current quality levels, the impact of software defects will grow. This implies that the

demand for high-quality application software will also grow.

To date, people buy and use software without apparent concern for their quality. While they

complain about quality problems, software quality has not yet become a significant acquisition

consideration. Until it is, we cannot expect suppliers to measure and manage the quality of their

products. However, as has been amply demonstrated in other fields, when quality is not measured

and managed, it is generally poor.

When the public gets concerned about quality, these attitudes will quickly change. It will not take

many high-profile disasters to cause executives to worry. Then, they are likely to demand quality

guarantees and warranties from their suppliers before they entrust their businesses to new

computing systems. When customers cannot be assured of the quality of a software package, they

will either go to a competitor or forgo the application entirely and continue using prior methods.

This would not be because automated methods would not have been helpful, but simply because

the risk of failure would be too high.

Growing Program Complexity

The second part of the program quality discussion concerns size and complexity. The size and

complexity of application programs is increasing. The size data in Figure 1 show just how fast this

growth has been. The IBM size measures are from my personal recollection, the Microsoft NT size

data are from published reports, and the spacecraft size data are from Barry Boehm [Boehm 81,

Zachary 94]. The TV data are for the embedded code in television sets and are from a talk by Hans

Aerts and others at the European SEPG conference in June 2000. According to my prior

definitions, the IBM and Microsoft products are system software while the spacecraft and TV

programs are application software.

These data show that the size of the software required for various kinds of systems and

applications has been growing exponentially for the past 40 years. The trend line in the center of

the chart shows a compound growth rate of ten times every five years. This is the same as Moore’s

law for the growth in the number of semiconductors on a chip, or a doubling every 18 months.

While the size growth of system software has been phenomenal, it appears to be slowing, at least

from the appearance of the IBM and NT data in Figure 1. I discuss these systems software trends

in a later column. The critical point from an application quality point of view is that the growth

trend for applications software appears to be continuing.
56 http://interactive.sei.cmu.edu news@sei

The Defect Content of Programs

Assuming that the same methods are used, the number of defects in a program increases linearly

with its size. However, the rate at which application program users experience problems is largely

determined by the number of defects in a program rather than their density. Therefore, even though

the defect density may stay about the same or even improve, merely producing larger programs

with the same methods will produce progressively less reliable systems. So, either the quality of

future application software must improve—at least in step with the increasing sensitivity of the

applications—or businesses must limit their use of computing systems to less critical applications.

Figure 1: Program Size Growth

To see why program reliability depends on defect numbers instead of defect density, consider an

example. A 200 KLOC (thousand lines of code) program with 5 undetected defects per KLOC

would have 1,000 defects. If you replaced this program with an enhanced program with 2,000

KLOC and the same defect density, it would have 10,000 defects. Assuming that the users

followed a similar usage cycle with the new application, they would exercise the larger program at

about the same rate as the previous one. While this would presumably require a faster computer,

the users would be exposed to ten times as many defects in the same amount of time. This, of

course, assumes that the users actually used many of the new program’s enhanced functions. If

they did not, they presumably would not have needed the new program.

An Application Quality Example

Oil exploration companies use highly sophisticated programs to analyze seismic data. These

programs all use the same mathematical methods and should give identical results when run with

identical data. While the programs are proprietary to each exploration company, the proprietary
news@sei http://interactive.sei.cmu.edu 57

parts of these programs concern how they process enormous volumes of data. This is important

because the volume of seismic data to be analyzed is often in the terabyte range.

A few years ago, Les Hatton persuaded several oil-exploration companies to give him copies of

nine such programs [Hatton 94]. He also obtained a seismic exploration dataset and ran each of

these nine programs with the identical data. The results are shown in Figure 2. Here, the range of

calculated values is shown for several consecutive program iterations. As you can see, this range

generally increased with the number of cycles, and after a few runs, it reached 100%. When one of

these companies was told about some of the conditions under which its program gave unusual

results, the programmers found and corrected the mistakes, and the program’s next results agreed

with the other programs.

Figure 2: Growth in Seismic Program Uncertainty

The results produced by these oil-exploration programs contained errors of up to 100%, and these

results were used to make multi-million-dollar decisions on where to drill oil wells. Based on this

study, it appears that these programs provided little better guidance than throwing dice. I am not

picking on these programs as particularly poor examples. Their quality appears to be typical of

many application programs.

The Quality Problem

In discussing the quality of application programs, we need to consider the fact that defective

programs run. That is, when engineers produce a program and then run extensive tests, they

generally can get it to work. Unfortunately, unless the tests were comprehensive, the tested

program will likely contain a great many defects.

Any testing process can only identify and fix the defects encountered in running those specific

tests. This is because many program defects are sensitive to the program’s state, the data values

used, the system configuration, and the operating conditions. Because the number of possible
58 http://interactive.sei.cmu.edu news@sei

mailto:watts@sei.cmu.edu
mailto:watts@sei.cmu.edu

combinations of these conditions is very large, even for relatively simple programs, extensive

testing cannot find all of the defects.

Since the size of application programs will continue to increase, we need to consider another

question: will we be able to test these programs? That is, how well does the testing process scale

up with program size? Unfortunately, the answer is not encouraging. As programs get larger, the

number of possible program conditions increases exponentially. This has two related

consequences.

1. The number of tests required to achieve any given level of test coverage increases
exponentially with program size.

2. The time it takes to find and fix each program defect increases somewhere between linearly
and exponentially with program size.

The inescapable conclusion is that the testing process will not scale up with program size. Since

the quality of today’s programs is marginal and the demand for quality is increasing, current

software quality practices will not be adequate in the future.

The Impact of Poor Quality

As the cost of application mistakes grows and as these mistakes increasingly impact business

performance, application program quality will become progressively more important. While this

will come as a shock to many in the software community, it will be a positive development. The

reason is that suppliers will not generally pay attention to quality until their customers start to

demand it. When software quality becomes an important economic consideration for businesses,

we can expect software organizations to give it much higher priority.

While one could hope that the software industry would recognize the benefits of quality work

before they are forced to, the signs are not encouraging. However, improved product quality would

be in the industry’s best interests. It would mean increased opportunities for computing systems

and increased demand for the suppliers’ products. This would also mean continued growth in the

demand for skilled software professionals.

In the next column, I discuss the need for application programming skills and how this need is

directly related to the quality problem. Following that, I discuss related trends in systems

programming and the implications of these trends for software engineering.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Sholom Cohen,
news@sei http://interactive.sei.cmu.edu 59

Noopur Davis, Alan Koch, Don McAndrews, Julia Mullaney, Bill Peterson, and Marsha Pomeroy-

Huff.

References

[Boehm 81] Boehm, Barry. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[Hatton 94] Hatton, Les. “How Accurate is Scientific Software?” IEEE Transactions on
Software Engineering, Vol. 20, No. 10 (October 1994): 785-797.

[Zachary 94] Zachary, G. Pascal. Showstopper! New York: The Free Press, 1994.
60 http://interactive.sei.cmu.edu news@sei

Second Quarter, 2001

The Future of Software Engineering: Part II

This is the second of several columns on the future of software engineering. The first column

focused on trends in application programming, particularly related to quality. This column reviews

data on programmer staffing and then covers application-programming skills. Future columns deal

with trends in systems programming and the implications of these trends for software engineering

and software engineers.

In my previous column, I started a discussion of the future of software engineering and reviewed

the trends in application programming. In this column, I consider the growing demand for people

to write application programs. I also explore the implications of the current trends in application

programming. In the next few columns, I will examine the trends in systems programming and

comment on the implications of these trends for software engineering and software engineers.

While the positions I take and the opinions I express are likely to be controversial, my intent is to

stir up debate and hopefully to shed some light on what I believe are important issues. Also, as is

true in all of these columns, the opinions are entirely my own.

Some Facts

The demand for software engineers is at an all-time high, and it continues to increase. Based on

recent census data, there were 568,000 software professionals in the U.S. in 1996. In 2007, there

are projected to be 697,000 [Clark 00]. Since 177,000 are also projected to leave the field during

this time, this implies a ten-year need for more than 300,000 new programmers. That is a 50%

gross addition to the current programming population.

The Census Bureau estimate of 568,000 programmers seems low to me, and I suspect this is

because of the criteria used to determine who was counted as a programmer. Howard Rubin quotes

a number of 1.9 million programmers as the current U.S. programming population [Rubin 99]. I

have also seen data showing that the number of programmers in the U.S. doubled from 1986 to

1996. While good data are sparse for such an important field, the demand for programmers has

clearly increased in the past ten years, and it is likely to continue increasing in the future.

If you consider that most professionals in most fields of engineering and science must now write at

least some software to do their jobs, the number of people who write, modify, fix, and support

software must be very large. If the growth trends implied by the census data apply to the entire

population of casual and full-time programmers, the demand for new programmers in the next ten

years is likely to run into the millions.
news@sei http://interactive.sei.cmu.edu 61

Future Needs

Judging by past trends, it is clear that just about every industrial organization will need more

people with application programming skills and that most programming groups will be seriously

understaffed. Since many software groups are already understaffed, and the current university

graduation rate of software professionals is only about 35,000 a year, we have a problem [U.S. 00].

In general terms, there are only two ways to address the application-programming problem.

1. Somehow increase the supply of new programmers.

2. Figure out how to write more programs without using more programmers.

Since it takes a long time to increase the graduation rate of software professionals, the principal

approach to the first alternative must be to do more of what we are doing today—that is, to move

more software offshore and to bring more software-skilled immigrants into the U.S.

While many organizations are establishing software laboratories in other countries, particularly

India, this is a limited solution. The principal need is for skilled software professionals who

understand the needs of businesses and can translate these needs into working applications. There

is no question that the coding and testing work could be sent offshore, but that would require good

designs or, at least, clear and precise requirements. Since producing the requirements and design is

the bulk of the software job, going offshore can only be a small part of the solution.

Obtaining more software-skilled immigrants is an attractive alternative, particularly because India

alone graduates about 100,000 English-speaking software professionals a year. However, the U.S.

has tight visa restrictions, and many other groups also have claims on the available slots. Also,

since the demand for software skills is increasing rapidly in India, and since many Indian

professionals can now find attractive opportunities at home, the available numbers of Indian

immigrants will likely be limited in the future.

The Automobile Industry Analogy

To examine the alternative of writing more programs without adding more programmers, consider

the automobile industry. Back before Henry Ford, only the wealthy could afford cars. Then Henry

Ford made the automobile affordable for ordinary folks. Once the manufacturers started catering to

the needs of the masses, the automobile industry changed rapidly.

Many innovations were required before people could feel comfortable driving without a chauffeur.

They needed the closed automobile body, automatic starters, heaters, clutches, transmissions, and

a host of other progressively more automatic and convenient features. This combination of

innovations made operating an automobile simple and easy for almost anyone.
62 http://interactive.sei.cmu.edu news@sei

With the aid of these innovations, people could learn to drive without chauffeurs. When all this

happened, the chauffeur business went into a tailspin. Soon, as the comfort, convenience, and

reliability of cars increased, driving an automobile was no longer a specialty; it became a general

skill required of just about everyone. Today, most people learn to drive an automobile before they

get out of high school. While there are still professional drivers, the vast majority of driving is now

done by the general public.

The Computer Field Today

Today, the computer field is much like the early days of the automobile industry. Many

professionals have learned to use computing systems, but few are willing to rely on them for

critical work, at least not without expert help and support. In the computer field, the chauffeur

equivalents are with us in the guise of the experts who develop applications, install and tailor

operating systems, and help us recover from frequent system crashes and failures. Even on the

Internet, our systems today often exhibit strange behavior and present us with cryptic messages.

While these systems are far easier to use than before, they are not yet usable by the general public.

For computing systems to be widely used, we need systems that work consistently and are problem

free. We also need support systems that serve the same functions as automobile starters and

automatic transmissions. Then professionals in most fields will be able to automate their own

applications without needing skilled programmers to handle the arcane system details.

Another prerequisite to the widespread use of computing systems is that the professionals in most

fields be able to produce high-quality application programs with little or no professional help. The

real breakthrough will come when it is easier to learn to write good software than it is to learn

about most business or scientific applications. Then, instead of requiring that skilled software

people learn about each application area, it will be more economical and efficient to have the

application experts learn to develop their own software. At that point, software engineering will

become a general skill much like driving, mathematics, or writing, and every professional will be

able to use computing systems to meet the vast bulk of his or her application needs.

Growing System Size and Complexity

While such a change will be an enormous help, it will not address all aspects of application

programming. To see why, consider the trends in the size and complexity of application programs.

If history is any guide, future application programs will be vastly larger and more complex than

they are today. This means that the development of such systems will change in a number of

important ways.

As I wrote in the prior column, the first and possibly most important change is in quality. Those

who need software simply will be unable to use programs to conduct their businesses unless they
news@sei http://interactive.sei.cmu.edu 63

are of substantially higher quality than they are today. The second trend is equally significant: the

current cottage-industry approach to developing application programs must give way to a more

professional and well-managed discipline. This is not just because of the increasing size of the

programs and their more demanding quality specifications, but also because the business of

producing such programs will grow beyond the capability of most people to master quickly.

In other words, the day has largely passed when we could hire somebody who was reasonably

familiar with the programming language of choice and expect him or her to rapidly become

productive at developing application programs. As application programs become larger and more

sophisticated, the required application knowledge and experience will increase as well. Soon, the

cost and time required to build this application knowledge will be prohibitive. Therefore, a host of

new methods must be developed to make application programming more economical and far less

time consuming than it is today.

Reuse

My argument to this point has concerned getting more people to write programs. However, there is

another alternative: finding ways to produce more applications with fewer people. One proposed

solution to this challenge is through reuse. While this seems like an attractive possibility, recent

history has not been encouraging. In fact, history indicates that reuse technology will be largely

confined to building progressively larger libraries of language and system functions.

Unfortunately, this added language complexity will cause other problems. This is not because

reuse is unattractive; it is just at too low a level to address the application needs of most users.

The software community has been adding functional capability to programming languages for the

47 years since I wrote my first program. This approach has not solved the programming problems

of the past, nor is it likely to solve those of the future. The principal reason is that by adding more

microscopic functions to our languages, we merely restate the application development problem in

slightly richer terms.

For example, when I wrote my first program we had to control the starting and stopping of the I/O

devices and the transfer of each character. Now such functions are handled automatically for us,

but we are faced instead with much more sophisticated languages. Instead of a simple language

you could summarize on a single sheet of paper, we now need entire textbooks.

Granted, increased language richness reduces the detailed system knowledge required to manage

the computer’s functions, but it still leaves us with the overall design problem, as well as the

problem of determining what the design is supposed to do for the user. Then, the application

programmer has the final challenge of translating the design into a functioning and reliable

program.
64 http://interactive.sei.cmu.edu news@sei

This leads to the problem that will force us out of the cottage-industry approach to programming.

That is the simple impossibility of quickly becoming fluent in all the languages and functions

needed to produce the complex application systems of the future. While reuse in traditional terms

may be helpful for the professional programming population, it is directly counter to the need to

make our technology more accessible to people who are not full-time programming professionals.

Packaged Applications

To handle the volume needs of many users, companies are starting to market packaged

applications much like those offered by SAP and Oracle. That is, they produce essentially

prepackaged application systems that can be configured in prescribed ways. Rather than custom-

designing each application, this industry will increasingly develop families of tailorable

application systems. The users will then find the available system that comes closest to meeting

their requirements and use its customization capabilities to tailor the system to their business

needs.

To make these systems easily tailorable by their customers, companies will design their systems

with limited, but generic, capabilities. Then, in addition to tailoring the system, the users must also

adjust their business procedures to fit the available facilities of the system. As the experiences of

SAP and others have demonstrated, this approach is not trouble free, but it can provide users with

large and sophisticated application systems at much lower cost than a full custom-application

development.

Judging by the growth of SAP, Oracle, and others, this has been an attractive strategy. Rather than

developing applications to meet an unlimited range of possible user needs, users will increasingly

adapt their business operations to fit the functions of the available application systems. While this

represents a form of reuse, it is at a much higher level than the approaches generally proposed, and

it generally requires a thoughtfully architected family of application products or product lines. Just

as with the transportation, housing, and clothing industries, for example, once people see the

enormous cost of customized products, they usually settle for what they can find on the rack.

Application Categories

Application development work in the future will likely involve three categories of work:

1. developing prepackaged applications that users can tailor to their needs

2. tailoring business systems to use prepackaged application systems

3. developing and supporting unique applications that cannot be created with prepackaged
software
news@sei http://interactive.sei.cmu.edu 65

The programmers needed for the first category will be professionals much like those needed for

developing systems programs, but they will generally have considerable application knowledge. I

will write more about this category in later columns.

For category two, we will probably see a substantial growth in the volume of application

customization. The people doing this work will be more like business consultants than

programmers, and many will not even know how to design and develop programs. These people

will be thoroughly trained in the packages that they are customizing and helping to install.

The reason for the third category is that, even though the prepackaged application strategy will

likely handle most bread-and-butter applications, it will not handle those applications needed to

support new and innovative business activities. Since these applications will not have been used

before, nobody will know how to produce prepackaged solutions. As a result, there will be a

volume of applications that cannot be solved by prepackaged solutions. Therefore, even with a

wide variety of available prepackaged applications, the need for customized application

development will not disappear.

Custom Application Programming

Custom application work must be handled by people who know how to write programs and who

also understand the application specialty. These people must be experts on a wide variety of

specialties, and must be able to write high-quality programs. For these people, we must develop

suitable methods and training—to help them develop quality programs on their own. Even though

they will not work full time as professional programmers, I believe that this category of

programmer will ultimately comprise the vast majority of the people writing programs. Since they

will not spend all—or even most—of their time writing programs, we must simplify our languages

and develop new languages that are designed for casual use. We must develop tools and support

systems that will help these people to produce high-quality programs at reasonable rates and costs.

We must also tailor support systems so that writing applications to run on top of a well-designed

systems program will not require extensive technical support and hotline consultation.

In sum, what I am proposing is that, instead of having more and more trained programming

professionals, we will solve our programming needs by teaching everybody to program. Although

these people will not be professional programmers, they will be even more important to the

software community because they will be our most demanding customers. They will be operating

at the limits of the systems we software professionals provide, and they will be the first to identify

important new opportunities. Therefore, they will probably be the source of much of the future

innovation in our field.

In the next few columns, I will write about the trends in system programs, what they mean for the

programming community, and the implications of these trends for software engineering.
66 http://interactive.sei.cmu.edu news@sei

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of David Carrington,

Sholom Cohen, Don McAndrews, Julia Mullaney, Bill Peterson, and Marsha Pomeroy-Huff.

References

[Clark 00] David Clark. “Are too Many Programmers Too Narrowly Trained?” IEEE
Computer, March 2000: pp. 12-15.

[Rubin 99] Howard Rubin. “Global Software Economics.” Cutter IT Journal, March
1999: pp. 6-21.

[U.S. 99] The U.S. Department of Education, National Center for Education Statistics.
National Education Survey (HEGIS), “Degrees and Formal Awards
Conferred.” “Completions” survey and Integrated Postsecondary Education
Data System (IPEDS), June 1999.
news@sei http://interactive.sei.cmu.edu 67

Third Quarter, 2001

The Future of Software Engineering: Part III

In the previous two columns, I began a series of observations on the future of software

engineering. The first two columns covered trends in application programming and the

implications of these trends. The principal focus was on quality and staff availability. In this

column, I explore trends in systems programming, including the nature of the systems

programming business. By necessity, this must also cover trends in computing systems.

The Objectives of Systems Programs

The reason we need systems programs (or operating systems) is to provide users with virtual

computing environments that are private, capable, high performance, reliable, usable, stable, and

secure. The systems programming job has grown progressively more complex over the years.

These programs must now provide capabilities for multi-processing, multi-programming,

distributed processing, interactive computing, continuous operation, dynamic recovery, security,

usability, shared data, cooperative computing, and much more.

Because of the expense of developing and supporting these systems, it has been necessary for each

systems program to support many different customers, a range of system configurations, and often

even several system types. In addition, for systems programs to be widely useful, they must

provide all these services for every application program to be run on the computing system, and

they must continue to support these applications even as the systems programs are enhanced and

extended. Ideally, users should be able to install a new version of the systems program and have all

of their existing applications continue to function without change.

Early Trends in Systems Programs

At Massachusetts Institute of Technology (MIT), where I wrote my first program for the

Whirlwind Computer in 1953, we had only rudimentary programming support [Humphrey].1 The

staff at the MIT computing center had just installed a symbolic assembler that provided relative

addressing, so we did not have to write for absolute memory locations. However, we did have to

program the I/O and CRT display one character at a time. Whirlwind would run only one program

at a time, and it didn’t even have a job queue, so everything stopped between jobs.

Over the next 10 years, the design of both computing machines and operating systems evolved

together. There were frequent tradeoffs between machine capabilities and software functions. By

the time the IBM 360 system architecture was established in 1963, many functions that had been

1. I was a computer systems architect at Sylvania Electric Products in Boston at the time.
68 http://interactive.sei.cmu.edu news@sei

provided by software were incorporated into the hardware. These included memory, job, data, and

device management, as well as I/O channels, device controllers, and hardware interrupt systems.

Computer designers even used micro-programmed machine instructions to emulate other

computer types.

Microprogramming was considered hardware because it was inside the computer’s instruction set,

while software was outside because it used the instruction set. While software generally had no

visibility inside the machine, there were exceptions. For example, systems programs used

privileged memory locations for startup, machine diagnostics, recovery, and interrupt handling.

These capabilities were not available to applications programs.

While the 360 architecture essentially froze the border between the hardware and the software, it

was a temporary freeze and, over the next few years, system designers moved many software

functions into the hardware. Up to this point, the systems programs and the computer equipment

had been developed within the same company. Therefore, as the technology evolved, it was

possible to make functional tradeoffs between the hardware and the software to re-optimize system

cost and performance.

One example was the insertion of virtual memory into the 360 architecture, which resulted in the

370 systems [Denning].1 Another example was the reduced instruction set computer (RISC)

architecture devised by John Cocke, George Radin, and others at IBM research [Colwell]. Both of

these advances involved major realignments of function between the hardware and the software,

and they both resulted in substantial system improvements.

With the advent of IBM’s personal computer (PC) in 1981, the operating system and computer

were separated, with different organizations handling the design and development of hardware and

software. This froze the tradeoff between the two, and there has since been little or no movement.

Think of it! In spite of the unbelievable advances in hardware technology, the architecture of PC

systems has been frozen for 20 years. Moore’s law says that the number of semiconductors on a

chip doubles every 18 months, or 10 times in five years. Thus, we can now have 10,000 times

more semiconductors on a single chip than we could when the PC architecture was originally

defined.

Unfortunately this architectural freeze means that software continues to provide many functions

that hardware could handle more rapidly and economically. The best example I can think of is the

simple task of turning systems on and off. Technologically speaking, the standalone operating

system business is an anachronism. However, because of the enormous investments in the current

business structure, change will be slow, as well as contentious and painful.

1. At this time I was managing the systems software and computer architecture groups at IBM.
news@sei http://interactive.sei.cmu.edu 69

The Operating Systems Business

Another interesting aspect of the operating systems business is that the suppliers’ objectives are

directly counter to their user’s interests. The users need a stable, reliable, fast, and efficient

operating system. Above all, the system must have a fixed and well-known application

programming interface (API) so that many people can write applications to run on the system.

Each new application will then enhance the system’s capabilities and progressively add user value

without changing the operating system or generating any operating system revenue. Obviously, to

reach a broad range of initial users, the operating systems suppliers must support this objective, or

at least appear to support it.

The suppliers’ principal objective is to make money. However, the problem is that programs do not

wear out, rot, or otherwise deteriorate. Once you have a working operating system, you have no

reason to get another one as long as the one you have is stable, reliable, fast, and efficient and

provides the functions you need. While users generally resist changing operating systems, they

might decide to buy a new one for any of four reasons.

1. They are new computer users.

2. They need to replace their current computers and either the operating system they have will
not run on the new computer or they can’t buy a new computer without getting a new
operating system.

3. They need a new version that fixes the defects in the old one.

4. They need functions that the new operating system provides and that they cannot get with the
old system.

To make money, operating systems suppliers must regularly sell new copies of their system. So,

once they have run out of new users, their only avenue for growth is to make the existing system

obsolete. There are three ways to do this.

1. Somehow tie the operating system to the specific computer on which it is initially installed.
This will prevent users from moving their existing operating systems to new computers. Once
the suppliers have done this, every new machine must come with a new copy of the operating
system. While this is a valid tactic, it is tantamount to declaring that the operating systems
business is part of the hardware business.

2. Find defects or problems in the old version and fix them only in the new version. This is a self-
limiting strategy, but its usefulness can be prolonged by having new versions introduce as
many or more defects as it fixes, thus creating a continuing need for replacements. The recent
Microsoft ad claiming that “Windows 2000 Professional is up to 30% faster and 13 times more
reliable than Windows 98,” looks like such a strategy, but I suspect it is just misguided
advertising [WSJ]. The advertising community hasn’t yet learned what the automotive
industry learned long ago: never say anything negative about last year’s model.
70 http://interactive.sei.cmu.edu news@sei

3. Offer desirable new functions with the new version and ensure that these functions cannot be
obtained by enhancing the old version. This is an attractive but self-limiting strategy. As each
new function is added, the most important user needs are satisfied first so each new function is
less and less important. Therefore, the potential market for new functions gradually declines.

This obsolescence problem suggests a basic business strategy: gradually expand the scope of the

operating system to encompass new system-related functions. Examples would be incorporating

security protection, file-compression utilities, Web browsers, and other similar functions directly

into the operating system. I cover this topic further in the next column.

The obvious conclusion is that, unless the operating systems people can continue finding

revolutionary new ways to use computers, and unless each new way appeals to a large population

of users, the operating system business cannot survive as an independent business. While its

demise is not imminent, it is inevitable.

In the next column, I will continue this examination of the operating systems business. Then, in

succeeding columns, I will cover what these trends in applications and systems programming

mean to software engineering, and what they mean to each of us. While the positions I take and the

opinions I express are likely to be controversial, my intent is to stir up debate and hopefully to shed

some light on what I believe are important issues. Also, as is true in all of these columns, the

opinions are entirely my own.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Marsha Pomeroy-

Huff, Julia Mullaney, Bill Peterson, and Mark Paulk.

References

[Colwell] R.P. Colwell, et al. “Instruction Sets and Beyond: Computer, Complexity, and
Controversy,” IEEE Computer, vol. 1819, 8-19, Sept. 1985.

[Denning] P.J. Denning, “Virtual Memory,” Computing Surveys, 2, 3, September 1970,
pages 153–189.

[Humphrey] W.S. Humphrey, “Reflections on a Software Life,” In the Beginning,
Recollections of Software Pioneers, Robert L. Glass, ed. Los Alamitos, CA:
The IEEE Computer Society Press, 1998, pages 29–53.

[WSJ] The Wall Street Journal, February 1, 2001, page A18.
news@sei http://interactive.sei.cmu.edu 71

Fourth Quarter, 2001

The Future of Software Engineering: Part IV

This is the fourth of five columns on the future of software engineering. The first two columns

focused on trends in application programming, particularly related to quality and staffing. The

previous column covered systems programming and the systems-programming business. In this

column, I explain the three kinds of operating-systems (OS) businesses and predict where these

businesses are likely to go in the future.

Systems Programming

To refresh your memory, the principal points made in the previous column were as follows:

• The objective of systems programs is to provide users with a virtual computing environment
that is private, secure, and reliable.

• Over time, systems-control functions have gradually migrated from software to hardware. For
example, when I wrote my first program, we had to read and handle each character. Hardware
now does that. Similarly, many functions that were previously handled by software, such as
memory management, interruption handling, and protection, are now handled by hardware.
While the advent of personal computers temporarily halted this migration, it is driven by
technology and will almost certainly resume in the future.

• The objectives of the organizations that make and market operating systems and the objectives
of their users are naturally opposed. To maintain and grow their businesses, operating-system
suppliers must continually enhance their systems or otherwise entice their users to upgrade.
Conversely, computer users seek stability, reliability, and compatibility, and generally want to
continue using their current versions. Since operating systems do not wear out, rot, or
otherwise deteriorate, the installed life of old versions of operating systems could become very
long indeed.

The principal conclusion of the previous column was that a standalone business for operating

systems is not viable over the long term. Ultimately, the supply of attractive new functions will be

depleted. Then, while people will need occasional enhancements and new operating-system

versions for new hardware, they will prefer to stay with their existing operating-system version,

rather than buy a new one. This rather stable operating-system business will likely be viable, but it

will be very different from what we know today.

Even though the operating-system business will probably not survive by itself, it would be a

natural companion to a hardware business. In that case, you might expect the hardware companies

to absorb the operating-systems businesses. However, in today's world, it seems more likely that

the operating-systems businesses will absorb the hardware companies.
72 http://interactive.sei.cmu.edu news@sei

The Internet

One might argue that the Internet changes everything. It is true that the Internet is a radical change

and that it presents enormous opportunities for innovation and creativity. However, since the

Internet revolution is still in its infancy, there are likely to be many surprises. But, since I am being

controversial in this column, I might as well stick my neck out and hazard some predictions.

One likely way to couple computers and the Internet would be essentially to move the Internet

inside the application programming interface (API). This would use the Internet to reference data

and programs, regardless of their physical location. It would also presumably permit multiple

remote systems to cooperate much as they could if they were at the same location. Producing these

capabilities would be a substantial challenge and, when accomplished, would provide a glorified

data, file management, and distributed computing capability. While such offerings will almost

certainly be started by the software businesses, the Internet can be viewed as just another device.

As advantageous as this Internet capability would be, its support would best be handled by

hardware. Ultimately, the most efficient and cost-effective way to handle device support is as a

hardware facility and not as a new operating-system function.

Second, the idea that people will use the Internet as a pervasive computing resource is not realistic.

People will certainly use the Internet for communications, for retrieving programs and data, and

for incidental and cooperative processing. However, most will not use it as some kind of

computing utility, and anyone who believes they will does not understand history. The problem is

not communication speed or computing capacity. We had computing centers decades ago with fast

access and private terminals. Even when computing power greatly exceeded people’s needs, users

were not satisfied with remote support. The problem was not technical; it was both personal and

political. People simply wanted to control the resources they needed, and no amount of remote

capacity could satisfy them. This was true then and, as computing capability becomes less and less

expensive, it is inconceivable to me that people will want to use remote computers for their bread-

and-butter needs. This will be particularly true when they can get supercomputer power of their

own for less than it costs to buy the desk on which they will put it.

Application Service Providers

This implies that the advent of application service providers (ASPs) is an anomaly. ASPs provide

computing capability, essentially as a utility. Many view ASPs as the wave of the future and have

invested a great deal of money in them. While it is possible that ASPs will become big business,

the prime reason that organizations subscribe to ASPs is to avoid the cost and expense of operating

their own computing systems [1].

In essence, the reason that the ASP business is attractive is not because it is a fundamentally new

way of doing business. It is attractive as a way to avoid the costs and headaches of current

computing systems. This implies that the entire ASP industry depends on our inability to make
news@sei http://interactive.sei.cmu.edu 73

computing systems that are easy for the public to install and use. However, depending on the

continued unresponsive performance of an entire industry is highly risky. That may be a viable

strategy for a niche offering, but now that the ASP and software service businesses are growing

faster and generating more profit than all other parts of the computer industry combined, we can

expect things to change.

There is no question that many organizations can make a great deal of money operating computing

facilities for their clients. However, this business presents a tempting target for someone to

produce a computing system that is so simple to install and operate that most people could do it

with little or no training. Then, much of this service industry would be replaced by a new class of

highly usable systems. Of course, there would still be three important parts of the software service

business that would not go away:

1. the custom business of adapting computing systems to the unique needs of businesses

2. adapting the business practices of some organizations to the features and capabilities of
available systems

3. incidental use of the large volumes of programs or data resources that are likely to be available
in online libraries

While these three categories are all likely to be important businesses, they are not the principal

reason that most organizations currently use ASPs. Most do so to avoid the cost and aggravation of

installing, maintaining, and using their computer systems.

The Time Scale

Before concluding my argument for why a standalone operating-system business is not viable, I

must comment on timing. I started preaching about the importance of usability many years ago. At

the time, I was IBM’s director of programming and the company’s 4,000 systems programmers all

worked for me. While I should have been able to affect what they did, and while nobody disagreed

with me, I was unable to get much done. Since many others have long preached the same usability

story, you might wonder why so little has been accomplished. I have concluded that there are four

reasons:

1. A great deal has already been done, but the steps to date have been only a small fraction of
what is needed.

2. Since true usability will require an enormous computing capability, we are just now beginning
to get the technology we need.

3. The software community has had many other, more pressing problems.

4. Even when usability is a top priority, there is so much to do that it will take a long time to build
the kinds of systems that are needed.
74 http://interactive.sei.cmu.edu news@sei

This suggests that the current ASP and software service businesses are likely to be viable for many

years, but not forever.

Kinds of OS Businesses

In exploring what is likely to happen in the future, we must first consider the three main kinds of

operating-systems businesses and their characteristics. These three business types are as follows:

1. First are hardware manufacturers that offer operating systems as product support. Examples of
this are IBM, Apple, Sun, and others.

2. Second are standalone operating-systems businesses like Microsoft with its Windows
offerings.

3. The third case is the “open-source” operating-system movement. Here, the prime examples are
Linux and Unix.

The Hardware-Coupled OS Business

In the hardware-coupled operating-systems business, the objective has been to sell hardware. In

projecting what will happen in the future, the automobile industry provides a useful analogy. For

the first 50 years or so, automobile technology was engine-centric. That is, the design and

marketing of automobiles featured the engine’s power and reliability. Leading up to and following

World War II, however, this changed. While engines continued to be important, they were no

longer a principal discriminator in the buying decision. In fact, today, few people could tell you the

horsepower or displacement of their car’s engine. The last 50 years or so of the automobile

industry have been largely dominated by comfort, style, service, and economy. We are also

beginning to see safety, quality, and environmental concerns emerge as important buying

discriminators.

This suggests that the hardware-coupled OS business will evolve from selling power, cost, and

function to featuring usability, installability, reliability, and security. Since the hardware and

software are likely to be marketed together, there will be little motivation to add capabilities that

do not sell new systems. The profit motive would also limit new functions and features to those

that could be financially justified. Since this is precisely the kind of business IBM had before we

unbundled software, experience shows that operating-systems development will be tightly

constrained and that there will be little motivation to add features purely to improve the

capabilities of the existing systems. The key is what sells new products.

The Standalone OS Business

Not surprisingly, the objective of the standalone operating-systems business is to sell operating

systems. Since one of the principal ways to sell them is with new hardware, we can expect the OS
news@sei http://interactive.sei.cmu.edu 75

vendors to strive to increase the market for the hardware that uses their systems. While selling new

operating systems with new hardware is an attractive business, it is largely captive to the ups and

downs of the hardware business. This suggests that operating-systems vendors will add functions

and features to make their systems attractive to installed hardware users. These OS vendors will

then urge the customers to upgrade to the new operating systems without necessarily buying new

hardware.

Because of the growing volume of application programs and because of the necessity of

continuing to support an increasing number of old applications with every new OS version, the

API must become progressively more stable. It might even become public. Then, possibly many

years down the road, some clever and well-financed entrepreneur will produce a new OS that

emulates the API of one or more of the dominant operating systems. This new operating system

would presumably integrate the latest hardware and software technology to offer dramatically

improved performance, usability, reliability, and security. Since the stand-alone OS suppliers

would have trouble competing with software alone, they would either have to team up with

hardware suppliers or lose much of their business.

The Open-Source OS Business

The third case is the open-source OS business. Here, the motives are entirely different. There is no

desire to sell new hardware or software, only to provide a more usable, installable, reliable, and

secure system. The great attractiveness of the open-source OS business is that it caters to the

desires of a steadily growing body of installed users. These people feel that their current systems

are marginally adequate and do not want to change or evolve their OS versions. They are not even

terribly interested in the latest “gee-whiz” chip. They would just like installable, usable, reliable,

maintainable, and secure systems that do precisely what their current systems do. While the

operating-systems suppliers could largely eliminate the attractiveness of the open-system offerings

by dramatically improving the user characteristics of their systems, that is not likely to happen

very quickly. As a result, the open-source business will likely continue to grow. This also suggests

that the open-source movement is, at least to some degree, competing with the software service

and ASP suppliers.

Middleware

All of the preceding argument has ignored an important segment of the software industry:

middleware. By middleware, I mean that growing family of programs that are used to administer,

support, and use computing systems. This kind of software includes programs to handle

administrative, operational, and support activities; provide support for application development;

and furnish generic application support for system developers and users. Since, as I noted in the

first column of this series, the volume of application programs will continue to grow for the

foreseeable future, all of these middleware categories are also likely to continue to grow.
76 http://interactive.sei.cmu.edu news@sei

The challenges in the middleware business include all of the challenges of starting and running a

new business in a competitive industry. They also include the challenge of resisting the threats and

blandishments of the OS suppliers. Middleware businesses really are in the middle. While they

must have creative and marketable ideas and the funds and know-how to start and run a business,

once their ideas are financially successful, they become attractive targets. Since all three types of

operating-systems businesses must continually add features to their systems to survive, the natural

trend will be for the OS suppliers to incorporate the most attractive middleware features into their

systems. They might either acquire the middleware companies or simply appropriate their ideas.

This suggests that most middleware businesses will be transient. While they are likely to continue

to be valuable sources of innovation, they will have to do four things to survive:

1. continue to have good ideas

2. be very effective marketers

3. have substantial financial support

4. protect their intellectual property

Summary

While the current situation is likely to continue essentially as it is today, at least for many years,

technology will ultimately win, and we will see the standalone operating-system business merge

into the larger computing-systems business. This, I am convinced, is the long-term answer.

However, since the nature of the first two types of operating-systems businesses has been

essentially static for more than 20 years, the long term could be very long indeed.

In my next column, I will explain what these trends in applications and systems programming

mean for software engineering and what they mean for each of us.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Marsha Pomeroy-

Huff, Jim McHale, Julia Mullaney, and Bill Peterson.

References

[1] Kerstetter, Jim, “Software Shakeout,” Business Week, March 5, 2001, pp 72-80.
news@sei http://interactive.sei.cmu.edu 77

First Quarter, 2002

The Future of Software Engineering: Part V

This is the fifth in a series of columns on the future of software engineering. The previous four

columns addressed some of the likely trends in application programming and systems

programming. This column covers overall trends in the industry and probable scenarios of the

future, focusing on the forces at work on software-intensive businesses and how businesses are

likely to change in response to those forces.

In the previous four columns, I covered application programming, systems programming, and

some of the likely future trends in these areas. In this column, I focus more broadly about the

overall trends in our industry and what we will likely see in the future. In particular, I address the

forces at work on software-intensive businesses and how businesses are likely to change in

response to these forces. I then close with some comments on how software professionals can

better prepare themselves for the challenges of the future.

As I asserted in the previous columns, there are some differences in the forces on the systems,

applications, and middleware businesses, but there are also some commonalities. These common

forces will affect all of us, regardless of what we do. First, to segment the discussion into

manageable chunks, I start by reviewing the principal kinds of software businesses. Then, I

identify the common forces on our industry. Next, I explore the implications of these forces on a

software-intensive business. Finally, I explore how these forces will likely change the kind of work

that software people do and what this is likely to mean for each of us.

While the positions that I take and the opinions I express are likely to be controversial, my intent is

to stir up debate and, I hope, to shed some light on what I believe are important issues. Also, as is

true in all of these columns, the opinions that I express are entirely my own.

The Kinds of Software Businesses

As I noted in the earlier columns in this series, we can expect the volume of application-

development work to continue growing. This work will require people who know and understand

various application domains and are also competent programmers. For such work, skill needs will

span the full gamut from traditional business and accounting applications to embedded controllers

that manage complex devices and processes. On the other hand, systems developers will

principally be concerned with developing, maintaining, and enhancing the operating and support

systems needed by the application-development community.

The operating-systems community will be split into three rather loosely defined groups: the

software houses like Microsoft and Oracle; the systems businesses like Apple, Sun, and IBM; and

the growing body of open-source programmers supporting systems like Unix and Linux. While it
78 http://interactive.sei.cmu.edu news@sei

is too early to tell exactly how this business mix will evolve, the fuzzy middleware boundary

between the operating-systems and application worlds is where a large body of people are now

developing and marketing software. Their objective is to fill the cracks between the operating

systems and application domains. As pointed out in Part IV of this series of columns, this

middleware business faces unique challenges, and it is likely to be the principal competitive

battleground for the next several years. This intersection was precisely the focus of Microsoft’s

antitrust lawsuit, and it will continue to be both the legal and competitive focus for some time to

come.

We can also expect the interface between the systems and application worlds to fluctuate in

response to evolving user needs. The development community that most quickly and effectively

satisfies users’ needs is likely to earn a larger share of the competitive pie. While various suppliers

may use contractual or other means to force users to use their products exclusively, such strategies

have only been temporarily effective in the past, so they are not likely to work over the long term.

Of course, the long term could be very long indeed. However, if an offering is not truly in the

users’ best interests, sooner or later it will lose out to the better competitor. While the fight may

take a long time and it may be won either in the marketplace or in the courts, the final result is

inevitable.

The Forces on Software Businesses

There are many forces on software businesses, but the most significant ones I see today are the

following:

• The functional content and complexity of systems is increasing rapidly, as is the size of the
software parts of these systems. As noted in the first column of this series, the size of the
software used for any given function has been growing by roughly 10 times every 5 years. If
software growth continues at this historical rate, this will mean an increase of 10,000 times in
the next 20 years.

• Increasingly, software plays a central role in controlling and managing systems. Software is
not just getting bigger, it is a crucial part of the products and services in almost all industries.

• Most computing systems will be interconnected. The Internet is merely the latest step in the
long progression from stand-alone computing to pervasive computing networks.

• We will see more internal and external threats to our systems. In the past, when our principal
preoccupation was getting systems to work, we assumed a friendly and law-abiding
environment. Now, in the interconnected world, these systems must work, be safe, and stay
secure, even when exposed to attack by criminals and terrorists.

One could write pages on each of these topics but I will just state these forces as facts and deal

with their implications. I next explore each of these four forces and what businesses should do

about them.
news@sei http://interactive.sei.cmu.edu 79

Software Size and Complexity

The principal concern with size and complexity is the scalability of the development process. To

handle the massive increases in system scale, organizations must employ processes that scale up.

To appreciate the scalability problem, consider transportation. Vastly different technologies are

involved in traveling at 3 miles an hour, 30 miles an hour, 300 miles an hour, or possibly even

3,000 miles per hour. You can’t transition from one speed range to the next by merely trying harder.

You need progressively more sophisticated vehicles that use progressively more advanced

technologies.

Unfortunately, we have yet to learn this lesson in software. We attempt to use the same methods

and practices for 1,000 lines of code (LOC) programs as for 1,000,000 LOC systems. This is a size

increase of 1,000 times, and the commonly used test-based software development strategies

simply do not scale up. Organizations that don’t anticipate and prepare for scalability problems

will someday find that they simply cannot get systems to work safely, reliably, and securely, no

matter how much their people test and fix them. When systems hit this wall, you can either test

until the available time or money runs out, or you can scrap the system and do it over again

correctly. Unless you are a Microsoft or an IBM, however, you probably can’t afford to start over.

As systems get larger, we can expect most organizations that keep following their current test-

based processes to face this problem. It is only a question of time until they do.

The Central Role of Software

The second force is software’s now-central role in controlling and managing business-critical

systems. This is because much or even all of the functions that customers find attractive about

modern products and services is embodied in their software. And it is just these attractive

functions that make products unique in the competitive marketplace.

Many executives view software as a problem that they don’t understand and have no idea how to

manage. They try to subcontract their software work or to find some other magic solution that will

relieve them of the problems of managing software. This is almost always a mistake. When

management subcontracts the technologies that make their products unique, they lose the ability to

manage their future. I have just published a book that explains this problem and some of my

experiences with it. It might give you some ideas on what to say to management about the

importance of software in your organization [Humphrey 2002].

Interconnectedness

The third major force on the software industry concerns the growing interconnectedness of

systems. Much like telephone systems, the value of a computing system is increasingly determined

by the number of other systems to which it can connect. In the past, companies could focus on

something IBM used to call “exclusivity.” Now, however, systems that work only with hardware
80 http://interactive.sei.cmu.edu news@sei

and software from one vendor are less and less attractive. In the old “exclusivity” days, IBM

would sell, install, service, or support systems only if they were composed entirely of IBM

products. As long as IBM was the dominant supplier of all important offering elements, this

strategy worked quite well. But with the advent of the PC and the rapid introduction of many PC

clones, IBM could no longer force its customers to use its products exclusively.

So, in the interconnected world, the keys to broad market acceptance are compatibility,

interoperability, and interchangeability. Each of us is working on a small part of one enormous,

world-wide, borderless computer-plex, and we are just now glimpsing its implications. While it is

hard to predict what this trend will mean, it is clear that this new environment will force us out of

the comfort and security of single-system thinking. We will need to think in interconnected ways

and to remove any limitations that make it hard to interconnect and to interoperate our systems. We

must recognize that the interconnected systems of the future will be used in ways that their

developers could not imagine. It is precisely this ability of our systems to be used in new and

innovative ways that will make them attractive to the users of the future.

Real-World Threats

The fourth force on the software industry is one we are just now facing. This new world is vastly

different from the closed and comfortable one of the past. It is populated with many wonderful

people but also with a few unpleasant, inconsiderate, and even threatening characters. With stand-

alone systems, our exposure to the realities of a dangerous and unpleasant world were limited. But

with the Internet, and with the growing interconnectedness of our systems, this is no longer the

case.

This new environment will affect businesses in many ways. In particular, as we increasingly

invoke the law to punish miscreants, those who have been damaged will also seek to recover

damages from the organizations that built unsafe or insecure systems. Soon, secure and safe

systems will be an economic necessity, and users will band together to seek damages from

suppliers who don't provide such systems. There is currently a movement to modify contract law

to protect software vendors from these problems. It is called UCITA, or the Uniform Computer

Information Transactions Act. While UCITA has been enacted into law in two states (Maryland

and Virginia), there is growing opposition to it and further expansion is unlikely unless it is

substantially changed.

What These Trends Will Mean to All of Us

Regardless of your place in this future, there are some strategies that you should consider, both to

make your organization more competitive and to make your personal employment more secure

and rewarding. The first and broadest consequence of the increasingly central role of software is

that most professional workers will be involved in developing, supporting, marketing, or using

software. As a consequence, the trends that affect the software world will also affect most of us.
news@sei http://interactive.sei.cmu.edu 81

The principal challenge is to have the vision and imagination to capitalize on this future world and

to help make it happen in an orderly and useful way.

The most obvious force on our industry is security. We will probably always have criminals and

terrorists, so we must write our programs to operate in a threatening and unfriendly world. To

appreciate what this means, consider that over 90% of the Internet’s software security

vulnerabilities result from common types of software defects. That means that the software

security problem is, at least for now, a quality problem. If quality was not important before, it soon

will be. This suggests that you should examine your personal quality practices and look for and

adopt a set that are demonstrably effective. Then, follow these quality practices religiously. While

you should consider all of the available candidates, my personal recommendation is the Personal

Software Process (PSPSM) [Humphrey 1995].

From a project and organizational perspective, you should also look for processes that are

demonstrably scaleable. When you find a scaleable process that fits your organization’s needs, start

a movement to adopt that process. While you might argue that one working-level developer could

not possibly get a business to make such a change, every important change is started by one

person, and that person is rarely a manager or an executive. Usually, it is someone like you who is

close enough to the problem to appreciate its implications. Talk to the people around you, build a

support network, and then start talking to the managers. You will be surprised at what you can

accomplish.

Regarding a scaleable process, my favorite is the Team Software Process (TSPSM) [Humphrey

2002]. However, before you pick your candidate process, look around and see what other methods

are available. Also look for documented evidence of the effectiveness of these processes. Then,

pick up the spear and get this method adopted by your organization. After all, in the last analysis, it

is your job you are fighting for.

The Accelerating Pace of Change

To appreciate what these trends mean for each of us, remember that the world is now changing

faster than it ever has before. The accelerating pace of change has been with us for so long that it

seems almost trite to discuss it, but it does mean that the tools and methods we will use in the

future will be vastly different from those that we use today.

In describing what this means to you and me, the best example I can think of is my personal

experience. When I graduated from college in 1949, ENIAC, the first digital computer, had just

recently been demonstrated. After a few years of graduate school and a brief university job, my

first industrial position was designing a digital cryptographic system. Within two years, I was

designing computers, and I have been working with computers ever since. Except for a class that I

took in cost accounting, not one of my other college courses has been directly applicable to my
82 http://interactive.sei.cmu.edu news@sei

subsequent work. This does not mean that my education was wasted but just that it was not

enough. In this rapidly changing world, if you do not keep learning and remain open to new ideas

and challenges, you will not play an important or even a very useful role in this challenging and

exciting future.

Some Final Comments

The future of software engineering is quite unpredictable, but we can perceive some trends,

particularly by considering the forces at work on our industry. In the last analysis, it is up to each

of us to continue learning and to continue preparing ourselves for the challenges ahead. Then we

will be prepared to take advantage of whatever opportunities present themselves.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Don McAndrews,

Julia Mullaney, Mark Paulk, and Marcia Pomeroy-Huff.

References

[Humphrey 1995] Watts S. Humphrey, A Discipline for Software Engineering, Reading, MA.:
Addison Wesley Publishing, 1995.

[Humphrey 2002] Watts S. Humphrey, Winning with Software: an Executive Strategy, Reading,
MA.: Addison Wesley Publishing, 2002.
news@sei http://interactive.sei.cmu.edu 83

Second Quarter, 2002

Surviving Failure

You’re on a project and it's headed south. While everybody is trying their hardest, and you are

doing your level best to help, you can feel it in your bones: the project is doomed to fail. What can

you do? You have three choices.

1. Keep plugging away and hope things will improve.

2. Look for another job.

3. Try to fix the problems.

Keep plugging away

While continuing to plug away is essential, it will not actually improve things, and it is not very

professional. Often the best way to guarantee project failure is to keep working in the same way.

Inertia is a form of surrender. You are acting helpless and hoping somebody will save the day, or at

least hoping that the crash will not be fatal. So, plug away by all means, but do something else as

well.

Look for Another Job

Choice two is to look for another job, either in your current organization or elsewhere. This is

always an option, and you should consider it if things get bad enough, but job-hopping has serious

drawbacks. First, the situation in the new organization may not be much better—and it could be

worse. Second, since projects often fail, you cannot continually run from failure or your resume

will look like an employment catalogue. While this is not as serious a concern as it once was, it

costs money to hire, orient, and train people. Unless management believes you will stay long

enough to recoup their investment, they will not hire you. Third, changing jobs is disruptive and

could involve a move and a new home. Once you have done that a few times, it loses its charm.

Finally, in any organization, it takes time to become established and accepted. Until you are known

and respected by management, you will not be considered for the best jobs. By moving, you start

all over again at the bottom of the seniority list.

Fix the Problems

Assuming that you don’t want to give up, disrupt your life, or become unemployable, your best

choice is to fix the problems before it is too late. Doing this, however, is tricky and it could

actually damage your career if not done properly. Remember, the bearer of bad news often gets the

blame. So if you are outspoken about the project’s problems, expect to be made the scapegoat.

This does not mean that you shouldn’t act like a professional and try to fix the problems, just that

you must do it very carefully.
84 http://interactive.sei.cmu.edu news@sei

Think Like a Manager

Since you must deal with management to solve most project problems, try to put yourself in their

shoes. Consider the problems they face and decide what you could do that would help. In doing

this, you can safely make three assumptions.

1. Management already suspects that the project is in trouble.

2. They want solutions, not problems.

3. Managers do not want competition.

Management Already Senses the Problem

Managers have lots of ways to get information, and the higher they are in the organization, the

more sources they have. Managers also often develop a good intuitive sense and they can smell

trouble even before anyone tells them. Once managers have worked with a few projects, the

troubled ones take on a distinct character. The people begin to look worried and uneasy, the

laughter and fun disappear, and status reports get vague and imprecise.

There are also various test, support, financial, and administrative groups that deal with most

projects, and their people will hear of, or at least sense, the first signs of trouble. These people will

almost certainly have passed on what they have learned to management and, if it is bad news, you

can be sure that it will travel fast. So, management either knows about the problems already or has

a strong suspicion.

Management Wants Solutions, Not Problems

Busy managers have lots of problems. In fact, a manager’s time is largely devoted to solving

problems, whether generated by the projects, passed down from higher management, or imposed

by the customer. If you go to your manager with another problem, expect to be greeted like the

plague. However, if you show up with an offer of help instead, you will likely be received with

open arms.

Managers Do Not Want Competition

You have a manager who is responsible for your assignments, evaluations, pay, and promotion. If

your manager sees you as supportive, you can likely get help in fixing the project. However, if

your manager suspects you of competing for his or her job or thinks that you are out to get

exposure to senior management, expect to get cut off at the knees. If your manager is experienced,

you will not even know that you have been skewered until much later, if ever.

So, watch the chain of command and start with your immediate manager. Don’t do anything your

manager doesn’t know about and agree with. While that doesn’t mean your manager must know
news@sei http://interactive.sei.cmu.edu 85

every step before you take it, be completely open and honest. Explain your approach, make sure

you both understand the plan, and that you both agree on what you can do without prior approval.

However, if the manager does not agree and you go over his or her head to a more senior manager,

expect you or your manager to ultimately be fired.

If your manager agrees, he or she may let you carry the story upstairs, but most will do it

themselves and you will not be involved or even get any credit. The key is to not worry about

credit and visibility, but to concentrate on solving the problems. If you do that, sooner or later you

will get plenty of visibility. There is a wonderful line by Dick Garwin, the designer of the first

hydrogen bomb: “You can get credit for something or get it done, but not both” [1].

A Strategy for Survival

When you are on a troubled project, the basic survival strategy is to act professionally. It has six

steps.

1. Understand the source of the problem.

2. Decide how to fix it.

3. Fix what you can fix by yourself.

4. Review what you have done with your manager.

5. Decide on a strategy for the next steps.

6. Agree on what you can do to help.

Understanding the Problem

While problems come in many flavors, the most common involve unreachable goals. So stop and

really think about the current situation and how it happened. Until you understand the problem, it

will be very hard to fix.

Generally, the software problems I have seen are caused by either unrealistic schedules or

inadequate resources. In either case, management has imposed, demanded, or agreed to a schedule

that the current team is unable to meet. Under these conditions, just continuing to plug away and

hoping for some kind of miracle merely postpones the day of reckoning and makes it harder to

address the problems.

Schedule problems are particularly troublesome because they invariably lead to a host of other

problems. When engineers strive to meet an impossible schedule, they are invariably working

without a plan, or they have a plan that is unrealistic and useless in guiding the work. When you’re

in trouble, panic is your worst enemy and that is exactly how teams behave without plans.
86 http://interactive.sei.cmu.edu news@sei

Everybody rushes the requirements and design work so they can start coding and testing. Pretty

soon, nobody knows where the project stands, modules are overlooked, fixes get lost, work is

duplicated, and records are misplaced. The project is out of control.

Deciding How to Fix the Problem

Tiny projects can occasionally survive panics, but the larger they are, the harder they crash. The

best rule to remember is: when you are in a hole, stop digging. Put down the shovel and make a

plan. With few exceptions, when projects are in trouble, the most critical need is to make a plan.

Involve the whole team and make as detailed and realistic a plan as you can.

While making a plan will sound plausible to anyone who believes in planning, most programmers

can’t see how this could help them to get all their code written and tested. Unfortunately, there is

no simple answer that will satisfy everybody. However, there are several reasons that, when taken

together, should convince even a skeptical software professional.

1. Every troubled software-intensive project I have seen that was in serious trouble did not have a
realistic plan.

2. Every large software project that I have worked with that did not have a plan was in trouble.

3. When a team makes a plan at the beginning of the job, it can generally negotiate a realistic
schedule with management and the customer.

4. Even in the middle of a crisis project, stopping to develop a plan will calm the panic, produce
a clear understanding of the situation, and provide guidance on getting out of the hole.

5. With the plan in hand, the team can negotiate a recovery plan with management and the
customer.

6. When the team follows its plan in doing the work, the team members will know what to do, the
team will be able to track and report status, and management will know what to expect and
when.

So planning is not magic, but it sure helps.

Fix What You Can Yourself

Before running to your manager with a recommendation to make a plan, look at your own work.

Make a list of what you must do and then make a plan for doing it. If this plan shows that you can

finish on the desired schedule, maybe you overreacted and the team can finish on time. But if not,

you will have a convincing story to show your manager about your problems and how you plan to

address them.

In making this plan, observe a few cautions. To the extent that you can, base the plan on historical

data [2,3,4]. Also, be discreet in making the plan. After all, if your manager thought planning was
news@sei http://interactive.sei.cmu.edu 87

a good idea, the team would probably have a plan and you would not be in this mess. So get your

story straight before talking about it. Next, if your friends or teammates have some planning

experience, get them to review your plan and identify any holes or errors. Once you have a plan

you believe in, talk with your manager.

Talking With Your Manager

In talking with your manager, concentrate on your own work and the plan you have made for doing

it. If your plan shows that you can’t meet the committed dates, ask for guidance. Maybe your plan

includes too many tasks or the manager might see some way to simplify the work. If this leads the

manager to asking the other team members to make similar plans, you are on the road to success.

But if not, and if the plan helped you to have a realistic discussion with your manager, discuss

what you have done with your teammates and suggest that they do the same thing. Then, when

more team members have plans, you can all go to the manager and show that the problem is bigger

than he or she thought.

Agree on the Next Steps

If, as is likely, the composite of all the team members’ plans shows that the project is in serious

trouble, suggest that the team make a complete plan. If the manager agrees, he or she will then

likely go to higher management to review the project and get agreement to a replanning effort.

Then, with that plan, you, your teammates, and your manager will have a sound basis for

renegotiating the team’s schedule. If you get this far, you will be able to turn the failed project into

at least a partial success. If not, consider your other alternatives: either keep your head down and

continue plugging away, or find another job.

Conclusions

As long as you continue to work quietly on a failed project, you are part of the problem. By taking

a more active role and addressing your part of the job first, you can become part of the solution.

This will help the project and your career, and it will help you to behave like a true professional. It

will also lead to a satisfying and rewarding way to work.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Jim McHale, Julia

Mullaney, Marsha Pomeroy-Huff, and Bill Peterson.

References

[1] Broad, William J. “Who Built the H-Bomb? Debate Revives.” The New York Times, April
24, 2001, pg. D1.
88 http://interactive.sei.cmu.edu news@sei

[2] Humphrey, Watts S. A Discipline for Software Engineering. Reading, MA: Addison
Wesley, 1995.

[3] Humphrey, Watts S. Introduction to the Team Software Process. Reading, MA: Addison
Wesley, 1999.

[4] Humphrey, Watts S. Winning with Software: an Executive Strategy. MA: Addison Wesley,
2002.
news@sei http://interactive.sei.cmu.edu 89

Third Quarter, 2002

Learning from Hardware: Planning

There has been a long-term effort to apply traditional engineering methods to software. While

some portray these methods as the answer to software’s many problems, others argue that they are

rigid, constraining, and dehumanizing. Who is right? The answer, of course, is that the

appropriateness of any method depends on the problems you are addressing. While highly

disciplined methods can be bureaucratic and reduce creativity, a complete lack of structure and

method is equally if not more damaging.

Engineering and Craftsmanship

One way to look at this issue is as a continuation of the craft versus engineering debate that has

raged for over a century. In his recent paper, Kyle Eischen describes the long-running argument

about individual craftsmanship versus structured, managed, and controlled engineering methods

[1]. Before the advent of software, craft-like methods had always had a serious productivity and

volume disadvantage. There simply were not enough skilled craftsmen to meet society’s demands

for quality goods and services.

Factories were developed as a way to meet the need for volumes of quality goods, and

manufacturing plants continue to serve these same needs today. The objective, of course, was not

to destroy the crafts but to devise a means for using large numbers of less-expensive workers to

produce quality products in a volume and for a cost that would satisfy society’s needs. However,

the widespread use of factories has required orderly processes and products that were designed to

be economically manufactured in volume. This has led to many of today’s engineering practices.

While these volume-oriented engineering methods have generally been effective, they have also

often been implemented improperly. This has caused resentment and has reduced engineering

efficiency and produced poorer quality products. However, as Deming, Juran, and many others

have pointed out, this is not because of any inherent problem with engineering methods but rather

with how these methods have been applied [2, 3, 4, 5, 6].

The Software Problem

As far as software is concerned, our current situation is both similar and different. The need again

is to economically produce quality products in volume. Further, since the volume of software work

is increasing rapidly, there is a need to use larger numbers of workers. While this might imply the

need for factory-like methods that use lower skilled people, this cannot be the case with software.

This is because software is highly creative intellectual work.
90 http://interactive.sei.cmu.edu news@sei

The push toward more of an engineering approach for software is not caused by a shortage of

skilled people. Even though we have periodically had programmer shortages, these shortages have

not been caused by a lack of potential talent. There appears to be an almost unlimited supply of

talented people who could be trained for software jobs, if given suitable incentives. The push for

engineering methods comes from a different source, and it is instructive to examine that source to

see why we face this craft-engineering debate in the first place.

The Pressure for Improvement

The source of pressure for software process improvement is the generally poor performance of

most software groups. Products have typically been late, budgets have rarely been met, and quality

has been troublesome at best. From a business perspective, software appears to be unmanageable.

Since software is increasingly important to most businesses, thoughtful managers know that they

must do something to improve the situation.

From a management perspective, software problems are both confusing and frustrating.

Businesses require predictable work. While cost and schedule problems are common with

technical work, most engineering groups are much better than we are at meeting their

commitments. Senior managers can’t understand why software people don’t also produce quality

products on predictable schedules and with steadily declining costs. They need these things to run

their businesses and they expect their software groups to be as effectively managed as their other

engineering activities. This management unhappiness spans the entire spectrum from small one- or

two-person software projects to large programs with dozens to hundreds of professionals.

Software Background

While the performance of software projects has been a problem for decades, software people have

not historically applied traditional engineering methods. They have not typically planned and

tracked their work, and their managers often either didn’t believe the software problems were

critically important or they didn’t know enough about software to provide useful guidance.

This situation is now changing, and the pressure for better business results is causing the software

community to apply the principles and practices that have worked so effectively for other

engineering groups. Among the most important of these practices is project planning and tracking.

Therefore, the pertinent questions are

Do engineering planning and tracking methods apply to software?

If they do, need they be rigid and constraining?

To answer these questions, we need to look at why planning and tracking were adopted by other

engineering fields and to consider how they might be used with software.
news@sei http://interactive.sei.cmu.edu 91

Plan and Track the Work

For any but the simplest projects, hardware engineers quickly learn that they must have plans. The

projects that don’t have plans rarely meet their schedules and, during the job, nobody can tell

where the project stands or when it will finish. On their very first projects, most hardware

engineers learn to make a plan before they commit to a schedule or a cost. They also learn to revise

their plans every week if needed and to keep these plans in step with their current working

situation. When engineering groups do this, they usually meet their commitments.

Some years ago, I was put in charge of a large software group that was in serious trouble. Their

current projects had all been announced over a year earlier, and the initial delivery dates had

already been missed. Nobody in the company believed any of the dates, and our customers were

irate. The pressure to deliver was intense.

When I first reviewed the projects, I was appalled to find that no one had any plans or schedules.

All they knew was the dates that had been committed to customers, and nobody believed them.

While everyone agreed that the right way to do the job would be to follow detailed plans, they

didn’t have time to make plans. They were too busy coding and testing.

I disagreed. After getting agreement from senior management, I cancelled all the committed

schedules and told the software groups to make plans. I further said that I would not agree to

announce or ship any product that did not have a plan. While it took several weeks to get good

plans that everyone agreed with, they didn’t then miss a single date. And this from a group that had

never met a schedule before.

The Key Questions

If planning is so effective for everybody else, why don’t software people plan? First, software

people have never learned how to make precise plans or to work to these plans. They don’t learn

planning in school, and the projects they work on have not generally been planned. They therefore

don’t know how to plan and couldn’t make a sound plan if they tried. Second, nobody has ever

asked them to make plans. When plans are made in the software business, the managers have

typically made them and the engineers have had little or nothing to do with the planning process.

The third reason that software people don’t plan is that, without any planning experience, few

software people realize that planning is the best way to protect themselves from unrealistic

schedules. The fourth reason is that management has been willing to accept software schedule

commitments without detailed plans. When management realizes the benefits of software plans,

they will start demanding plans and then, whether we like it or not, software people will have to

plan their work.
92 http://interactive.sei.cmu.edu news@sei

The Answers

So the answer to the first question, “Do these engineering methods apply to software?” is a clear

and resounding yes. The answer to the second question, “Are these engineering methods really

rigid and constraining?” depends on how the methods are introduced and used. Any powerful tool

or method can be misused. The guideline here is this: Does the method’s implementation assume

that some higher authority knows best, or is the method implemented in a way that requires the

agreement and support of those who will use it?

Any method that requires unthinking obedience will be threatening and dehumanizing to some, if

not to all, of the people who use it. This is true whether the method requires you always to plan,

refactor, or document, just as much as if the method requires that you never plan, refactor, or

document. All methods have costs and advantages, and any approach that dictates how always to

do something is rigid and constraining. The key is to learn the applicable methods for your chosen

field, to understand how and when to use these methods, and then to consistently use those

methods that best fit your current situation.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Noopur Davis, Julia

Mullaney, Bob Musson, and Marsha Pomeroy-Huff.

References

[1] Eischen, Kyle. “Software Development: An Outsider’s View.” IEEE Computer 35, 5 (May
2002): 36–44.

[2] Crosby, Philip B. Quality is Free, The Art of Making Quality Certain. New York: Mentor,
New American Library, 1979.

[3] Deming, W. Edwards. Out of the Crisis. Cambridge, MA: MIT Center for Advanced
Engineering Study, 1982.

[4] Humphrey, W. S. Managing the Software Process. Reading, MA: Addison-Wesley, 1989.

[5] Humphrey, W. S. Winning with Software: An Executive Strategy. Reading, MA: Addison-
Wesley, 2002.

[6] Juran, J. M. & Gryna, Frank M. Juran’s Quality Control Handbook, Fourth Edition. New
York: McGraw-Hill Book Company, 1988.
news@sei http://interactive.sei.cmu.edu 93

Fourth Quarter 2002

Learning from Hardware: Design and Quality

This column continues the discussion started in the third quarter column about how software

people can learn from hardware engineering methods. The prior column reviewed the pros and

cons of using hardware planning methods for software work and discussed how using these

methods could help us meet our businesses’ needs. In this column, I continue this same discussion

with a focus on how engineering quality practices and design principles could be adapted to

software and what we might gain from doing so. Hardware development strategies are dominated

by manufacturing and service cost considerations. Even though we don’t need a factory to produce

volumes of software products, we do have large and growing testing and service costs and we can

learn a great deal from the ways in which hardware engineers have addressed quality and design

problems. This column discusses some of these hardware engineering practices and suggests ways

in which their use would improve the performance of software groups.

In the September column, I discussed what we could learn from hardware engineering, particularly

about planning. Hardware engineers have developed a family of planning practices that they have

used with great success. The prior column reviewed the pros and cons of using these planning

methods for software work and discussed how these methods could help us meet our businesses'

needs.

It is no fun to be late, to have unhappy customers, and to be unable to predict when you will finish

a job. By following sound engineering planning methods, software work can be more productive,

more predictable, and more enjoyable for the engineers themselves. In this column, I continue this

same discussion with a focus on how engineering quality practices and design principles could be

adapted to software and what we might gain from doing so.

Hardware Costs

Hardware development strategies are dominated by cost considerations. The principal costs are

those the factory incurs in producing the products, as well as those the service organization

expends in handling product warranty and repair work. Even though we don't need a factory to

produce volumes of software products, we do have large and growing service costs and we can

learn a great deal from the ways in which hardware engineers have addressed quality and design

problems.

The Design Release

One of my first jobs when I joined IBM some years ago was to manage the development and

release-to-manufacturing of a hardware product. We had built a working model and had complete

parts lists, assembly drawings, and component specifications. While I thought we had a complete

story, the manufacturing and service groups put us through the ringer for two exhausting days.
94 http://interactive.sei.cmu.edu news@sei

It took me a while to realize why they were being so difficult. They would not accept the release

until we convinced them that our design provided the information they needed to meet cost,

schedule, quality, and production volume commitments. Once they accepted the design release,

these manufacturing and service groups would be committed to producing, warranting, and

repairing these products on a defined schedule, with specified product volumes, and for the

estimated costs. Their ability to do this would determine whether or not IBM made money on the

product.

Since manufacturing and service were the two largest direct cost items for IBM’s hardware

products, these groups had learned how to manage costs and they were not about to accept a

release that had potential cost problems. While the manufacturing and service people were hard to

convince, they imposed a valuable discipline on the development engineers. By making us

produce complete, precise, and clear designs, they motivated us to think about manufacturing and

service quality during design. This release discipline provided a solid foundation for all of the

subsequent hardware quality improvement programs.

The Need for Precise and Detailed Designs

Most hardware engineers quickly learn the importance of a precise and detailed design. On their

very first jobs, they learn the difference between designing a laboratory prototype and releasing a

design to the factory. Manufacturing groups will not accept a design release unless it provides the

information they need to define the manufacturing processes, estimate the costs of production

units, predict cost as a function of production volume, calculate warranty and service costs, order

and fabricate all of the parts, and assemble and test the system. Many people need the design

information and it is essential that they all get precisely the same story. Design documentation is

also essential to enable the inevitable design changes and to track and control these changes.

The Need for Documented Software Designs

The need for precise and documented designs in software is both similar to and different from

hardware. There are five principal reasons to document a software design:

to discipline the design work

to facilitate design reviews

to manage change

to preserve and communicate the design to others
news@sei http://interactive.sei.cmu.edu 95

to enable a quality and cost-effective implementation

Some people can hold very complex designs in their heads. However, regardless of how gifted you

are, there is some upper limit beyond which you will no longer be able to do this. When you hit

this limit, your design process will fail and the failure will not be graceful. Even very complex

designs are not beyond our mental capacities when we follow sound and thoroughly documented

design practices. Then we will not face the design crises that often result in complete project

failures.

By documenting your designs, you also facilitate design reviews. This will both improve the

quality of your designs and improve your personal productivity. The connection between quality

and productivity is easy to see in hardware because a major redesign generally results in a lot of

scrapped hardware. For software, however, these scrap and rework costs are equally significant,

although not as visible. In the simplest terms, it is always more productive to do a design job

correctly the first time than it is to do and redo the design several times.

Furthermore, a precise and documented design facilitates design changes. Anyone who has

worked on even moderate-sized systems knows that, to control the inevitable changes, they must

have precise records of the design before and after the change. Also, many programs will still be

used long after their designers are no longer available, and many of these programs must be

modified and enhanced. Without reasonably clear and complete design documentation, it is

expensive to maintain or enhance almost any product. A well-documented design will add

significantly to the economic life and value of the programs you produce. What is even more

important, by increasing the economic value of your products, you also increase your personal

value.

Separate Implementation

Another reason to thoroughly document your designs is to facilitate the growing practice of

subcontracting software implementation and test. You cannot efficiently use people in lower-cost

countries to do this work unless you have a thorough and well-documented design. Otherwise,

these off-shore groups would have to complete the designs themselves. This would waste much of

the time and money the subcontract was supposed to save.

With a complete and well-documented design, the designers can move on to newer jobs while the

implementing groups build and test the products. Without a complete and well-documented

design, the designers will be needed throughout the implementation and test work. One way to

ensure that the software designs are complete and implementable would be to require that the

implementing groups review and sign off on the design before they accept a design release. While

the software designers might initially object to this practice, it would impose the discipline needed
96 http://interactive.sei.cmu.edu news@sei

to truly capitalize on the implementation and test talent potentially available in developing

countries.

New and Innovative Products

One argument against producing complete and well-documented designs is that software

requirements are often imprecise and rapidly changing. When this is the case, the requirements,

design, and implementation work must all be evolved together. This permits the users to test early

product versions and to provide feedback on their improving understanding of the requirements. If

these development increments are small enough and are done quickly enough, there will be fewer

requirements changes to address and development can proceed rapidly and efficiently.

These requirements problems are most severe with new product development. However, in most

established software groups, new product development is the exception. Only a small percentage

of development time is generally spent on building new products. Most of the development work

in most software organizations is devoted to repairing and enhancing existing products. Since the

original designers are rarely available for this work, a documented design is needed to allow other

groups to modify and enhance the original designs.

Software Service Costs

Software service costs are largely a function of product quality. While the largest proportion of

user service calls are usually for what are called no-trouble-founds (NTF), we once did a study and

found that over 75% of these unreproducible NTF calls were attributable to latent product defects.

NTF problems are enormously expensive. They waste the users’ time and they require multiple

service actions before they can be found and fixed. To minimize service costs and to reduce testing

time and cost, early attention to quality is essential.

Measure and Manage Quality

Quality products are not produced by accident. While most software professionals claim to value

quality, they take no specific steps to manage it. In every other technical field, professionals have

learned that quality management is essential to get consistently high quality products on

competitive schedules. They have also learned that quality management is impossible without

quality measures and quality data. As long as software people try to improve quality without

measuring and managing quality, they will make little or no progress.

The lessons from hardware quality practices are instructive. Hardware quality problems have the

same categories as software. They include requirements mistakes and oversights, design problems,

and implementation defects. In addition, hardware groups must also worry about raw materials

defects. Because of their rigorous design and design release procedures, most hardware

manufacturing organizations find that their quality problems are generally due to manufacturing
news@sei http://interactive.sei.cmu.edu 97

problems and not to design or requirements issues. This is why manufacturing quality programs

concentrate almost exclusively on raw materials quality and on the quality of the manufacturing

processes. The quality of the design is managed by the product developers and verified during the

design release to manufacturing.

These manufacturing quality control practices are based on two principles. First, that the quality of

the product is determined by the quality of the process that produced it. Second, that the quality of

the process can be managed by measuring the work. The manufacturing engineers then use these

measures to control and improve the manufacturing processes.

Quality and Fix Time

One way to think about quality is to consider how the process would change as a function of defect

fix times. For example, programmers generally think that it takes only a few minutes to fix defects

in test. They base this on their experience with most of the defects they find in unit testing. In

system test, however, the time to find and fix defects typically extends to many hours or even days.

While most of these defects are fixed rather quickly, some take much longer. The average time to

find and fix each defect is generally 10 to 20 or more hours.

Suppose, however, that the fix times in test were much longer, how would that affect the software

process? The lessons from the hardware community are instructive. Some years ago, my

laboratory had a small semiconductor facility for making special-purpose chips. The turn-around

time for producing a custom chip from a completed design was six months. As a result, correcting

any design or fabrication errors required at least six months. Since our products were for a highly

competitive marketplace, the number of chip-fabrication turn-arounds was critical. The

engineering objective was to release products with only one turn-around. With a little practice,

their designs were of such high quality that they were generally able to meet that goal.

In the software business, the time to fix defects in final test is increasing and in some cases it can

run into months. For example, for imbedded products like television sets and appliances, the

general practice is to use more expensive technologies for the initial models so that they can

quickly make any software corrections. Then, when the change rate drops sufficiently, they switch

to a cheaper technology. As technology continues to get more complex and as competitive forces

continue to increase, we will soon have to produce defect-free software before system test. At least

we will for high-volume imbedded products. While testing will always be required, the software

quality objective should be a one-cycle system test.

Engineered Software

While the quality management methods for the software process are necessarily very different

from those used in hardware manufacture, the same principles apply. In summary, these principles
98 http://interactive.sei.cmu.edu news@sei

are: product quality is determined by process quality; produce and document clear, complete, and

precise designs; and measure and manage quality from the beginning of the job. By following

these principles, many software groups are now delivering defect-free products more predictably

and faster than they ever delivered products before [Humphrey].

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton, Julia

Mullaney, and Bill Peterson.

Reference

Humphrey, W. S. Winning with Software: An Executive Strategy. Reading, MA: Addison-Wesley,

2002.
news@sei http://interactive.sei.cmu.edu 99

First Quarter 2003

Some Programming Principles: Requirements

In this and the next several columns, I discuss some principles for programming work. These are

principles that, when followed, will consistently produce superior software that meets the needs of

customers and businesses. This column concentrates on the principles that are inherent in software

work because of the nature of software products and their requirements. These principles also

concern the characteristics of the people who use these products. These programming principles

are as follows:

• When we program, we transform a poorly understood problem into a precise set of instructions
that can be executed by a computer.

• When we think we understand a program’s requirements, we are invariably wrong.

• When we do not completely understand a problem, we must research it until we know that we
understand it.

• Only when we truly understand a problem can we develop a superior product to address that
problem.

• What the users think they want will change as soon as they see what we develop.

The Programming Job

As any experienced programmer knows, it is hard for people to be absolutely and completely

precise about anything. However, to produce a usable program, we must specify exactly what the

program is to do under every possible circumstance. The difficulty of being precise is brought

home to me whenever someone gives me directions.

“Go three blocks, turn left at the gas station, then take the third street on the right.” “But,” I

interrupt, “precisely where do I start and in what direction should I face?”

For some reason, the questions that I must ask to get precise directions always seem to annoy

people. Why should this annoy them? Don’t they know that, without precise and complete

information, I might get lost and waste a great deal of time?

The answer is, no they do not. In fact, even when they know exactly what they want done, most

people are unable to tell you precisely what to do. What is worse, they will even get annoyed when

you press them for the required details. This attitude complicates the programmer’s job. To work

properly, computing systems must be given absolutely precise instructions. Therefore, to write any

program, the programmer must reduce that problem to a precise form before it can be executed by

a computer. This means that we must somehow persuade one or more knowledgeable users to

explain all of the problem’s details. In summary, there are four reasons why this is hard.
100 http://interactive.sei.cmu.edu news@sei

• First, the users will not know how to be precise about their needs.

• Second, they will get annoyed when we press them to be precise.

• Third, we will often think that we understand the problem before we really do.

• Fourth, the users will often misunderstand or not even know what they need.

Programming is and always will be a precise intellectual activity that must be performed by

people. While machines can help us in this work, they can never figure out what we need, so they

can never replace us. The problem is that people are error prone and programs are extraordinarily

sensitive to errors. The programming challenge we face is to devise processes and methods that

will help us to produce precise intellectual products that are essentially defect-free.

Understanding the Problem

The difference between thinking that you understand a problem and truly understanding it is like

night and day. It is amazing how often I think that I know something but then find that I really do

not. My mother used to explain that being positive was “being wrong at the top of your voice.”

When it matters, like when writing a program, preparing a talk, or drafting a paper for publication,

I try to prove that what I think is true really is true. When I look at data, consult a reference, or talk

to an expert, I often find that my initial opinion was either wrong or too simplistic. The real story is

invariably much more interesting and often more complex than I had initially realized.

It is easy to settle for half-baked answers. Some years ago, a programming manager told me about

a conversation that she overheard between two of her programmers. They were developing a new

version of IBM’s COBOL compiler and were debating a particular feature. One of them felt that

the users would prefer one approach and the other felt that a different format would be more

convenient. This manager told me that, even though neither of them really knew which approach

would be best, they ended up agreeing on some middle ground that they both thought would be

OK.

On any large product, there are hundreds to thousands of these minor decisions and, when

programmers don’t really know the proper or most convenient or most efficient answer, they

usually guess. Even if the odds of being right are 50-50, they will make hundreds to thousands of

incorrect decisions. Then, the odds of their producing a convenient and highly-usable product will

be essentially zero.

Researching Problems

There are lots of ways to research problems. For example, I often write about how people develop

programs and the costs and benefits of various programming practices. Ever since I started my

research work on personal and team programming methods over 13 years ago, I have gathered data
news@sei http://interactive.sei.cmu.edu 101

about my own and other people’s work. I now have a database of over 11,000 programs that I

regularly use to verify some opinion or to answer some question. Depending on the question or

problem, data can be very helpful.

The second approach is to ask someone who knows the answer. The problem here is that, like the

COBOL programmers, you may not have an expert on hand and will often settle for just getting a

second opinion. While it might make you feel better to have someone agree with your guess, it is

still a guess. You can be pretty sure that it will either be wrong or a simplistic approximation of the

true situation.

Often, we cannot find a convenient expert and the time required to get expert help seems likely to

delay the project. However, this is only an excuse. Once you build all of your guesses into a

program’s design, the costs of fixing it later will be vastly greater than any conceivable delay. So

bite the bullet—take the time to get the facts needed to do a truly superior job. It will invariably

pay off.

Getting Informed Input

Some years ago, one of the projects in my organization was developing a very large programming

product. I was convinced that usability was a key need and kept pushing the project managers to

have a panel of experts review their designs. The managers kept telling me that it was too early to

hold such a review. They argued that they had not yet completed enough of the design work. Then,

one day, they told me that it was too late. It would now be too expensive to make any changes. I

insisted, however, and we held a two-day review.

I sat in on the meetings with a panel of a dozen user experts. The programming managers could not

answer several of the more detailed operational questions and had to call their programmers for

help. At the end of two days, these managers had agreed to make half a dozen changes before they

shipped the first release. They now agreed that, without these changes, the product would have

been unusable. After I moved on to a different position, this management team never held another

expert review. Since these were very smart people, I concluded that they must not have appreciated

the enormous importance of getting informed user input.

There are many ways to research requirements questions. Sometimes you will need experts but

often a simple prototype and one trial use will tell you the answer. You can also get associates or

even non-programmer support people to try to use a prototype. By observing their reactions, you

can resolve many usability issues. In other cases, you can accumulate several questions and build a

prototype to try out the most promising alternatives. Then you can often get some experts to test

the prototypes and to give you their views. In any event, keep track of your assumptions and

guesses, and verify them as soon as you can.
102 http://interactive.sei.cmu.edu news@sei

Building Superior Products

During my time as IBM’s Director of Programming, I received a constant stream of requests to

incorporate one or another field-developed program into the IBM product line. These programs

were developed by IBM’s customer support personnel to help their accounts solve critical

problems. We did accept a few of these programs and, in a few years, these few field-developed

programs were consistently at the top of our customer satisfaction ratings. Their ratings were well

above those for the standard products that had been developed in our laboratories.

In contrast to the company’s “standard” products, these field-developed programs had been

designed by people who were intimately familiar with the users’ environment. These developers

intuitively understood precisely how the product should work and didn’t have to guess what would

be more convenient. They knew. If you want to develop a superior product, either become

intimately familiar with the user’s environment or have someone with that familiarity readily

available to answer your questions. You will need to consult them almost every day.

Changing Problems and Products

If expert advice were all that was needed, requirements would not be such a serious problem.

However, there are three issues that complicate the story. First, the users will not be able to tell you

what they want. Generally, these are not development people and they cannot visualize solutions to

their problems. They could tell you how they work right now but they will have no idea how they

would work with a new product, even if its designed were based on exactly how they work today.

The second problem is that few users understand the essence of the jobs they are doing. By that, I

mean that they do not understand the fundamentals of their jobs, so they cannot help you to devise

a product solution that addresses the real operational needs. All they can usually do is help you

define how to mechanize the often manual system that they are currently using. The third problem

is a kind of uncertainty principle. By introducing a new product, you actually change that user’s

environment. Often, this will completely change the way the job should be done and it could

completely obsolete the original requirements.

What these three problems tell us is that your initial definition of the requirements will almost

certainly be wrong. While you must get as close as possible to a usable solution, you must

recognize that the requirements are a moving target that you must approach incrementally. To

produce a truly superior and highly-usable product for a realistic cost and on a reasonable

schedule, you must follow a development strategy and process that assumes that the requirements

will change. This requires that you encourage early changes and that you develop and test the

program in the smallest practical increments. Also, if possible, get the users to participate in the

early testing. Then, when you find what you did wrong or what your customers could not explain

or what the users did not know, the amount of rework will be small enough to do in a reasonable

time. Then you can quickly take another user checkpoint to make sure you are still on the right

track.
news@sei http://interactive.sei.cmu.edu 103

These few principles are fundamental to just about every programming job. What is most

interesting is that experienced programmers will generally recognize these principles as correct,

even while they work in an environment that does not apply them. The challenge that we

programmers face is to convince ourselves, our managers, our executives, and even our customers

to devise processes, to plan projects, and to manage our work in a way that is consistent with these

principles. While it might seem simple and easy to convince people to do something so obvious, it

is not. There are many reasons for this, but the most basic reason is that welcoming early

requirements changes exposes our projects to unlimited job growth, which has historically led to

serious schedule overruns. These are problems that I will address in the next few columns where I

discuss the principles for designing products, guiding projects, leading teams, and training and

coaching the people who do programming work.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton,

Sholom Cohen, Luke Dzmura, Jim Over, Bill Peterson, and Marsha Pomeroy-Huff.
104 http://interactive.sei.cmu.edu news@sei

Second Quarter 2003

Some Programming Principles: Products

This is the second in a series of columns on programming principles. The first column discussed

those principles that relate to program requirements and why requirements must change

throughout the development process. The conclusion was that we must use development processes

that recognize the inevitability of requirements changes and that will work effectively even in the

face of frequent and often substantial changes. In this column, I review those product-related

principles that govern our work in developing software-intensive systems and the unique

challenges we face in doing software work.

The Nature of Computer Programs

Computer programs are fundamentally different from other types of products. Software doesn’t

wear out, rot, or deteriorate. Once a program works and as long as its operating conditions remain

the same, it will continue to work indefinitely. Software products can be reproduced for essentially

nothing and distributed worldwide in seconds. From a business perspective, software is almost an

ideal product. It is the most economical way to implement most logic and it is the only way to

implement complex logic. As an intellectual product, software can be legally protected almost

indefinitely and this makes software products potentially very profitable. These basic software

characteristics provide great opportunities. However, they also present us with six major

challenges. To properly address these challenges, we must substantially change the way we do our

work and the methods we use to run our projects.

The First Challenge: Software Work Is Intellectual

Because software work is intellectual and our products are intangible, we cannot easily describe

what we do or demonstrate our results. This makes it extremely difficult for non-software people

to manage software groups or even to understand what we do. As more people get involved with

and become knowledgeable about software, this will be less of a problem. However, today, few

customers, managers, or executives have an intuitive feeling for the software business. The

problem is that you can’t touch, see, or feel software. When we tell them that the product is nearly

ready to ship, they have no real appreciation for what we are saying. We can’t take them out into

the laboratory and show them the first software model being assembled, describe which parts must

be added before final test, or show them parts being welded, machined, or painted.

The problem here is trust. Businesses run on trust, but many managers follow the maxim: “Trust

but verify.” Unfortunately, with software, management can only verify what we say by asking

another software person who they hope is more trustworthy. Since we typically don’t have any

way to prove that what we say is true, management can only tell if we are telling an accurate story

by relating what we currently tell them with what we have said before and how that turned out.
news@sei http://interactive.sei.cmu.edu 105

Unfortunately, the abysmal history of most software operations is such that very few if any

software developers or managers have any credibility with their more senior management.

The result is a critical challenge for the software community: we work in an environment where

senior management doesn’t really believe what we tell them. This means that, almost invariably,

management will push for very aggressive development schedules in the hopes that we will deliver

sooner than we otherwise would. To maintain this schedule pressure, management is not very

receptive to pleas for more time. Furthermore, even when we break our humps and actually deliver

a product on the requested schedule, management isn’t very impressed. After all, that is only what

we said we would do. Other groups do that all the time.

The Second Challenge: Software Is Not Manufactured

Because software can be reproduced automatically, no manufacturing process is required. This

means that there is no need for a manufacturing release process and therefore that there is no

external process to discipline our design work. When I used to run systems development projects,

the hardware had to be manufactured in IBM’s plants. Before I could get a cost estimate signed off

or get a price and product forecast, I needed agreement from the manufacturing and service

groups. This required that the product’s design be released to manufacturing. In this release

process, the manufacturing engineers reviewed the design in great detail and decided whether or

not they could manufacture the product for the planned costs, in the volumes required, and on the

agreed schedules. We also had to get service to agree that the spare parts plan was adequate, that

the replacement rate was realistic, and that the service labor costs were appropriate.

As you might imagine, release-to-manufacturing meetings were extremely detailed and often took

several days. The development engineers had to prove that their designs were complete enough to

be manufactured and that the cost estimates were realistic and accurate. While these release

meetings were grueling and not something that the development engineers enjoyed, once you

passed one, you had a design that the manufacturing people could build and everybody knew

precisely where your program stood.

Unfortunately, software development does not require such a release process. The consequence is

that design completion is essentially arbitrary and we have no consistent or generally-accepted

criteria that defines what a complete design must contain. The general result is poor software-

design practices, incomplete designs, and poor-quality products. The challenge here is that,

without any external forces that require us to use disciplined design practices, we must discipline

ourselves. This is difficult in any field, but especially for software, since we have not yet learned

how to reliably and consistently do disciplined software work.
106 http://interactive.sei.cmu.edu news@sei

The Third Challenge: The Major Software Activities Are Creative

Because software can be reproduced automatically, a traditional manufacturing process is not

required and no manufacturing resources are needed. This is a major change from more traditional

products where the manufacturing costs are often more than ten times the development expenses.

In software, the principal resources are development and test. This mix imposes a new set of

demands on management: they must now learn to manage large-scale intellectual work.

In the past, large-scale activities have generally concerned military operations or manufacturing

processes. Typically, large numbers of people have been needed only for repetitive or routine

activities like reproducing already-designed products. In software, large-scale efforts are often

required to develop many of the products. In directing large numbers of people, management has

typically resorted to autocratic methods like unilaterally establishing goals, setting and controlling

the work processes, and managing with simplistic measures. The problem here is that large-scale

intellectual work is quite different from any other kind of large-scale activity. Autocratic practices

do not produce quality intellectual work and they are counterproductive for software. In fact, such

practices often antagonize the very people whose creative energies are most needed.

To address this challenge, management must understand the problem and they must also get

guidance on what to do and how to do it. While the proper management techniques are not

obvious, they are not very complex or difficult. And once they are mastered, these management

techniques can be enormously effective.1

The Fourth Challenge: Software Lives Forever

Because software essentially lives forever, product managers face an entirely new and unique set

of strategic issues. For example, how can they continue to make money from essentially stable

products, and what can they do to sustain a business in the face of rampant piracy? The problem is

that immortal products that can be reproduced for essentially nothing will soon lose their unique

nature and cease to be protectable assets. While this is not a severe problem when the software is

frequently enhanced, once products stabilize, they will be exceedingly hard and often impossible

to protect, at least for anything but very short periods.

This may not seem like a serious problem today, but it soon will be. A large but ultimately limited

number of basic functions will be required to provide future users with a stable, convenient,

accessible, reliable, and secure computing capability. While such functional needs have evolved

rapidly over the last 50 years, the rate of change will inevitably slow. This fact, coupled with the

users’ growing needs for safety, security, reliability, and stability, will require that the rate of

1. See my book, Winning with Software: an Executive Strategy. Reading, Mass., Addison Wesley, 2002.
news@sei http://interactive.sei.cmu.edu 107

change for many of our products be sharply reduced. This in turn will make it vastly more difficult

to protect these products.

The reason that this is important to programmers is that if the uniqueness of our products cannot be

protected, our organizations will be unable to make money from the products we produce. They

will then no longer be able to pay us to develop these products.

Lest this prediction sound too dire, the programming business will not wither away. I am only

suggesting that the part of the programming business that provides basic system facilities will

almost certainly have to change. On the other hand, I cannot visualize a time when application

programming will not be a critical and valuable part of the world economy. In fact, I believe that

skilled application programming will become so important that the programming profession as we

now know it will no longer exist: every professional will have to be a skilled application

programmer.

The Fifth Challenge: Software Provides Product Uniqueness

Because software contains the principal logic for most products, it provides the essential

uniqueness for those products. This means that the software’s design is an essential product asset

and that the key to maintaining a competitive product line is maintaining a skilled and capable

software staff. This is an entirely new consideration for a management group that has viewed

software as an expense to be limited, controlled, and even outsourced, rather than as an asset to be

nurtured, protected, and grown. The pressure to limit software expenses is what caused IBM to

lose control of the PC business. Management was unwilling to devote the modest resources needed

to develop the initial PC software systems. This gave Bill Gates and Microsoft the opportunity to

replace IBM as the leader of the software industry.

As software becomes a more important part of many products, whole industries are likely to lose

control of their products’ uniqueness. This control will be in the hands of the programmers in India

or China or whoever else offered the lowest-cost bids for outsourcing the needed software work. In

effect, these industries are paying their contractors to become experts on their products’ most

unique features. Ultimately, these contractors will very likely become their most dangerous

competitors. Over time, these industries may well find themselves in a position much like IBM’s in

the PC business: manufacturing low-profit commodity-like hardware to run somebody else’s high-

margin software.

The Sixth Challenge: Software Quality is Critical

Because software controls an increasing number of the products we use in our daily lives, quality,

safety, security, and privacy are becoming largely software issues. These increasing quality needs

will put enormous pressure on software businesses and on software professionals. The reason is
108 http://interactive.sei.cmu.edu news@sei

that software safety, security, and privacy are principally software design issues. Without a

complete, fully-documented, and competently reviewed design, there is practically no way to

ensure that software is safe, secure, or private. This is a problem of development discipline: since

we don’t have to release our products to a manufacturing or implementation group, there is no

objective way to tell whether or not we have produced a complete and high-quality design.

This development discipline problem has several severe consequences. First, it has never been

necessary for software people to define what a complete software design must contain. This means

that most software engineers stop doing design work when they believe that they know enough to

start writing code. However, unless they have learned how to produce complete and precise

designs, most software engineers have only a vague idea of what a design should contain.

With the poor state of software design and the growing likelihood of serious incidents that are

caused by poor-quality, insecure, or unsafe software, we can expect increased numbers of life-

critical or business-critical catastrophes. It won’t take many of these catastrophes to cause a public

outcry and a political demand for professional software engineering standards. This will almost

certainly lead to the mandatory certification of qualified software engineers. Then, the challenge

for us will be to determine what is required to be a qualified software engineer and how such

qualification can be measured.

Conclusions

Since we have been living with all of these problems for many years, you might ask why we

should worry about them now. The reason is that the size and scope of the software business has

been growing while software engineering practices have not kept pace. As the scale and criticality

of software work expands, the pressures on all of us will increase. Until we learn to consistently

produce safe, secure, and high-quality software on predictable schedules, we will not be viewed as

responsible professionals. As the world increasingly depends on our work, we must either learn

how to discipline our own practices or expect others to impose that discipline on us. Unfortunately,

in the absence of agreed and demonstrably effective standards for sound software engineering

practices, government-imposed disciplines will not likely be very helpful and they could even

make our job much more difficult.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton, Don

Firesmith, Marsha Pomeroy-Huff, Julia Mullaney, Bill Peterson, and Alan Willett.
news@sei http://interactive.sei.cmu.edu 109

Third Quarter 2003

Some Programming Principles: Projects

This is the third in a series of columns on programming principles. The first column in March

discussed some general principles of programming, with particular emphasis on the changing and

ill-defined nature of software requirements. The second column in June addressed those software

principles that relate to the nature of our products. These principles concern the fact that our

products are intangible, can last essentially forever, and are increasingly important to our

businesses and to society in general.

In this column, I discuss the principles that relate to software engineering projects. Many of these

principles are common to engineering projects of all kinds, but software projects present some

issues that make our work uniquely challenging and rewarding. In discussing project principles, it

is important to start with the fundamental purpose or objective of most software projects. This is to

develop or enhance a product to meet a business need. In fact, this defines the following important

principle about almost any software project.

The principal objective of almost all software projects is to meet a business need.

This means that the schedule, cost, and quality of the work is of paramount importance. Therefore,

in addressing the principles that govern software projects, I will talk about schedule, cost, and

quality. Of course, by quality, I refer to the ability of the product to reliably produce the user’s

desired results. While there are many other important project considerations, they all relate directly

or indirectly to schedule, cost, and quality performance. In closing, I will comment on the benefits

of successful projects and the characteristics of project success from both a business and an

engineering perspective.

Project Schedule Performance

Project schedule performance has three interesting characteristics. First, with few exceptions, if

you don’t meet the committed schedule or a revised schedule that everyone knows about and has

previously agreed to accept, your project will not be judged fully successful. In other words,

schedule performance comes first. For example, in assessing the best projects, any that are late,

even by only a few days or weeks, never make it to the top of the list.

Second, and particularly for projects that last for more than a few weeks, the important

stakeholders need to know where you stand and if you are likely to finish on time. The end users

need to make installation and conversion plans, the testers need to schedule their resources and

facilities, and management needs to know if there will be any business problems or if they will

have to step in to accelerate or redirect the work.
110 http://interactive.sei.cmu.edu news@sei

Keeping managers and customers properly informed requires accurate and timely status reports.

This is the most common area where software projects run into difficulty. Since software engineers

rarely know precisely where they stand against their schedules, they cannot make a convincing

report on their status or accurately forecast when they will finish. From a management perspective,

this proves that they do not know how to manage their work. This leads to distrust, management

meddling, and often even to project redirection or cancellation. In fact, I have seen management

interference destroy projects that otherwise would have been reasonably successful, all because of

poor status-tracking and reporting.

Third, schedule performance by itself is not personally rewarding. While it is essential to meet

other people’s criteria for project success, the satisfaction that comes from meeting a schedule is

ephemeral. After a rather brief period, management’s reaction will become “So what was the big

deal?” You just did what you said you would do. Consider schedule performance like a down

payment: it is essential to get into the game and it will improve your personal reputation with

management, but, by itself, it will not produce lasting rewards or personal satisfaction.

Project Cost Performance

Most engineers feel that if they meet the schedule, any cost overruns will be small and not worth

worrying about. But that is becoming less and less true. As many software projects last longer and

become more expensive, both cost and schedule management are increasingly important. To see

why, suppose that you were building a new house and that the builder assured you that he would

finish on schedule. Then, just before the final closing, he told you that your changes had cost more

than expected and that he had to pay some overtime to finish on the promised date. The bill is

therefore $50,000 more than you had previously agreed. This would likely cause a serious

problem. The mortgage commitment probably would not cover the added costs and you probably

don’t have that kind of money lying around. While meeting the schedule was nice, the cost overrun

could easily be a deal breaker.

Cost is equally important for software work. However, the time to address cost problems is when

you first detect them, not at the end when no one has any flexibility. If your customer wants a

change, if you have technical problems, or if your original estimates were way off, you should

figure out what the job is now likely to cost and get agreement before you proceed with the work.

While this will involve lots of nitty debates during the project, it will avoid the big cost surprises at

the end. When you are at it, also make sure that you put all of these cost negotiations and

agreements in writing.

Of course, the problem that cost management presents for most software projects is that we rarely

know enough about the costs of our work to estimate the impact of small changes. This again is a

fairly unique problem for software, but it is a problem we must learn to address if we are ever

going to effectively manage the costs of our work.
news@sei http://interactive.sei.cmu.edu 111

Project Quality Performance

While cost and schedule performance are important, our product must work. Also, cost and

schedule performance are not, in the long run, satisfying from an engineering point of view. We

like to build great products. If you finished development on schedule and within planned costs but

the product was a disaster, the brief glory you got from delivering on time would quickly fade.

While being known for meeting schedules is important, being known as the developer of a poor-

quality product is an engineering kiss of death.

The world is changing and the importance of delivering quality products will only increase. After

they have lived through a few software disasters, many software developers properly conclude that

it is better to deliver good products late than to produce poor products on time. This strategy,

however, will continue to have business problems. The engineers who get ahead in the future are

almost certain to be those who deliver quality products on time and for their committed costs. If no

one in your organization can consistently do this, there are lots of organizations all over the world

that would love to take your place. Many of these organizations are already demonstrating the

ability to do superior work on schedule and they are growing very quickly. So, if you want to keep

your job, it would be a good idea to learn how to meet both the business and technical needs for

your products.

Project Success Criteria

The real satisfaction we get from our work is the thrill of working on a great team, creatively using

the latest technology, and producing superior products that truly meet our users’ needs. As

engineers, we are creators and we want our creations to be accepted, used, and appreciated. This

requires quality products. In short, the truly successful and rewarding projects of the future will be

those that produce quality products on schedule and for their committed costs. These are the only

projects that will consistently satisfy the engineers, their managers, and the users.

The criteria that engineers and managers use for judging project success historically have been

very different. As I will discuss in the next column, it is important that we learn to consistently

meet both management’s success criteria as well as our own. The key point to remember, however,

is that management decides who to hire and how much to pay for our work. This means that we

must meet management’s criteria if we want to get ahead. In the next column, I will conclude this

series on programming principles with a discussion of the perceptions that engineers and managers

have about project success and what this means for each of us.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton, Don

Firesmith, Marsha Pomeroy-Huff, Julia Mullaney, Bill Peterson, and Alan Willett.
112 http://interactive.sei.cmu.edu news@sei

Fourth Quarter 2003

Some Programming Principles: People

This is the fourth and last in a series of columns about programming principles. The prior columns

discussed the principles that relate to programming requirements, software products, and the

projects for developing these products. This column deals with people and the human aspects of

the software process. While this is an enormous subject and no brief column could possibly do

justice to the vast body of relevant knowledge, a few key principles are particularly important in

determining the performance of software people and the teams on which they work.

While most people behave in reasonably predictable ways, software people are unique, both in

their creative abilities and in the nature of the work they do. Software professionals are among the

brightest people on earth. Most of us got into this field because we were excited by the thrill of

working with a challenging and very special technology. However, the problem many of us face is

that the environment in which we work rarely supports and motivates consistently high-quality

creative work.

In addressing this subject, I discuss the factors that govern the performance of software

professionals, the most effective ways to obtain superior performance, and the key issues to

consider in motivating and guiding teams of creative professionals.

The Performance of Software Professionals

Much as in other professions, the performance of software people is governed by four things.

• their understanding of the job they have to do

• their knowledge of and skill at using the best known methods for that job

• their discipline to properly and consistently use their knowledge and skill

• the quality of the support system that motivates and controls their activities

These four governing factors form the basis of the four people principles discussed in this column.

People Principle Number 1: If the programmers do not understand the job
they are to do, they will not do it very well.

This seems to be such an obvious point that it is hardly worth discussing. However, it is critically

important and often overlooked. If the members of a development team are not intimately familiar

with the job their product is to perform and the way the users of that product will use it, the project

will almost certainly be troubled and the product will likely be a failure. If you can’t put users or

people with user experience on your development team, at least ensure that the team has ready
news@sei http://interactive.sei.cmu.edu 113

access to people with such knowledge. To produce quality products, a close and cooperative

relationship with such people is absolutely essential.

People Principle Number 2: The people who know and use the best methods
will do to best work.

While software developers usually get extensive training on tools and methods, they generally get

little or no guidance on their personal practices. This is not true of any other sophisticated

technical field. Chemical engineers are not born knowing how to conduct experiments, analyze the

composition of materials, or follow sound laboratory practices. Doctors learn their profession

through extensive training, by completing several years of internships and specialty studies, and by

mastering the methods that their predecessors have found most effective.

In software, we have yet to learn the truisms that some methods and practices are more efficient

and cost-effective than others and that the cost and quality of the products we produce is governed

by the practices we use in developing them. Today, on many projects, the developers do very

similar work but their personal practices are very different. I have studied such teams and found

that even developers who do similar work use different methods and, what is worse, they are

generally unaware of the methods their peers are using. Except for occasional help with problems

or complex tools, most software people work largely alone and are unaware of how others work or

the best ways to do each of their tasks.

If every scientist had to personally discover Bernoulli’s principle, develop Maxwell’s equations, or

invent calculus, we would still be in the dark ages. The explosive growth of science and

engineering didn’t start until people defined their practices, measured their work, and

communicated precisely. This allowed others to repeatably produce the same results. The essence

of science and engineering is learning from the experiences of others. Until we build a body of

professional software practices and teach new professionals to consistently and properly use these

practices, programming will remain an unsatisfactory craft that produces defective, insecure, and

even unsafe products.

People Principle Number 3: When programmers know how to select and
consistently use the best methods, they can do extraordinary work.

We now have data on several thousand programmers who have taken the Personal Software

Process (PSP) course as well as data on over 100 Team Software Process (TSP) teams that have

been launched1. It is now clear that developers can learn and use highly-effective personal

1. TSP team projects start with a launch where the members learn the project requirements, define their own

processes, and develop and negotiate their plans with management.
114 http://interactive.sei.cmu.edu news@sei

practices and that, when they use these practices, they produce much better work than they ever

did before. In a recent study of 20 TSP teams that provided data on delivered product defect levels,

these products had 100 times fewer defects than average industrial products and 16 times fewer

defects than typical products produced by CMM1 level 5 organizations [1]. In most cases, these

were first-time TSP teams. Since personal and team performance typically improves with

experience, we can expect even better performance in the future.

The obvious problem with requiring that developers use the best practices is in determining what

the best practices and methods are. However, the reason that the PSP and TSP are so effective is

that they provide developers the tools and methods they need to make this decision for themselves.

With the PSP, professionals learn how to follow a defined process, how to modify that process

when they need to, and how to measure and plan their personal work. By using their own data,

developers can see what methods work best for them and they can make informed decisions about

how to do their work.

Similarly, when TSP teams are launched, they examine the job that they have to do and

consciously decide on the best strategy, process, and plan for the work. While this may not seem to

be the best possible way to do the job, it is the one that the team members think would be best, and

these are the only people who know their personal skills, abilities, and interests; the work that must

be done; and how they can best work together as a team. So, while there may be theoretically

better ways to do the work, the team’s informed decision on its own strategy, process, and plan will

actually produce the best way for this team to do this job.

People Principle Number 4: Superior software work is done by highly
motivated developers.

When people are discouraged, antagonized, or even just unhappy, they cannot do their best work.

The key to getting superior work from creative people is to energize the entire team and to

motivate all of the members to do their very best. But what motivates software people and how can

one build and sustain this motivation? In an interesting study of software projects, Linberg

compared management’s typical views of project success with those of the team members [2].

While managers typically think in terms of cost, schedule, and product success, the developers

viewed their projects quite differently.

For example, Linberg asked one group of experienced developers what project they viewed as the

most successful one on which they had worked. They had just completed what he referred to as

project A and over half of them cited this as the most successful of their careers. This was in spite

of the fact that they had all worked on 8 or more projects and that this job was delivered in twice

1. CMM is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
news@sei http://interactive.sei.cmu.edu 115

the desired time and for three times the planned cost. The four factors that the team members listed

as making this project successful were as follows.

• a personal sense of being involved and making a contribution

• frequent celebrations where the team and management complemented them on their
achievements and milestones

• positive feedback from marketing and senior management

• the autonomy to do the job the way that they thought was best

These are the things that motivate software developers. While these same factors motivate people

in almost all walks of life, they are particularly important for getting superior software work. In

many fields, people’s personal practices are visible and relatively easy to measure and monitor. In

software, much of the work is intellectual and not measurable or manageable without the

developer’s cooperation. This is why motivation, personal discipline, and sound professional

behavior is critically important for software development. If software people do not want to work

in a particular prescribed way, they won’t and, unless the software people themselves tell them, it

is unlikely that anyone will know. This is why contributing, being involved, being rewarded,

getting positive feedback, and having autonomy are particularly important for software

developers.

Whether you manage software development or do development work yourself, remember and

follow these four principles. To produce superior products, the developers must

• understand the job the product is to do

• know the best methods for doing the work

• consistently select and use these best methods

• be highly motivated to work on this team doing this job

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For

this column, I particularly appreciate the helpful comments and suggestions of Dan Burton, Anita

Carleton, Julia Mullaney, Bill Peterson, and Marsha Pomeroy-Huff.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey

watts@sei.cmu.edu
116 http://interactive.sei.cmu.edu news@sei

References

[1] Davis, N. & Mullaney, J. The Team Software Process (TSP) in Practice: A Summary of
Recent Results (CMU/SEI-2003-TR-014). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003. <http://www.sei.cmu.edu/publications/documents
/03.reports/03tr014.html>.

[2] Linberg, K. “Software Developer Perceptions about Software Project Failure: A Case
Study.” Journal of Systems and Software 49, 2 (December 1999): 177-192.
news@sei http://interactive.sei.cmu.edu 117

2004 | Number 1

Defective Software Works

Over the years, many people have written to me with questions about software quality, testing, and

process improvement. Jon Hirota asked how to get organizations to invest in software quality;

John Fox asked if I see a movement away from system test and toward quality processes; Bob

Schaefer wondered what I thought would happen in the area of software integration and testing;

Dan St. Andre asked what software development managers can do to encourage executive

management to meaningfully address software quality; and Pete Lakey wondered if and how the

software community should use statistical process control techniques. I won’t directly answer all

of these questions but I will discuss these quality and testing issues here and in my next column.

While it has taken me an embarrassingly long time to respond to these letters, they still raise a

critical question: “How important is software quality and how should quality practices change in

the future?”

First, What Do We Mean by Quality?

While the classical definition of product quality must focus on the customer’s needs, in this and

the next column, I will concentrate on only the defect aspect of quality. This is because the cost

and time spent in removing software defects currently consumes such a large proportion of our

efforts that it overwhelms everything else, often even reducing our ability to meet functional

needs. To make meaningful improvements in security, usability, maintainability, productivity,

predictability, quality, and almost any other “ility,” we must reduce the defect problem to

manageable proportions. Only then can we devote sufficient resources to other aspects of quality.

The functional and operational characteristics of a software product should and will continue to be

important, but that is where most people now focus, and there is little risk that they won’t continue

to do so in the future. If a product doesn’t have attractive functional content, it won’t sell,

regardless of how few or how many defects it contains. Unfortunately, many software groups treat

the importance of functional quality as an excuse to concentrate almost exclusively on product

function and devote little attention to better managing the defect problem.

While there is irrefutable evidence that the current “fix-it-later” approach to defect management is

costly, time consuming, and ineffective, don’t expect this to change soon. It is too deeply

ingrained in our culture to be rooted out easily. However, since I’m an optimist, I’ll keep trying to

change the way the world views software quality. And by that, I mean the way we manage defects.

Second, How Important is Software Quality?

The key question is: “Important to whom?” Developers are necessarily preoccupied with defects.

They spend the bulk of their time trying to get their products to work. And then, even when the
118 http://interactive.sei.cmu.edu news@sei

products do work, the developers spend even more time fixing test and user-reported problems.

While few developers recognize that their schedule and cost problems are caused by poor quality

practices, an increasing number do. This is a hopeful sign for the future.

Not surprisingly, development management tends to view quality as important only when

executives do. And the executives view quality as important only when their customers do. When

customers demand quality, executives almost always pay attention. While their actions may not

always be effective from a quality-management perspective, they will almost always respond to

customer pressure. And even if their customers do not demand improved quality, government

regulation can cause both executives and development managers to pay more attention to quality.

This is true for commercial aircraft, nuclear power plants, and medical devices. There is little

question that, with commercial aircraft for example, the close and continuous regulatory scrutiny

coupled with painstaking reviews of every safety incident hold this industry to high quality

standards.

Third, Why Don’t Customers Care About Quality?

The simple answer is: “Because defective software works.” The reason it works, however, is

because software doesn’t wear out, rot, or otherwise deteriorate. Once it is fixed, it will continue to

work as long as it is used in precisely the same way. But, as software systems support an increasing

percentage of the national infrastructure, they will be used in progressively less predictable ways.

When coupled with the explosive growth of the Internet and the resulting exposure to hackers,

criminals, and terrorists, the need for reliable, dependable, and secure software systems will

steadily increase. If experience is any guide, as these systems are used to perform more critical

functions, they will get more complex and less reliable. Unfortunately, this probably means that it

will take a severe, disruptive, and highly public software failure to get people concerned about

software quality.

Two forces could change this complacent attitude. One is the Sarbanes-Oxley Act, which makes

chief executives and chief financial officers personally responsible for the quality of their

organizations’ financial reports. This has caused executives to inquire into the accuracy of their

financial reporting systems. What they find is often disquieting. The general accuracy of such

systems is usually reasonably good, but there are many sources of error. While these errors have

not been a serious concern in the past, they will become much more important when the senior

executives are personally liable.

The second issue is closely linked to the first. That concerns software security. Although this is not

yet well recognized, when software systems are defective, they cannot be secure. Executives are

also just beginning to realize that software security is important to them because, if their systems

are not secure, they almost certainly cannot be accurate or reliable. Since they are now personally
news@sei http://interactive.sei.cmu.edu 119

liable for the accuracy of their financial systems, they now are beginning to appreciate the need for

secure financial systems.

How Defective is Software?

So the basic question concerns defects. First, some facts. The number of defects in delivered

software products is typically measured in defects per thousand lines of code (KLOC). Figure 1

shows some data on recent history. Here, Capers Jones has substantial data on delivered product

defect levels, and he has compared these with the CMM maturity of the organizations that

developed the software [1]. Noopur Davis has converted the Jones data to defects per million lines

of code (MLOC), as shown in Figure 1 [2]. For example, organizations at CMM level 1 delivered

systems with an average of 7,500 defects per MLOC while those at level 5 averaged 1,050 defects

per MLOC. What is disquieting about these numbers is that today most products of any

sophistication have many thousands and often millions of lines of code. So, while one defect per

KLOC may seem like a pretty good quality level, a one million LOC system of this quality would

have 1,000 defects. And these are just the functional defects.

Figure 1. Typical Software Quality Levels – in Delivered Defects

10

1.0

0.1

0.01

0.001

0.000

Defects/KLOC
Defects in 1

MLOC system

10,000

1,000

100

10

1

Typical delivered
defect levels/MLOC

CMM Quality
1 – 7,500
2 – 6,240
3 – 4,730
4 – 2,280
5 – 1,050
120 http://interactive.sei.cmu.edu news@sei

Today, most programmers are unaware of many types of security defects. While some security

defects are generally recognized as functional defects, others are more subtle. A security defect is

any design error that permits hackers, criminals, or terrorists to obtain unauthorized access or use

of a software system. Since many of these defects do not cause functional problems, systems that

are riddled with security flaws may work just fine and even pass all of their functional tests. And,

since many programmers are worried only about getting their programs to function, they are

almost totally unaware of their products’ potential security vulnerabilities.

In one program that had been supporting a Web site for over two years, a security audit found one

functional defect and 16 security defects. So, today’s one MLOC systems with 1,000 functional

defects could easily have many thousands of security defects, and almost any of these could

provide a portal for a hacker, thief, or terrorist to steal money, disrupt records, or to otherwise

compromise the accuracy of the organization’s financial system. No wonder executives are

worried about the Sarbanes-Oxley Act.

Putting Software Quality into Perspective

At present, over 90% of all security vulnerabilities are garden-variety functional defects. This

means that our initial goal must be to reduce functional defect levels. From a security perspective,

one defect per KLOC is totally inadequate for large systems. But what does one defect per KLOC

mean in human terms? One thousand lines of source code, when printed in a listing, typically take

about 30 to 40 printed pages. This means that one defect in 30 to 40 printed pages is poor quality.

No other human-produced product comes close to this quality level.

But even though one defect per KLOC is far beyond the levels that humans ordinarily achieve, this

quality level is totally inadequate. At this quality level, most large systems will contain many

thousands of defects, and any one of them could open the door to security problems. So, if 1,000

defects in a one MLOC (million line-of-code) system is inadequate, what would be adequate?

That, of course, is impossible to say, but 10 defects per MLOC would be an advance from where

we are now. However, I am afraid that even 10 defects per MLOC will not be adequate forever.

Reaching a level of 10 defects per MLOC would mean only one defect in 3,000 to 4,000 pages of

listings. That goal seems preposterous. Are such quality levels needed, and is there any hope that

we could achieve them? Unfortunately, we almost certainly need such levels today. Criminals,

hackers, and terrorists now have and will continue to devise more sophisticated and automated

ways to probe our systems for security vulnerabilities. And any single vulnerability could open the

door to serious problems.

The problem is not that 10 defects per MLOC is difficult to achieve. The real problem is that, even

if it is an adequate security level today, it will almost certainly not be adequate for very long. In the
news@sei http://interactive.sei.cmu.edu 121

next column I will discuss this problem and explore some of the issues we face in producing

systems that have such extraordinary quality levels.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early
drafts. For this column, I particularly appreciate the helpful comments and suggestions of
Julia Mullaney, Bill Peterson, Marsha Pomeroy-Huff, and Carol Woody. The letters from
John Fox, John Hirota, Pete Lakey, Bob Schaefer, and Dan St. Andre were also very help-
ful and I thank them as well.

In closing, an invitation to readers

In these columns, I discuss software issues and the impact of quality and process on developers

and their organizations. However, I am most interested in addressing the issues that you feel are

important. So, please drop me a note with your comments, questions, or suggestions. I will read

your notes and consider them when planning future columns.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey

watts@sei.cmu.edu

References

[1] Jones, C. Software Assessments, Benchmarks, and Best Practices. Reading, MA: Addison

Wesley, 2000.

[2] Davis, N. & Mullaney, J. The Team Software Process (TSP) in Practice: A Summary of Recent

Results (CMU/SEI-2003-TR-014). Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University, 2003 < http://www.sei.cmu.edu/publications/documents/03.reports/

03tr014.html?si>.
122 http://interactive.sei.cmu.edu news@sei

About the Author

Watts S. Humphrey founded the Software Process Program at the SEI. He is a fellow of the

institute and is a research scientist on its staff. From 1959 to 1986, he was associated with IBM

Corporation, where he was director of programming quality and process. His publications include

many technical papers and six books. His most recent books are Managing the Software Process

(1989), A Discipline for Software Engineering (1995), Managing Technical People (1996), and

Introduction to the Personal Software ProcessSM (1997). He holds five U.S. patents. He is a

member of the Association for Computing Machinery, a fellow of the Institute for Electrical and

Electronics Engineers, and a past member of the Malcolm Baldrige National Quality Award Board

of Examiners. He holds a BS in physics from the University of Chicago, an MS in physics from

the Illinois Institute of Technology, and an MBA from the University of Chicago.
news@sei http://interactive.sei.cmu.edu 123

	The Watts New? Collection
	Why Does Software Work Take So Long?
	Your Date or Mine?
	Making Team Plans
	Bugs or Defects?
	Doing Disciplined Work
	Getting Management Support for Process Improvement
	Making the Strategic Case for Process Improvement
	Justifying a Process Improvement Proposal
	Moving the Goal Posts
	The Future of Software Engineering: Part I
	The Future of Software Engineering: Part II
	The Future of Software Engineering: Part III
	The Future of Software Engineering: Part IV
	The Future of Software Engineering: Part V
	Surviving Failure
	Learning from Hardware: Planning
	Learning from Hardware: Design and Quality
	Some Programming Principles: Requirements
	Some Programming Principles: Products
	Some Programming Principles: Projects
	Some Programming Principles: People
	Defective Software Works

