[image: image22.emf] 

 


Risk Identification:
Integration &

Ilities (RI3)

Guidebook
Version 1.2
15 December 2008
Prepared for the Technology Development Subprocess

Developing and Sustaining Warfighting Systems Process
By the Implementation Team TD-1-12
Distribution A: Cleared for public release

[This page intentionally blank]

iiPreface


11
Introduction


11.1.
Where Do Risks from New Technology Remain?


31.2.
Technology Development and Systems Engineering


41.3.
Risk Identification: Integration & Ilities


61.4.
Related Processes and Activities


61.4.1
Manufacturing Readiness


71.4.2
Systems Engineering Assessment


71.4.3
Logistics Health Assessment


71.4.4
Integration readiness levels and other scales


81.4.5
Other Develop & Sustain Warfighting Systems Activities


92
Employment of Risk Identification for Integration & Ilities (RI3)


102.1.
The RI3 Process Employed at Various Phases of Program Development


102.1.1
Selection of the Unit Under Evaluation (UUE)


122.1.2
Concept Development (pre-milestone A) Process


132.1.3
Milestone A RI3 Process


142.1.4
Interim RI3 Products (between Milestone A and Milestone B)


142.1.5
RI3 Products at Milestone B


152.2.
Details on RI3 Employment


192.2.1
Application of RI3 to Other Units


212.2.2
Application of RI3 to Higher Level Units


233
Questions


241.0  Design Maturity and Stability


272.0  Scalability & Complexity


313.0  Integrability (from component level through SoS/FoS)


354.0  Testability


385.0  Software


456.0  Reliability


477.0  Maintainability


498.0  Human Factors


509.0  People, organization, & skills


54Appendix A.  Risk Definitions


57Appendix B.  Motivations for Ratings Scheme


58Appendix C.  Human Factors Addendum


62Appendix D.  RI3 Tool


69Acronyms


70Study Team Members and Acknowledgements


72References




Preface

This document is primarily written for systems engineers or program managers of Air Force projects.  It is designed to provide a concise set of questions to highlight key areas that have been overlooked in prior programs, particularly in the areas related to the integration of new technologies, test, and the “ilities.”  It can also easily be applied by unit engineers for application to units under their purview.  Finally, it may also be useful to independent teams reviewing a program.

The methodology has been developed by the Technology Development (TD) 1-12 Implementation team, part of the Technology Development subprocess of the Develop and Sustain Warfighting Systems (D&SWS) Process.  As a whole, the team worked on the process starting in January 2008 and finishing in December 2008.

Although the RI3 methodology introduced by this guidebook has been developed by a team that hails with the “technology development” moniker, the process itself is really part of a systems engineering process.  The Technology Development team was given the charter of improving Air Force processes from laboratory work through to fielding, and was not limited to the stage of acquisition known as “Technology Development,” as outlined in the DoD 5000 acquisition process.  This guidebook is one of the final outputs of this team and it is being turned over to the Technology Development subprocess owners for inclusion in a new Air Force Risk Management Guidebook and for usage in pathfinder programs in 2009.
Note that this effort and the resulting guidebook are related to many other efforts underway in the Air Force, including the Systems Engineering Assessment Model (SEAM), High Confidence Criteria, and Logistics Health Assessment (LHA), Technology Readiness Assessment (TRA) and Manufacturing Readiness Assessment (MRA).  These are discussed briefly in subsequent chapters.  With this in mind, this guidebook could be seen as a complement to those efforts in order to help ensure programmatic success.  In fact, the RI3 methodology has been formulated to complement, but not duplicate SEAM, TRA, MRA, and LHA, as well as the systems engineering questionnaires found on the Defense Acquisition University website regarding questions for Preliminary or Critical Design Reviews.  This guidebook alone is not meant to provide a complete picture of program health and success.  Nor does the RI3 methodology purport to cover the area of airworthiness or flightworthiness.
1 Introduction
The continued dominance of the United States Air Force over its adversaries depends, in part, on its continued technological superiority.  Major advances in doctrine and the conduct of warfare have been enabled by new technology
, from radar-guided homing missiles, to multiple independently-targeted reentry vehicles, to secure worldwide communications, to precision munitions enabled by spaceborne systems.  Technological advances, however, come in many different forms, sizes, and scales.  Sometimes, a technological advance may take the form of a whole weapon system (e.g. an F-117).  In other cases, it may be a change to an existing subsystem that enables a new capability (e.g. a new algorithm in an ECM jamming pod), or the modification of an existing system to enable a different mission (arming a surveillance UAV with Hellfire missiles to enable remote attack).  Unfortunately, history also cautions us that, more often than not, our technology development programs come with significant cost overruns and schedule delays.1,2
The methodology outlined in this document, “Risk Identification: Integration and Ilities,” also referred to as RI3, is meant to assist program managers and system engineers in the development and transition of new technologies by helping them to identify technical risks that have hindered previous programs.  If used as part of a coherent systems engineering strategy, this can be done early enough to enable sound decisions and avoid much of the aforementioned cost overruns and schedule delays.
1.1. Where Do Risks from New Technology Remain?
There are many reasons for the cost and schedule difficulties associated with problematic projects - insufficient “upfront” funding, inadequate schedule, technical immaturity (including both technology immaturity and the “state” of system level design), funding instability3, lack of logistics support, improper training, etc.  Arguably the first three of these contributors have the most impact in the early phases of a project – even at the point of conceptual development.  Cost, schedule, and technology are in fact the elements encompassed by the term “resources” in the GAO’s assertion regarding lack of resources creating significant project cost and schedule growth1.
The issue of technology immaturity has been so often indicated in cost and schedule overruns that the DOD has adopted the Technology Readiness Levels (TRLs), originally developed by NASA4.  TRLs provide a widely-accepted common language and measurement scale to enhance communication within and between the DOD science and technology (S&T) and acquisition communities, both in government and industry.  The use of TRLs is becoming an essential element in the overall knowledge based acquisition decision process.  Within the Air Force, SAF/AQR has developed a systematic process by which Critical Technology Elements (CTEs) in a system can be identified and their TRLs rated by an Independent Review Team (IRT).  By law and policy, all Critical Technology Elements (CTEs) in a system are to be at or above TRL 6 at Milestone B and TRL 7 at Milestone C.5
There is often a tendency for persons outside a program to believe that if the CTEs of a system are all at TRL 6, then the technical risks related to those technologies have been paid down.  Unfortunately, this is not the case.  While a TRL assessment addresses the issue of immaturity in the CTEs themselves, it is not a risk assessment.  In particular, it does not deal with the risks associated with integration of those CTEs to each other or to other elements of the system.  Some of the other elements of the system, while not new technology, become critical to the functioning of the system during the process of integrating or interoperating with the CTEs.  These could be referred to as “high value non-CTEs.”  Nor does a TRL assessment necessarily deal with the sustainability and other “ilities”
 required for successful program implementation.  Unfortunately, historically, integration and the “ilities” have been significant stumbling blocks for many programs, even those with supposedly mature technologies.  Reference 6 shows that, between 2001 and 2005, supportability issues accounted for $38.1 billion of DoD cost growth.  An example of integration problems can be found in Reference 7, but the issues continue to this day in other programs.
To elaborate further, a TRL assessment alone does not provide an indication of what is required to move the process of developing a technology or the subsequent system development forward with a significant degree of certainty in cost and schedule.  A correlation between cost and immature technology (low technology readiness levels) has been identified as an aid for cost modeling.8  This relationship has been established by reviewing historical programs and relating cost and schedule growth to the initial state of technology readiness.  While this is a valuable asset for cost estimation, it does not help a program manager identify which risks must be paid down.  While it is important to know that lower TRLs equate to higher risk and greater likelihood of cost overruns and schedule slips, the program manager still needs to understand the specifics of what will be faced when maturing and incorporating technologies into the system.
It should be noted that technology in this sense is not just “new” technology, but it is also “old” technology that in and of itself may be fully mature, but when used in a different system or environment from that for which it was designed becomes, in effect, “new” technology.  What is frequently overlooked, and thus almost always unexpected, is the technology development associated with using “old” technology, i.e. “legacy” systems, subsystems or components.  Often major technological advancement or engineering challenges are required in order to incorporate legacy systems into new systems under development.  Because the “legacy” systems are thought to be mature, critical systems engineering steps are often skipped or given short shrift – usually to the detriment of the program.  It should be remembered that when “legacy” systems are incorporated into different architectures and operated in different environments from the ones for which they were designed, they nearly always require modification.  This is as true for software development as it is for hardware development.  In the case of software, the “legacy” system may in fact be COTS, or GOTS, but in either case, the expectation of using the software “as is” is virtually never realized.  If the required modification of the “legacy system” falls within the existing experience base of the developers, then it is straightforward engineering (hardware or software) development; if it falls outside that experience base, it becomes technology development - and it is extremely difficult to know a priori which will be the case.
Of course, it must also be understood that the significant performance enhancements that we seek in our weapon systems cannot be achieved without the acceptance of some technological risk.  Such risks may be particularly high at the start of a development program, when little is yet understood about the environments, etc., into which a technology is to be inserted.  In these cases, high risks should be expected until appropriate risk reduction activities are allowed to occur.
1.2. Technology Development and Systems Engineering
Although the uncertainties associated with technology maturation and its transition into a program and subsequent transition to users cannot be eliminated, they can be substantially reduced through the early application of good systems engineering practices, such as described in Reference 10.  Focus must be applied to understanding the requirements; the maturity of the systems, subsystems, tools and technologies involved; the technology on-ramps and off-ramps; the identification of the risks associated with advancing and infusing the technology in the time frames specified; and the “ilities.”  It is the role of the systems engineer to develop an understanding of the extent of impact of technology development and infusion – thus maximizing benefits and minimizing adverse effects for the program/project.  For some, this may be a new perspective for systems engineering.  Evaluating technology readiness needs to be performed throughout all aspects of systems engineering – from concept development through design and test.  At each step it should be accompanied by a risk assessment process.  Lessons learned from a technology development point-of-view should then be captured in the final phase of the program.  The importance of this A to Z process on the various aspects of the Systems Engineering is outlined as follows:

Stakeholder Expectation:  GAO studies have consistently identified the “mismatch” between stakeholder expectation and developer resources (specifically the resources required to develop the technology necessary to meet program/project requirements) as a major driver in schedule slip and cost overrun1.

Requirements Definition:  If requirements are defined without fully understanding the resources required to accomplish needed technology development and infusion, the program/project is at risk.  Technology maturity assessment and RI3 assessment must be done iteratively until requirements and available resources are aligned within an acceptable risk posture.

Design Solution:   As in the case of requirements development, the design solution must iterate with the technology assessment and technology risk assessment processes to ensure that performance requirements can be met with a design that can be implemented within the cost, schedule and risk constraints.

Risk Management:  In many respects, technology development can be considered a subset of risk management and as such should be a primary component of the risk assessment.

Technical Assessment:  Technology assessment is also a subset of technical assessment.  Implementing the assessment process provides a substantial contribution to overall technical assessment.

Trade Studies:  Technology assessment and technology risk assessment plays a vital role in determining the overall outcome of trade studies, particularly in decisions regarding the use of legacy equipment.

Verification/Validation:   The verification/validation process needs to incorporate the requirements for technology maturity and technology risk reduction in that, ultimately, maturity and reduced risk is demonstrated only through test and/or operation in the appropriate environment. 

Lessons Learned:  Part of the reason for the lack of understanding of the impact of technology on programs/projects is that the engineering community has not systematically undertaken the processes of reflection and review to understand the impact of prior choices.

The only way to ensure the necessary level of understanding is for the systems engineer to conduct a systematic assessment of all systems, subsystems and components at various stages in the design/development process.  Note that not all technologies in the process of being matured encounter the same degree of difficulty or represent the same level of risk, particularly when consideration is given to the system architecture into which the technology is being incorporated and associated operational environments in which it will be operated.  Consequently, it is important to evaluate the risk to the system as a whole: not just to the technologies being incorporated, but to include other elements of the system with which they interact, including heritage/legacy components and subsystems.  This evaluation should be done with respect to the final system operating in its operational environment.  A proper risk assessment can have its greatest impact if it is done at the very beginning – at concept development, since these results play a major role in the determination of requirements, the outcome of trade studies, the available design solutions, and the determination of cost and schedule.  Of course, this is difficult at the beginning, because many of the details of the final system and its environment may not be known at that time.  As the program evolves, more knowledge will become available and the technology evaluation process with the appropriate risk assessment will be repeated with more and more granularity, resulting in more and more fidelity.
1.3. Risk Identification: Integration & Ilities
The Risk Identification: Integration & Ilities (RI3) process is designed to be used as an evaluation aid as part of the program’s Systems Engineering process.  In particular, it is an aid for the risk identification step of a standard risk management process  The standard DOD Risk Management Process11 is shown in Figure 1-1.  The Air Force, as part of the Lifecycle Risk Management Initiative in Developing and Sustaining Warfighting Systems, is adopting the pictured process, with an upfront step to establish the risk management processes.
RI3 addresses specific areas via a set of questions formulated as a result of the review of numerous case studies looking for common problems that occurred during the development of a new technology, its transition into an acquisition program, or the subsequent engineering development surrounding it.  The case studies focused on the engineering issues – technical and technology issues.  Engineering management issues were examined, and programmatic issues were also briefly discussed.  In the course of the review, the areas of integration, software development, and the “ilities” were identified as being the primary areas responsible for significant problems during the course of development.  RI3 sheds additional light on areas that seem to have traditionally been underrated in terms of risk – interestingly, literature from the field of cognitive psychology generally suggests that people often have difficulty in characterizing the relative risks of various activities appropriately (possibly due to “group- think”) thus resulting in underestimation of their effects.2

[image: image1]
The question set contained within the RI3 handbook is designed to enhance the work that a risk management IPT might typically perform.  For example, let us assume that a team is developing a new composite airframe, parts of which are being supplied by different vendors and joined at a separate systems integration house.  A typical set of potential technical risks identified might include whether the frame will meet its weight limits or the ability of the frame to withstand the various loads and dynamic conditions imposed by the expected environment.  Such risks are highly specific to the particular program, and the RI3 process does not replace the critical thinking that must go into identifying these risks.  Rather, RI3 asks questions regarding integration and the “ilities,” drawn from overlooked risks that have grown into issues for past programs.  In many cases, these are, in fact, problems that appear in program after program.  In this example, RI3 might highlight issues such as how the interfaces in the structure will be checked and if there are proprietary issues that can affect the working relationships between the various suppliers.

The RI3 questions are formulated in such a manner that their answers identify the key technical risks associated with the “ilities” for a given unit under evaluation, but from a system perspective.  This is an important distinction from more traditional approaches where risk is viewed as (more or less) the risk associated with the development of the item itself, not the risk involved in incorporating it into a system.  This is particularly true of technology, where often the technology risk is evaluated independent of the overall system into which it will be incorporated.  By focusing on the risk from a system vantage point, one gains a necessary perspective into the overall risk associated with the program.  This provides additional insight into likely areas where multiple, parallel development paths should be investigated, and where technology on-ramp or off-ramp “fall-back” positions are needed.  (Either of these situations may result in performance degradation and as such should be accounted for as early as possible.)  RI3 also provides insight into where special concentration is needed, often by highlighting areas where there is insufficient information.  Identification of these technical risk areas provides vital information to the development of more accurate program cost and schedule by incorporating additional information into the cost modeling process.  Periodic use of RI3 serves to keep a productive focus on the risks associated with critical areas as the program evolves.
1.4. Related Processes and Activities
1.4.1 Manufacturing Readiness

Manufacturing readiness, like technology readiness, is critical to the successful introduction of new products and technologies.  Manufacturing Readiness Levels (MRLs) represent a new and effective tool for the DoD S&T and acquisition communities to address that critical need.  MRLs assess the manufacturing maturity of a hardware-intensive technology or product, as well as the level of manufacturing risk associated with producing a weapon system using the technology.  MRLs have been developed to be congruent with TRLs and to serve a similar purpose, which is to provide a widely-accepted common language and measurement scale to enhance communication on the subject of manufacturing risk and readiness.  The MRL process provides similar benefits to TRLs in becoming a key element in the overall knowledge base for the acquisition decision process.  It is imperative that we begin addressing the manufacturing risk earlier in the acquisition process, by both senior leaders from industry and government, if we are to begin improving our overall performance in acquisition.  Conducting a Manufacturing Readiness Assessment (MRA) and utilizing MRLs is one way we can manage and mitigate manufacturing risk early in the acquisition process to avoid the problems we are experiencing today.  The MRA will baseline a program from a manufacturing point of view and identify the risks associated with the manufacturing maturity of the program.  An output of an MRA is a comprehensive plan to address the identified risks and to mature the manufacturing aspects of the program to a target MRL.

AFRL has developed the MRA process and has implemented the MRA process into its advanced technology development (ATD) programs.  With the success of implementing MRL/MRA into selected ATD programs, DoD is considering extending the MRA process to acquisition programs.  The MRA process has been documented in an MRA Deskbook.  The MRA Deskbook, MRL definitions, MRL exit criteria, and other MRL information can be found at http://www.dodmrl.com.  In addition, AFRL has developed various training programs and tools to aid in the MRL/MRA process.  As the training programs and tools become fully developed they will be added to the above web site, and a course is expected to eventually be available on this from AFIT.
1.4.2 Systems Engineering Assessment 

The Air Force Systems Engineering Assessment Model (AF SEAM), which is based on Capability Maturity Model ® Integration (CMMI) from the Carnegie Mellon Software Engineering Institute, is a single AF-wide Systems Engineering assessment model that has an associated implementation methodology.  It describes specific “practices” indicating “what” is required for good system engineering.  It establishes, standardizes, and will maintain a clear understanding of Systems Engineering practices and their importance to mission success, whatever the mission may be.  It is intended to assist in successfully integrating systems and systems of systems.

The first spiral of the AF SEAM, published in August 2008, is the AF’s first standard SE process-based assessment tool.  As such, it brings a capability to reduce risk through rigorous application of the practices described.  The model includes specific references to “ilities” and integration practices, which makes it complementary to this Risk Identification, Integration, and Ilities (RI3) Guide.  This RI3 Guide provides more specific guidance on what to look for and, specifically, what questions to ask and answer when assessing technology and the “ilities”.  The synergy between these two documents is that, the AF SEAM asks the high level questions (such as “Do you perform this practice? Is it documented? Are personnel trained in this practice? Do you do it as documented?), and the RI3 Guide asks the more detailed level questions, providing a comprehensive tool set for assessment of the implementation of good systems engineering risk management practices and to evaluate the potential to reduce mission risks.

1.4.3 Logistics Health Assessment
The Logistics Health Assessment (LHA) is an AFSO21 initiative designed to develop a standardized mechanism for assessing and measuring logistics planning and execution.  With its LHA Windshield tool, it should provide a historical decision trail and display associated impacts of those decisions.  The windshield is intended to be incorporated into the Air Force PoPS and/or SMART tools.
Upon its conception, TD-1-12 was originally intended to handle logistics.  Because of the existence of the LHA initiative, this obviated the need for the RI3 methodology discussed here to handle logistics.  The RI3 methodology was deconflicted from the LHA windshield criteria so that the two would not overlap.

1.4.4 Integration readiness levels and other scales

Over the years, many different new scales have been proposed to complement the TRL scale.  Many of these have been proposed in order to better handle integration issues, and some even deal with the “ilities” or system issues.12, 13, 14
Past history in this area is quite instructive.  The British experience included the adoption of the TRL levels, followed by two subsequent cycles of developing, trying, and subsequently discarding integration readiness levels or system integration readiness levels, before settling on a system readiness level.15  The system readiness level is, in fact, much more than a set of levels, but a full-blown risk assessment methodology for a variety of “ility” areas, specialized for areas of interest to the British Ministry of Defence.16
Elements of NASA have, at varying times, proposed versions of integration readiness levels.17,18,19  However, these were not adopted even by the centers originating the ideas, which is not to say that they did not have utility.  Indeed, they might have some utility for particular programs.  However, they are not applicable to a broad range of programs, and they do not get to the heart of the matter, which is identifying the risk of moving the project forward.  Within NASA, the Advancement Degree of Difficulty (AD2) methodology was developed to address this.20  The RI3 methodology developed herein combines the best of both the AD2 methodology with the British experience, in order to develop a broadly applicable tool that is tailored for Air Force needs.
1.4.5 Other Develop & Sustain Warfighting Systems Activities

The RI3 methodology presented here is design to account for technical issues related to integration and the “ilities.”  Other activities within D&SWS are designed to complete the picture and handle programmatic issues to improve the overall success of programs developing new systems and technology.  This includes High Confidence Technology Transitions (aka TD-1-13) and High Confidence Criteria (aka LCM-1-7).  TD-1-13 lays out guidelines to develop a more comprehensive Technology Development Strategy document, now referred to as the Technology Development and Transition Strategy, which outlines a development process (including both programmatic and technical issues) and is an agreement between technology developers and acquisition personnel to help move the new technology forward.
Finally, it should be mentioned that, as of this writing, a portion of the TD-1-12 team that has been engaged in developing this guidebook has simultaneously been developing recommendations for improvements to the TRA Deskbook in the area of the Software TRLs.  It is expected that these improvements will be suggested to OSD for inclusion in a future revision of the Deskbook (Reference 5).
2 Employment of Risk Identification for Integration & Ilities (RI3)
[image: image23.emf] 

Risk  Identification  

Risk  Analysis  

Risk  Mitigation  Planning  

Risk Mitigation  Plan  Implementation  

Risk  Tracking  

The earlier the RI3 process is employed, the more likely it is to be successful.  The reason for this is depicted in Figure 2-1.  As shown, the ability to influence life cycle cost decreases steadily as the program advances from concept development through system development and demonstration.  For example, the results from the National Research Council study21 show that 70%-75% of typical life cycle costs are due to decisions made in the Concept Refinement stage, yet this is also the area where the least attention is paid to risk identification and subsequent management/mitigation.  In fact, by Milestone B, the point at which the most emphasis on risk management is traditionally placed, there is little ability to influence life cycle costs.  It is also the point at which risk mitigation comes at the highest cost with the biggest impact on system development.  (Of course, some types of systems, such as spacecraft, tend to have much more significant upfront costs, but this still necessitates proper, upfront systems engineering).
The importance of good risk management both early on and throughout the defense acquisition process is illustrated in Figure 2-2.  It is understood that during the concept refinement stage, many details associated with the final system design and its operating environment are unknown.  However, there is still much to be gained by beginning the risk management process at this early stage using the information that is known.  Because the RI3 process is focused on identifying system oriented risks, substantial benefit is provided even in those cases where there is insufficient knowledge to quantify the risk.  As was mentioned previously, lack of knowledge itself provides insight into those areas where it is most important to gain knowledge and the time frame in which it must be acquired.  Similarly, understanding the risks associated with the technological needs from within a system framework provides the ability to lay out an enhanced  technology development roadmap for the post Milestone A phase that is structured, not only around the risks associated with the technology development itself, but also the risks associated with the subsequent incorporation of the technology into  the system.  Thus, these systems-oriented risks can be planned for and mitigated in the technology development phase.  Accounting for these risks in the cost modeling at this point serves to enhance the fidelity of the cost modeling vis-a-vis the total program costs.
[image: image24.emf]  
Figure 2-2.  Risk Management Within the Acquisition Framework
2.1. The RI3 Process Employed at Various Phases of Program Development

2.1.1 Selection of the Unit Under Evaluation (UUE)
The RI3 process is structured to be able to deal with individual elements of a system as well as the system as a whole.  The first step is to select a unit under evaluation (UUE), a process which will be described in more detail below.  In some cases, the UUE may be a component or a subcomponent of the system.  In other cases, the UUE may be the entire system itself as shown in figure 2-3.  In all cases, it is important to identify and understand the risks associated with interactions both internal to the system and external to the system within a system of systems framework.  This structure must be maintained throughout the evaluation irrespective of the UUE. Even at the component level, it may be possible for a single component to have an adverse impact at the system of systems level.

[image: image2]
RI3 should be employed according to the product Work Breakdown Structure (WBS) from the very beginning. This permits a systematic evaluation process to be undertaken and provides a means for the results to be related to risk and cost assessment processes as well as to Earned Value Management (EVM).  The process remains the same throughout - only the granularity and fidelity change.   It starts with a “Top-Down” approach selecting the top level system as the UUE and then moves to major subsystems and on to high visibility components examining overarching system risks.  This is then followed by a “Bottoms-Up” approach starting with identified components as UUEs and then working up to the subsystems and on to the top level system.

[image: image3]

Determining which systems should be considered as a unit under evaluation for the RI3 question set is analogous to another effort that should occur as part of a systems engineering practice, in particular the assessment of the technology readiness of a system and its subsystems or components.  Such assessments typically utilize the technology readiness level (TRL) scale.  A discussion on how to perform a TRL assessment is found in Reference 5 and related guidance from SAF/AQR.  In practice, it seems that if one is comfortable assessing the TRL of a component or subsystem, then one ought to be able to apply the RI3 question set at that same component or subsystem, but also to higher levels of integration as well.  Another factor to consider as to whether or not to make a unit a UUE or not is whether or not an engineer (or at least a billet) has been assigned to a particular unit or not.  If so, then, certainly one would seem to care about the risks associated with that unit, and one should run the RI3 question set on it.
2.1.2 Concept Development (pre-milestone A) Process
At the concept development stage, major subsystems are known, but any significant level of granularity is known only for a few highly selective areas.  Beginning at the “block diagram” level, RI3 can be used to highlight areas for more detailed evaluation – i.e. leading to the early identification of critical components forming the basis for the initial “Bottoms-Up” approach. 
Once a product oriented WBS is established, the RI3 should be performed in accordance with the WBS as shown in Figure 2-5.  The questions within the RI3 are structured to call attention to the interaction of the UUE with other elements of the system as well as elements outside of the system. The very process of evaluating these elements will identify risks associated with the subsystems and components of which they are comprised.  That is, an RI3 of the System provides insight into interactions among the major subsystems. Evaluating the major subsystems in turn identifies issues related to the next lower level WBS elements and so on until the state of knowledge is exhausted.  At the concept level, it is to be expected that in some cases there will be very little penetration, while in others it will be possible to identify very quickly the critical subsystems/components that are at risk.

[image: image4]

The benefit of performing RI3 prior to Milestone A is that it begins the process of identifying systems issues at a stage where mitigation will have the greatest effect and for the least cost.  It is true that detailed knowledge of the final system and its operating environment is not known, but none-the-less, conducting an RI3 highlights risks where details are known and at the same time clearly identifies those areas where information is lacking. This sensitizes the program to focus on obtaining information/generating requirements that otherwise might not be obtained until late in the program – with potentially significantly adverse consequences.  
[image: image25.emf] 

UUE   (System)  

System    A  

System    B  

System    N    

System    C  


Figure 2-6. Concept Development (pre-milestone A) RI3 Products
2.1.3 Milestone A RI3 Process

The RI3 process for Milestone A is essentially that of the pre-Milestone A phase.  Since the program is still in an early phase, it is important to conduct a Top-Down evaluation to obtain a system-oriented perspective.  This focuses the program on examining interactions between subsystems and as well as interactions with other systems outside of the control of the program, but which the final system is expected to interact with.  Maintaining this system level focus from the very beginning is of vital importance to the successful development and subsequent operation of the system. 

Following the initial Top-Down evaluation, it is important to focus on subsystems and components.  This will identify risks to be tracked and mitigated throughout the program.  Periodic use of the RI3 process will be necessary to ensure that sufficient progress is made to ensure a successful TRA at Milestone B and that the subsequent implementation and operation will be successful.

The products associated with the RI3 process conducted at Milestone A are the same products as those of the pre-Milestone A process; however, due to the continued evolution of the program, there will be an increased level of knowledge of the system, the operational environment and progress in mitigating risks identified as a result of the earlier RI3 assessment.  Specifically we have:
1. Identification of technological risks as inputs to the Technology Development (& Transition) Strategy
2. Identification of system oriented risks as inputs to the risk management process
3. Identification of system oriented risks as inputs to the complexity factors for cost analysis.8,2
4. Enhanced knowledge of overall requirements to reach Milestone B successfully.
2.1.4 Interim RI3 Products (between Milestone A and Milestone B)
Performing the RI3 periodically between Milestone A and Milestone B provides for a means of tracking progress on critical risk issues and ensuring that the program will be in a good position to meet TRA requirements and to proceed into the implementation phase of the program.
2.1.5  RI3 Products at Milestone B
Ideally, at this point in the program the high visibility risks have been retired, all technology development has been completed, breadboards and prototypes have been developed and tested, etc.  However, there are still a number of risks associated with moving forward to Milestone C. Performing the RI3 at milestone B serves primarily to identify the risks associated with progressing to Milestone C.  Many of the questions associated with RI3 were derived from issues that occurred in programs between Milestone B and Milestone C.  Hence the focus on integration, software development and the “ilities”.  As was mentioned previously, these were the primary areas in which problems were encountered that led to significant failures, and cost and schedule increases.  RI3 is designed to highlight risks in nine different areas.  For example, as is shown in Figure 2-7, RI3 highlights the areas of integrability and scalability & complexity, as areas requiring significant attention.

[image: image5]
2.2. Details on RI3 Employment
The manner in which the RI3 data is eventually derived and displayed is shown in Figure 2-8.

[image: image6]
Figure 2-8.  RI3 Outputs Risks and Provides Additional Displays.
The process starts with asking a specific question for the area under consideration.  Most questions inherently highlight a best practice in an area.  The text supporting the questions in this guidebook provides explanation for why this issue has been a problem in the past and why the best practice has also had prior success.  Of course, generic best practices are not necessarily the best practice for a specific, given program and its situation.  However, the questions are designed to ask a program manager to consider an issue from a (possibly) new perspective.  The questions are formulated in such a manner that a positive response to the question indicates that “best practice” is being followed.  If the response to the question is negative then the responder is asked to:
1. Identify and itemize risks that the question draws out, particularly given that the best practice is not being followed.  If this risk is not already part of the program’s risk tracking, then it is a new risk.
2. Rate the likelihood and consequence of the risks identified in step 1.
If used properly, the RI3 question set should result in the generation of risks associated with the integration and “ilities” of new technology.  As depicted in Figure 2-8, it should be viewed as a front end feed (but not the only feed) to the program’s risk management program.  The Air Force is currently standardizing on the usage of the Active Risk Manager (ARM) code, which deconflicts and identifies duplications in risks.
There are exceptions by which a risk derived from an RI3 question might not result in a new risk to the program.  In some cases, it may be that a risk already appears to be part of a program’s risk tracking.  In such cases, an alternative risk mitigation scheme could be under pursuit and the risk may be deemed minimal.  Nevertheless, the text of the guidebook should be consulted to ensure that all aspects of the discussion have been factored into the preexisting risk assessment.  A second exception is that the risk may have already arisen as a result of a previous RI3 question.  This occurs because many RI3 questions probe at similar areas, but from different standpoints.

Another way a question could result with no risk is if the question may be deemed to be “not applicable” because it may be too early in a program’s development to consider the question, or the risks associated with the question have already been successfully mitigated and passed.


The most important output of the RI3 methodology is the risks that will subsequently be tracked using a program’s risk management processes.  However, in order to get a concise view of how the program is performing in the areas of integration and the “ilities”, it is desirable to make special note of these risks and their ratings.  Rating the likelihood and consequence of a risk is performed through application of standard Air Force and DoD11 practices.  The basic concept is that both risk and consequence to a program be rated on a scale from 1 to 5, with 1 being the least damaging and 5 being the most damaging.  The full definitions are found in Appendix A.  Assessment of likelihood and consequence, should be done in a manner consistent with the existing risk management structure of a program.  Of particular interest is the question that arises when the UUE is a lower level unit.  Are consequences assessed as they pertain to the UUE or to the system?  In other words, is the consequence of the UUE not functioning appropriately (which may be “fatal” to the UUE itself) in fact as serious to the system as a whole?  It seems reasonable that consequences should be evaluated based on their impact to the system as a whole whenever possible.  This enables risks from different subsystems to be evaluated fairly.  However, to reiterate, the assignment of likelihood and consequence should be done in a manner in accordance with the program’s existing risk management policies.

Likelihood and consequence can be plotted in a 2-dimensional matrix, as shown in Figure 2-9.  The figure shows the standard “red,” “yellow,” and “green” ratings used in risk assessments.
Unfortunately, while this two-dimensional plot in Figure 2-9 is excellent for displaying sets of risks or drilling down to understand the risk mitigation plans of a particular risk, it is not so well suited for the display and relative ranking of multiple risk areas, particularly when they may occur in adjacent blocks.  The RI3 methodology is designed to highlight whether a particular “ility” area is an issue or not.  Rather than showing a separate 2-D matrix for each “ility” area, it is desirable to have a method to show all the “ility” areas at a top level together.  To achieve this, the RI3 methodology displays summaries using an arbitrary 2-dimensional map of the 5X5 matrix as shown in Figure 2-10.  This mapping translates from 2-dimensional (L,C) space to an RI3 “rating” space. It retains a 1 to 5 numerical ranking, keeping it consistent in spirit with the existing risk methodologies.  As will be shown subsequently, this then allows for the display of the results for all of the RI3 “ilities” on a single plot, and shows the relative importance of each.  It also helps show the evolution of the risks as a function of the program phase.


[image: image7]
[image: image8.emf]5

2 3 4 4 5

4

2 3 3 4 4

3

2 2 3 3 4

2

1 2 2 3 3

1

1 1 2 2 3

1 2 3 4 5

Consequence

Likelihood


Figure 2-10.  Mapping the 5X5 Risk Matrix to RI3 Ratings
For example, if the Integrability risk I7 shown in Figure 2-9 was estimated to be:
C=4

L=4 (highly likely)

then the resultant RI3 rating: RI7=4.
Similarly, risk I5 was estimated to be
C=1
L=1 (not likely)

so the resultant RI3 rating: RHF1=1.
In this manner, the RI3 Rating allows a rough relative ranking of risks
5 = the most pressing
1= the least pressing, but not unimportant.
Of course, the most important output of the RI3 is identification of the risks themselves which must then be managed by the program.  Nevertheless, it is useful for a program manager to understand how things are going in the area of a particular “ility”.  To this end, the summary results for each area are determined by the risk presenting the most pressing issue:

Summary Result for “Ility” area = max rating of any risk in that “Ility” area.
In other words, it is a worst case, designed to highlight exactly what the most pressing issue(s) is/are, that one needs to examine in detail.  An example from the software area is shown in Figure 2-11.  In this figure, the rating is given for each individual risk that resulted from questions in the software area (the questions themselves are addressed in section 4.)  In the example of the figure, the worst case risk is labeled S14, and it is rated 5.  The summary rating for software would then be 5.

[image: image9]
This process can be repeated for each “ility”.  Upon doing so, one can make a bar graph of the ratings for each “ility”.  The resultant plot is shown in Figure 2-12.  Again, it shows the worst case rating of a risk in each “ility” area.  The “ilities” can then, in some sense be compared to determine which is the most pressing area, ie, the area with the greatest level of risk relative to the others.


[image: image10]
These relative ratings provide a signature that can be associated with a particular phase of a program.  At concept development for example, it might be expected that issues associated with integrability, scalability, and design maturity would have high relative ratings compared to people, organization, skills.   While this might point to a need to focus on these areas, they likely would not be viewed as critical at that point in time.  However, if at Milestone B, scalability and complexity still showed a high value, then this would be a cause for concern.  Two notional RI3 ratings for a given UUE are shown in Figure 2-13, one from the Milestone A time period and one from Milestone B.  From this figure, it should be apparent that there should be concern in the areas of integrability, testability and maintainability.  Exactly what in those areas is driving the concern requires penetration into the area itself.
[image: image26.wmf]0

1

2

3

4

5

People, Org., Skills

Des. Maturity & Stab.

Scalability & Complexity

Reliability

Maintainability

Software Development

Human Factors

Integrability

Testability


Figure 2-13.  RI3 Signatures as a function of Program Phase

2.2.1 Application of RI3 to Other Units

The process of running the RI3 questions on a given UUE is designed, in part, to highlight integration issues with the UUE.  Therefore, it is advisable for managers of integrating units to also run the RI3 question set on their units.  Taking, for example, the system work breakdown structure shown in Figure 2-5, if risks on component  were evaluated using RI3, then it is advisable to run the set on components  and  as well.  Some of the risks, particularly in the integration and test areas, identified by running the questions on  and  might be the same as the risks identified when running the questions on component .  However, it is likely that RI3 would uncover new risks, particularly for the other “ilities”.  After identifying risks in this manner, this would allow the display of the RI3 ratings for each of the individual integrating components, as shown in Figure 2-14.
As of this writing, it is an open question as to whether a higher level of summarization of the RI3 ratings is desirable or not.  It is possible that a higher level summary could be useful in order to look at the relative risks between subsystems or components.  In looking across components, one could summarize the risk for the components, selecting for example the most pressing area for each component of a subsystem:

R(UUE = MaxIlities{IntegrabilityTestability, …}

R(UUE = MaxIlities{IntegrabilityTestability, …}

.

.
R(UUE = MaxIlities{IntegrabilityTestability, …}

The philosophy would then highlight whether or not a given UUE had any high level risks remaining or not.  Performing this summarization for various units would allow one to summarize across components, as shown in Figure 2-15.  This provides a snapshot understanding of the highest “at risk” components, subsystems or systems.


[image: image11]

[image: image12]
2.2.2 Application of RI3 to Higher Level Units
The RI3 methodology is equally applicable to components as it is to subsystems or systems.  This is because one developer’s system is often another developer’s component.  Take, for instance, a developer of a radiation-hardened microelectronic integrated circuit.  That person’s subsystems may be individual gates or vias, and their system is the entire chip.  However, to the developer of an avionics system, this chip is a component and the avionics is a system.  Of course, the developer of the entire fighter aircraft has yet a different perspective of what a system is.
The process of applying RI3 to higher level units is merely to change the meaning of what the “unit under evaluation” is.  The UUE should be designated as the higher level unit and the questions applied just as they would be for a component.  Again, while this may surface risks that have already been uncovered while investigating RI3 for lower level units, it should also identify new risks in many of the “ilities”, including, for instance, maintainability.  This is illustrated in Figure 2-16.  RI3 ratings have been determined for all levels of the WBS.
As an alternative, there may be times when one does not have time to run the question set explicitly for a higher level unit for some reason (lack of availability of the right people, for instance) but a quick rating is desired.  In these cases, in lieu of running the question set explicitly, one could try to summarize the RI3 rating of a higher level unit based on rolling up the ratings of the lower level units.  This would be done as follows:
R(ReliabililtySubsystem = MaxComponents{ReliabilityReliability, …}

R(Integrability Subsystem  = MaxComponents{IntegrabilityTestability, …}

.

.
R(IntegrabilitySystem = MaxSubsystems{IntegrabilityTestability, …}.
Note that, as of this writing, this alternative roll up process has not been tested in practice to determine its utility.
The ultimate goal of the RI3 methodology is to be able to give the system engineer a feeling for the risks associated with integration and “ilities” of the entire system.  Applying the RI3 methodology to the system should result in risks identified for each of the “ility” areas and their subsequent RI3 ratings.  This would result in a plot that is identical in form to that shown in Figure 2-7, but based on ratings at a system, rather than component level.  With this information, the program manager or system engineer can – at a glance – tell how their processes are working.
· Are the processes consistently applied?

· Are they working across all of the subsystems?

[image: image13]
3 Questions
As discussed previously, the RI3 methodology contains questions in nine “ility” areas.  The questions are listed and discussed in this section.  After each question, there are implicit follow-up questions.
1. If yes, then what evidence supports this?

2. If no, what risks result and what are their likelihood and consequence?

3. If this question is not applicable, why?

Each question is also followed by italicized text that attempts to clarify the question:  Why has this been important to past programs?  What are past examples?  Are there general best practices that are applicable?

The nine “ility” areas covered by RI3 are as follows:
1. Design Maturity and Stability
2. Scalability & Complexity

3. Integrability

4. Testability

5. Software

6. Reliability

7. Maintainability

8. Human factors

9. People, organization, & skills
An interim Excel based RI3 Calculator tool has been developed to facilitate the evaluation of these questions and the documentation of the resultant risks.  It is described in Appendix D.  A web based version of the tool is planned to be available by the end of 2009 that should automatically output risks to Air Force ARM (Active Risk Manager) software.

[image: image14]
1.0  Design Maturity and Stability
1.01
Are hardware and software design requirements stable (have they been finalized)?
Changing requirements are a significant factor in cost and schedule overruns.  Continually changing requirements indicate that the design is in a state of flux.  This in turn leads to a high probability that critical aspects will be overlooked, or that designs will become obsolete before they are implemented.  Requirements creep is also a cause for scrap and rework, further increasing costs.  It is critical to freeze requirements (or put them under strong configuration control) and to obtain the necessary buy- in from the customers before continuing to advanced stages of design.  New requirements can be included as part of a future, pre-planned improvement.
1.02
Are hardware and software design requirements traceable to the top-level system requirements?

It is extremely easy for a desired feature to become a requirement.  These “desirements” may come from the customer, or they may come from the design process itself where “improvements” are created in the process of the design.  It is human nature to want to have a solution to all problems and to try and accommodate all wishes.  However, it is neither practical, nor desirable to attempt to do so.  In the end, requirements that are not traceable to top-level system requirements can account for substantial cost increases, schedule slips and even failure.  It is extremely important that all requirements be continually assessed to ensure that they are indeed traceable to the top level requirements.

1.03
Have all hardware and software design parameters and properties been validated?

The validation of design parameters and properties require an exhaustive look at the design process itself.  Inadequate or inaccurate data bases can lead to designs that, when implemented, will result in systems that cannot meet performance requirements or are potentially unsafe.  For instance, is the design based around a new material? If so, are the material properties known at the necessary level of detail to ensure that the material will perform properly in the operational environment that it will be subjected to?  In another example, an opening was designed to allow for the electrical harnesses to pass through into a moving gimbal, but the requirements for cable shielding were not yet known, so an incorrect assumption was made about the diameter and flexibility of the cables passing through the opening.  This resulted in an opening that did not accommodate the required harnesses.
1.04
Are the hardware and software design parameters and properties flexible enough to handle evolving intelligence inputs?

It will never be possible to predict what impact new intelligence information will have on a system.  It is possible, however, to use current intelligence information to provide an understanding of where adaptability is required in the design details.  The recognition of the need for flexibility can itself have a mitigating effect when change is in fact required.  Note, however, that this should not be construed to imply that design requirements themselves should be flexible 
1.05
Are the design specifications for hardware and software in sufficient detail to proceed with the next stage of development?

Schedule pressures often result in the design process being implemented before derived requirements and resulting design specifications are known to a level of detail where the design can actually be undertaken.  Early in a design process, it is normal to have “TBDs (to be determined),” but these cannot be allowed to persist to the point where design trades are made.  This will result in designs that do not meet requirements and that have to be re-done.  Sufficient time must be allotted for the appropriate requirements to be derived and the subsequent design specifications to be detailed to a level where the design can be undertaken with assurance that it can be implemented in a manner that results in a system that meets requirements.

1.06
Have trade-off studies been conducted to weed-out incompatible or infeasible requirements?

Trade studies need to be conducted very early in the program to ensure that requirements are both feasible and compatible.  The traditional role of trade studies is focused on the design and manufacturing stages, e.g., do you make or buy certain components, subsystems, etc.?  Conducting requirements trade studies at an earlier point in the program with an emphasis on requirements feasibility will help ensure that the UUE can be built and will perform as expected.  This also offers an opportunity to define the allowable trade spaces within which the contractor/program office can autonomously determine a path for execution without seeking higher level approval.  Finally, note that it is extremely important in conducting these trade studies that information such as technology readiness be examined.  Trading off an immature technology that appears to meet performance requirements against a mature technology that requires a relaxation of performance requirements introduces risk to the program.  Thus, risk must be accounted for and mitigation planning is necessary.

1.07
Do the necessary design methods, analytical methods, and corresponding tools exist for both hardware and software?

The areas of methods and tools are often overlooked under the press of moving forward in a program.  It is extremely important to understand if new design methods or new analytical methods (and the corresponding tools) will be required in order to undertake a design before one is in the middle of that design process.  This includes databases that design tools may use.  
1.08
Do appropriate models exist (materials, thermal, scaling, Mach, …) with sufficient accuracy for design analysis?

Modeling is another area that is frequently overlooked prior to the start of a program.  Often times this is because models exist, but not at the level of sophistication required for the actual design.  If this is not discovered before the design process begins, the program will find itself in the middle of a modeling development program instead of a system development program – resulting in schedule slips and cost increases. For instance, in the design of a hypervelocity kinetic kill software analysis tools for lethality appeared to exist, but the accompanying materials databases did not contain data for material deformations at the extreme speeds required.
1.09
Has information assurance for the UUE and its support equipment been adequately considered in the design?

Information assurance, both for the UUE and its support equipment is often not considered at an early enough point for it to be accommodated within the initial design.  This means that it is frequently dealt with as an “add-on” later in the program (sometimes after deployment).  This will always result in inefficient implementation and increased cost of accommodation.  This is particularly exacerbated when external agencies are involved and their timelines may not mesh well with the program’s needs.
1.10
Has physical security of any classified components of the UUE and its support equipment been adequately considered in the design?
Physical security, including anti-tamper, both for the UUE and its support equipment is often not considered at an early enough point where it can be accommodated within the initial design.  This means that it is frequently dealt with as an “add-on” later in the program (sometimes after deployment).  This will always result in inefficient implementation and increased cost of accommodation.
1.11
Have reliability, maintainability, and supportability for the UUE, subsystems, and their support equipment been adequately considered in the design?
Reliability, maintainability and supportability both for the UUE and its support equipment is often not considered at an early enough point where it can be accommodated within the initial design.  Early involvement of users and maintainers helps facilitate this.  Note that for the space (as opposed to ground) segment of a space system, it is incorrect to think that it has no maintainability and supportability issues, as these often arise during integration and qualification testing.
1.12
Have minimum life cycle cost considerations for the UUE and its support equipment been adequately considered in the design?
Minimum life cycle costs, both for the UUE and its support equipment are often not considered at an early enough point where they can be accommodated within the initial design.  Decisions are made that typically benefit the development program without a full understanding of the downstream impacts.  Integrated product teams should include logisticians on the team to assist in analyzing downstream impacts of development decisions.
1.13
Has the design for manufacturability (including suppliers) been adequately considered in the design?
Design for manufacturability both for the UUE and its support equipment is often not considered at an early enough point where it can be accommodated within the initial design.  This means that manufacturing issues frequently arise that either require design changes or result in highly inefficient, time consuming and costly processes.  One-off prototypes and developmental units are typically not designed with considerations of manufacturability, as they are more often designed to demonstrate functionality only.  Therefore, one should not assume that existence of functional prototypes demonstrates manufacturability.  Inadequate consideration of manufacturing during the design phase will nearly always result in inefficient implementation and increased cost of accommodation.  In addition, the availability of suppliers should be considered, as this will lead to future risks if a supplier becomes unavailable or changes products.  These issues can also be considered in light of the manufacturing readiness levels (discussed in the introductory section) and with a view toward the performance of a manufacturing readiness assessment.
A typical example of manufacturability considerations during design is that a prototype parts may be machined out of metal rather than cast via a powder metallurgy process for a final part. However design rules for machining will not necessarily be the same as for a powder cast part.  A similar example is the case where a filter design was scaled from an existing system using a different, shorter frequency.  The size of the components resulting from the shorter frequency meant that automated manufacturing processes could not be used and “touch labor” was required for assembly.  This resulted in huge labor costs and significant schedule slips.
1.14
Are suitable test points being incorporated into breadboards, brassboards, etc., to provide comprehensive data for test & evaluation?

At the design stage it is relatively simple to ensure that appropriate test points are accommodated. At the test stage, it is frequently impossible or at the least prohibitively expensive to be able to add test points to obtain additional information.  Note that accessibility to the test points during use in operational testing and maintenance should be considered, as instrumentation requirements may be much more restrictive in nature.
2.0  Scalability & Complexity
The issues of scalability and complexity are subtle issues that are often overlooked (or aspects are overlooked) with disastrous consequences.  Both are complicated issues that have many dimensions.  In the case of scalability, the issues are often associated with size, and weight – in both directions, e.g. going from meter-scale to 10’s of meters-scale; going from micron-scale features to nano-scale features; extrapolating to super light-weight systems or to super high-density systems.  In the case of software/communications, the scale may require going from regional to global.  All of these scale changes have tremendous impacts on manufacturing, integration, testing and operation.

In the case of complexity itself, the primary problem is the lack of clarity in the definition of complexity itself.  What makes a system complex? 

For instance with respect to the program itself: 

· Are multiple contractors involved?
· Are multiple Uniformed Services involved?
· Are multiple government agencies involved?
· Are multiple non-US government agencies involved?
· Are multiple funding sources involved?
· Are there critical dependencies with other programs (e.g. cryptographic  equipment)?
All of these add to the complexity of management of the program and require substantial experience in dealing with similar situations to be successful.

From a technical point of view complexity can mean:

· Is the envelope being pushed relative to state-of-the-art in order to meet requirements?

· Is the technology required to meet requirements immature?

· Are interactions required with systems that are outside of the control of the project for which insufficient information is available?

· Are interactions required with internal subsystems that cannot be adequately defined?

Again, all of these add to the technical complexity of a program for which there is no substitute of past “similar” experience on the part of the participants.

The following questions focus on common aspects that have been encountered by programs.
2.01
Are the technologies (hardware and/or software) employed in the UUE at the appropriate TRL for the current stage of development?
Technologies used in a system should be at appropriate levels of maturity at any given stage in a program to minimize technology development-related cost and schedule risks.  Today, policy stipulates what TRL level a system’s CTEs should reach by a given Milestone or Key Decision Point.  This question is asking one to look more broadly at technologies than only the CTEs.  The guidelines for CTE technology maturity would wisely be applied to all of the major technologies in a program, whether they be most relevant at the component, subsystem, or entire system levels.  Furthermore, note that many years may pass between milestones/KDPs.  The program should continue to track maturity continuously during development, with an eye toward consideration of technology on-ramps and off-ramps.  The risk the program faces should the recommended levels of maturity not be reached must be assessed and the impact quantified.  Of course, it is to be expected that TRL evaluations outside the conduct of a milestone-driven TRA may not be as formal, nor as high in fidelity, but they are still useful guideposts for the program.

2.02
If the UUE is a developmental item, have exit criteria been defined for its subsequent TRL levels as well as a plan to achieve the next TRL level? 

If the program has to develop technology in order to meet its requirements, it is vital that they have some means of measuring progress.  Without metrics to define progress, it is highly likely that the technology will not be ready by the time it is needed, thereby resulting in significant schedule slips, cost overruns and even failure.  The most effective way of dealing with this is to assess the technology relative to its maturity level and then define a set of exit criteria for each level that it must go through and an associated plan to reach the point where it can be successfully incorporated into the program with high confidence in cost, schedule and performance.  Note that, as of this writing, the forthcoming TRA Deskbook is expected to address TRL levels for systems, and systems of systems.
2.03
Are considerations for future block upgrades required and have they been accommodated?

If the initial design does not take into account the ability to perform future block upgrades, then more often than not such future upgrades will either be absolutely impossible or prohibitively expensive, rendering them for all practical purposes impossible.  To avoid this, incremental requirements that are known should be included in the program strategy.  Furthermore, open architecture principles should be followed to ensure ease of incorporating spiral development requirements (which may be unknown or speculative during the current development phase).  Government, rather than contractor, ownership of the architecture helps ensure a truly open architecture that others can bid on.
2.04
Are breadboards to be employed and do they adequately demonstrate the appropriate requirements and characteristics for that stage of program development?

Breadboards are used to demonstrate functionality.  They are of the lowest level fidelity and correspondingly the cheapest of all of the demonstration activities. The decision of whether or not to require breadboards, brassboards, subscale models, engineering models, and prototypes is a function of the assessed development risk.  For a highly complex system, it would be extremely unwise to go from a collection of component breadboards directly to building the system with no other intermediate steps.  It is very important to perform a risk assessment very early in the program to determine what intermediate steps must be taken to retire risks to the appropriate level.  The development of engineering models, prototypes, or qualification models in particular will be very expensive and yet for some systems, absolutely necessary to ensure success.
Note: This question and the subsequent 5 questions about developmental units are interrelated – answer the subset that are applicable to your program.
2.05
Are brassboards to be employed and do they adequately demonstrate the appropriate requirements and characteristics for that stage of program development?

Brassboards are a “notch” up from breadboards and, again, the decision whether or not a brassboard is needed is a function of the risk assessment.

A key motivating factor to use brassboards is to demonstrate functionality not just of the UUE, but of its interaction with other system components.  Consideration should be given to testing at the brassboard level, or even breadboard level, integration of the UUE brassboard with other system brassboards or mockups, in order to demonstrate functionality, fit, or whatever else may be achievable.
2.06
Are subscale models to be employed and do they adequately demonstrate the appropriate requirements and characteristics for that stage of program development?

Subscale models are a special case where full-scale models are prohibitively expensive; however risk mitigation requires demonstration at a scale that can be satisfactorily extrapolated to the full-scale. Therefore these models must be at the appropriate scale if they are to be successful.  This means scaling issues must be analyzed in depth.

2.07
Are engineering models to be employed and do they adequately demonstrate the appropriate requirements and characteristics for that stage of program development?

Engineering models continue up the scale of fidelity and again, whether or not they are required is a function of the risk assessment.  Because of the expense of these developments, it is extremely important that the decisions be made early enough in the program to be incorporated into cost projections.  Again, benefits of engineering models accrue not just to the unit itself but also to early lessons learned for integration and test.
2.08
Are prototypes to be employed and do they adequately demonstrate the appropriate requirements and characteristics for that stage of program development?

Prototypes continue up the scale of fidelity and again, whether or not they are required is a function of the risk assessment.  Because of the expense of these developments, it is extremely important that the decisions be made early enough in the program to be incorporated into cost projections.  A key decision is to decide what subset of the objective functionality is to be demonstrated and understand the limitations of the prototype.  Integration should be a key item to demonstrate.  An often overlooked benefit of prototype units is that, depending on their realism, they may sometimes serve like qualification models in that they can be used for ground/depot testing of new software patches, etc. when actual flight hardware is in the field.
2.09
Are qualification models to be employed and do they adequately demonstrate the appropriate requirements and characteristics for that stage of program development?

For space systems, qualification models are the ultimate in fidelity.  For other domains, similar concepts or equivalent terms may be applicable, such as a proof-test model.  The intention is to indicate the usage of a model that is identical to a final flight unit.  There is no question that such models are the most effective means of risk reduction – but they are also far and away the most expensive.  In recent years, because of the cost, the practice of using qualification models has effectively ceased.  Even though they are expensive, it is arguable that for sufficiently complex “risky” systems it is still the most cost effective approach.  In this case, it is extremely important to do a realistic end-to-end risk and cost assessment that evaluates the cost of a qualification model against the potential cost of failure resulting from not using one.  An often overlooked benefit of a Qual unit is its impact on lifecycle cost, in that it can be used for things like ground/depot testing of new software patches, etc., when actual flight hardware is in the field.  A second consideration is the dramatic learning that can occur with a qual unit for assembly, integration, and test.  For space systems, when considering usage of a “proto-qual” unit that is to be used for a first flight unit, explicit consideration is required as to its validity, applicability, and what risks are truly being paid down.
2.10
Are the assumptions related to scaling to operational conditions understood and valid, and have the limitations been exposed?

This would include, but not be limited to, the number of users, interfaces, targets, operational modes, environments, etc.  This area is of particular importance to data systems.  As was mentioned in the introduction to this section, scaling from regional to global systems for communication systems, information transfer systems, data storage systems, etc. is a particularly complex issue.  It is consequently difficult to quantify with respect to the many issues that affect scaling most dramatically.  Nonetheless, it is absolutely necessary to invest the time and the money up-front to ensure that the operational conditions are understood and valid, and the limitations understood such that realistic testing can be accomplished in “scaled systems” prior to deployment.

Exposure of limitations to the operational community has also been the cause of failure.  The Space Shuttle Challenger disaster occurred, in part, because even though engineers on the program understood the environmental limitations, these dangers were not understood by upper management.
3.0  Integrability (from component level through SoS/FoS)

3.01
Are Interface Control Documents (ICDs) for the UUE and levels below on track to be completed and adequately resourced (or already completed)?

The focus of this question is on the lower levels of integration. All too often all the attention is on the top level ICDs while the lower levels are left to languish.  The degree to which all ICDs are in place is highly dependent upon the phase of the program.   With that in mind, common sense should be used relative to what results can be expected at a particular point in time.  Heavy emphasis must be placed on the second part of the question relative to ensuring that sufficient processes and resources are in place to meet the required completion timeline.

3.02
Do existing ICDs clearly define information (hardware and software) that is to be passed between integrating units, and do they reference MIL STDs and/or industry standards when appropriate?

 Are the ICDs complete? Are well understood standards used in defining the ICDs?  “TBDs”are often not resolved until far too late in a program.  Although there are times when it is indeed not possible to define a particular interface, too often it is the result of insufficient attention given to defining the interface.

3.03
Do the ICDs at various levels of integration have traceability back to the requirements?

It is very easy for de facto requirements to come into a program via definition of ICDs.  Consequently it is important to ensure that the ICDs are in fact traceable throughout the different levels of integration.  Derived requirements and their corresponding assumptions should be identified for all interface requirements that do not trace directly to user requirements.

3.04
Where there are interdependencies/interactions between internal and external elements, (e.g. EMI, contamination, vibration, dissimilar metals, etc.) have those interdependencies/interactions been adequately addressed by the Interface Control Document (ICD)?

There are numerous examples of where a seemingly complete ICD has not specified interactions that cause problems between integrating units.  Particular effort must be made in recognizing when these instances may occur and defining risk reduction steps and alternative options to mitigate them.  Often this will require extremely high fidelity modeling and simulation or it may require integrated testing of engineering models or prototypes.  Some risks cannot be fully eliminated until final integrated operation of the system in the real environment occurs.  This is often the case in space systems.  In such cases, integrated testing of subsystems in high fidelity environments becomes especially important.  In any case, mitigation of the risk may seem expensive.  However, past history makes it safe to say that if the risk associated with this area is not mitigated until the final system is integrated, the risk will be realized and the cost to the program in correcting it will be even more expensive.

3.05
Where there are interactions between units (internal or external to both systems and components) coming from different suppliers, have steps been taken to identify and mitigate any potential proprietary or trust issues?

Proprietary issues, while difficult to resolve, are at least more often then not visible and can therefore be dealt with.  What is often not obvious is when there is a lack of trust between suppliers.  People are reluctant to address this openly and it may not become apparent until too late.  Great care must be taken to understand where these issues may lie and to take appropriate steps (alternative sources, alternative solutions, etc) to ensure that any potential issues are dealt with in a timely manner.

3.06
Have appropriate size, weight, power (SWAP), and thermal margins been established and are they being maintained as appropriate for the stage of the program?

There are many “rules of thumb’ for what margins should exist at given points in the development process.  Unfortunately, these are often ignored on the basis that this program is “different,” or “we just don’t have the resources.” Whatever the reason, ignoring margins based on historical evidence is fraught with danger!  It is extremely important to set margins that are appropriate for the phase of the program, and then to track those margins to ensure that they remain appropriate as the program evolves.  Typically, more budget margin is desirable at early phases of a program.

3.07
Have the main design trades/compromises (including SWAP and thermal considerations) been properly vetted through all organizations responsible for impacted components and subsystems (including customer)?

There are unfortunately many examples of cases where one subsystem development group has made compromises to resolve their problems but those compromises have not been vetted with the other groups responsible for impacted components and subsystems.  A case in point is a program in which the designers of an optical mount reduced the size of the throat in the yoke where the control cables were to be passed through.  When it came time to feed the cables through the yoke, the cables with the required shielding wouldn’t fit – so the shielding was reduced.  When the system was finally tested, lack of adequate shielding on the cables created unacceptable noise problems.  Mitigation of this problem resulted in huge cost expenditures and significant schedule loss.

3.08
Are all contractors & subcontractors part of the integration team?

It is extremely important that key contractors, subcontractors, and suppliers be represented on the integration team throughout the integration.  There are many subtle nuances associated with components and subsystems (both hardware and software) that are known only to the developers.  The issues, sensitivities, and concerns that are known and documented are not the problem; it is the unknown, undocumented issues that cause the problems.  These issues frequently will be uncovered in the course of interaction between the suppliers in the development of the integration plan.  However, the most crucial point occurs during the integration itself, when unexpected problems always arise.  When this happens, it is of the utmost importance to have the participation of the suppliers if the problem is to be resolved expeditiously.

3.09
Have modeling and simulation of the UUE, including its subsystems and its interaction with other system elements, been performed with sufficient detail to establish test objectives and exit criteria (including reliability and maintainability)?

It is imperative that modeling and simulation be performed not only at the subsystem level, but at the integrated system level to provide an understanding of what test results are to be expected and to establish the exit criteria for a satisfactory test.  Modeling and simulation also helps establish areas where performance starts to degrade, which is very helpful in diagnosing anomalies in test.  If you don’t know what results to expect, how can one know if the test was successful?

3.10
 Is the system level modeling sufficiently detailed to demonstrate effects on, or interactions with, external systems with which it is required to operate? 

Modeling and simulation are typically focused on the operation of the system and its internal subsystems with respect to its operational environment.  However, often overlooked is the fact that the operational environment includes other systems with which the system under development must interact, either directly or indirectly (or inadvertently).  Consequently, in the case of the operation of the system and its subsystems in the context of a System of Systems (SOS), the system level modeling must be sufficiently detailed so that the impact of the UUE on external systems and subsystems (and vice versa) can be well understood.  Starting this modeling and simulation as early as practical will help minimize the impacts of any negative findings.

3.11
Have all modeling and simulation tools been appropriately validated/certified?

This is particularly important when using tools developed for other programs where the intimate knowledge of the details of how the tool actually works may have been lost or not transferred to the current program.  Tool accuracy may or may not be sufficient to address the problems under consideration for the system under development.  Consequently, if a tool has not been validated or certified with respect to its current use, using it may provide inaccurate results that will lead to false conclusions with disastrous results.
3.12
Have key subsystems at whatever level of readiness (breadboard, brassboard, prototype) been demonstrated together in an integrated test environment?

The emphasis here is on the issue of integration.  This could be the more “traditional” hardware to hardware integration, or testbeds design to ferret out interactions between hardware and software (hardware-in-the-loop).  At the early stages of development, breadboards are built to test functionality of specific component/subsystem designs without regard to how they will interact.  Often, software development must wait for hardware development to be complete, so early developmental hardware is not tested with real software.    The earlier that information can be gathered relative to the interaction of components, subsystems, and software, the lower the risk of unforeseen problems occurring in the final integration, due in part to a lack of overall “system level” awareness on the part of the component and subsystem developers.  It is extremely important to take advantage of available breadboards, brass boards and other development models to perform integrated testing as a means of mitigating the risks associated in the final integration activity 
3.13
Are integration tests being done early enough to influence/inform higher levels of integration?  

Across the board, tests done at the component and subsystem level should be undertaken at the earliest possible point with an eye to providing critical information to the next level of integration.  Too often these tests are undertaken only from the perspective of the component or subsystem itself without regard to how they can contribute to the overall system development process.

4.0  Testability
4.01
Have environments of appropriate realism (across the required condition range) been defined for the testing of developmental units (breadboards, brassboards, … qual models) and end-to-end testing of the final system?

Fully understanding the operational environment as it relates not only to the system, but its subsystems and components, is of vital importance to the program.  This cannot be done without a comprehensive description of the operational environment.  This means not only the physical environment of temperature, pressure, vibration, radiation, electro-magnetics, etc., but also the various interactions associated with systems of systems, data transfer, human factors, etc.  Fully characterizing the operational environment is the first step in understanding the relevant environments required for testing, and perhaps of equal importance, those environments that cannot be tested, which in the end will translate into residual program risk.  Once the operational environment is fully characterized, it becomes necessary to perform the requisite analyses to determine which aspects of the environment will be determined to be “relevant” to the UUE.  It should be remembered that in the end, this is all about reducing risk; consequently the environments that are determined to be “relevant” for the UUE are those that are deemed to be most stressful and therefore most likely to cause failure.

4.02
Do the existing test facilities (antenna chamber, EMI chamber, thermal vacuum, multi-degree of freedom tables, rocket test stand/range, etc.) adequately meet test requirements?

Too often, systems/subsystems are built and ready to test before it is discovered that existing test facilities cannot accommodate the scope of testing required.  Modifications to facilities at this point in the program become even more expensive due to overall program delays.  Consequently, it is of vital importance to the program to have an early understanding of the test facilities required to appropriately test the components, subsystems and integrated subsystems leading to an end-to-end test of the all-up system.

4.03
Does the existing test equipment, including software, adequately meet test requirements?

Understanding the requirements of ancillary test equipment requires early focus on testing.  Special test equipment, data collection requirements, including necessary test points, data collection rates, data storage, analysis tools, etc., can become expensive and time consuming issues if not dealt with very early in the program.  Special test hardware would include such items as flight termination systems, instrumentation/telemetry packages, captive–carry emulators/simulator etc…  Special software packages could include real-time observation and control packages, instrumentation and data reduction tools, mission simulators, etc…

4.04
Does the existing test tooling (special cranes, hoists, transport, micro-screwdrivers, test stand holding fixtures, etc.) adequately meet test requirements?

In the course of examining the necessary test facilities in question 9.02, the tooling associated with the facility should also be considered.  This is true not only for the larger elements requiring special modification of the facility, but also specialized tooling that may require long lead times to produce.

4.05
Do the available personnel have the appropriate test skills and certifications?

Particular attention should be given to this area even in the case of “experienced” contractors.  The graying of the aerospace workforce has left many companies with a dearth of experienced workers particularly in the area of test.  An inexperienced workforce means that standard procedures are often not followed and mistakes are made in operations that should be routine.  If there are additional special aspects of the tests to be dealt with (e.g. the test article is of a particularly fragile nature or if the test article is to be subjected to unique RF or vibration environments requiring unusual test equipment for evaluation of the results), additional care must be taken to ensure that appropriate training and oversight are provided.  One way to increase competency in this area sometimes is to test components and subsystems on the way to building up to full testing of the UUE.

4.06
Do test plans include software and information technology aspects of the unit under test?

The very nature of system or even subsystem testing is that it focuses on the performance aspects of the hardware itself.  Test plans tend to have the same focus and therefore software or IT aspects of the UUE are often not adequately addressed in the planning.  Things to consider include: the availability of test data sets needed to perform load or volume testing on the software of the unit, user interface testing to ensure utility of the human interface for software controlling such things as fault alerts and processing, and access to appropriately secured lines to get access to data to test security protocols.  Beyond the ICD, consulting with the software team on testing they are and are not conducting is a good way to ensure that software/IT items are not missed in the test plans.

4.07
Do test plans include reliability and maintainability aspects of the unit under test?

Test performance aspects of the UUE are usually focused on the “here and now,” e.g. did it meet bandwidth requirements, sensitivity requirements, etc.  Often they do not address the more long term aspects of reliability and maintainability.  The omission of these areas in testing often means that high costs will be encountered during the operation phase.  Both reliability and maintainability require special attention during the design and test phases of the program (to include potential operator involvement and operational environments) if the final product is to meet requirements.

4.08
Do test plans include human factor-related testing for the unit under test?

It is important to design tests with a goal of measuring human factor related issues when possible.  It should be remembered that human factor expertise is a specialized domain and successfully implementing such tests can require expertise beyond that obtained by typical operational experience with existing or prior systems.
4.09
Does the test plan place testing early enough in the program to provide useful information for program management and decision making? 

Testing is the premier risk reduction process, thus, using tests to provide early information for program decisions is the most reliable, cost effective means of ensuring program success.  Early testing can be accomplished through the use of breadboards, brassboards, engineering models, prototypes etc.  Even testing at the component level can provide valuable insight into issues at the system level.  The earlier those tests can be performed, the earlier sound decisions can be made.  Venues to gain early feedback from operators and maintainers during the design phase can be particularly revealing.  Often test planning does not include allowances for failures and retests, as well as lost test mission/test time rates

4.10
Does the test plan adequately provide for the opportunity to understand potentially unknown interactions (e.g.  EMI, time varying effects, real-time, cross couplings, etc.) between various components and subsystems? 

As was mentioned in the Integrability sections, there are aspects of subsystem interaction that cannot be specified in an ICD because the extent of the interaction is to complex to be defined without the aid of actual tests.  High fidelity modeling and simulation are very important to this process, but in the end, only testing can provide the level of confidence necessary to move forward with a high degree of certainty that the end product will perform acceptably.

4.11
Does the test plan for the UUE require the testing of its subsystems in an end-to-end configuration to evaluate performance and other key attributes?

Integrated, end-to-end testing of subsystems and components provides invaluable information.  It typically uncovers unanticipated problems.  The testing reveals interaction issues that were also unanticipated and degrade performance, reliability, usability, etc.  Integrated testing can occur whenever units or surrogates are available, such as breadboards, brassboards, etc.

4.12
Is the planned testing sufficient to allow for statistically valid scaling or extrapolation of results to the full range of expected operational usage?

The issue of scaling is critical to successful program execution.  As systems become more and more complex and operational reach extends to global proportions, it becomes prohibitively expensive to consider the development of full scale engineering models/prototypes.  At the same time, if the system is deployed without adequate testing, there will be a high probability of failure.  The answer to this dilemma is to test at a scale where the results can be extrapolated to the full-up system with high confidence.  The determination of the appropriate scale at which to test is a non-trivial issue.  Whether the system is hardware, software or a combination of the two, considerable in-depth analysis must be done that requires intimate knowledge of the operational environment.  Also, when statistical significance cannot be achieved, the limitations of any analysis or data should be understood.  The process is time consuming and expensive, but the consequences of not doing so may be even more significant.

4.13
Does software code verification against the software design occur prior to software integration testing?

One of the most underused best practices in software engineering is peer review verification of software work products (particularly software code) against their predecessor governing documents (i.e., software design is the governing document for software code).  The amount of downstream rework that can be saved by incorporation of this step has been documented since 1972.  However, many project managers see the time spent on pretest verification of software work products as an opportunity for schedule compression.  Countless government and industry studies argue against eliminating peer reviews.  A common issue if this step is skipped anises when trying to isolate the cause of test failures.  If the code has not been verified against the design, and the test procedure is based on the design, it can be challenging to determine if the fault is the to implementation issues or due to an aberrant design.
5.0  Software
In the course of software development, for today’s complex systems there is one overarching questions that must be considered while answering specific question relative to the development:  Has the hardware/ software interaction been simplified to the maximum extent possible?  It is very easy to separately compartmentalize hardware development and software development and then to proceed with development of each based only on initially defined ICDs.  This will, at best, result in situations where either the software is being constrained by the hardware or vice versa, or where one or the other will be overly complex in order to accommodated unnecessary requirements from the other.  Continuous interaction must occur between the hardware and software development teams throughout the entire development process.  Software is almost always developed in parallel with the hardware which it will either control or interface with.  Continuous interaction/iteration must occur in order to ensure a development process that maximizes efficiency and results in a system with maximized simplicity.
5.A
Hardware-Software Interface/Parallelism

5.01
Will engineering hardware models or prototypes be available for software testing in the appropriate time frame?

Engineering hardware models or prototypes are typically developed to retire “hardware” risks.  Consequently, insufficient thought is often given to other areas where the models/prototypes could be used to good effect.  The area of software testing is a prime example.  Close attention should be paid upfront to how the development schedule of engineering models and prototypes relates to the software development schedule in order to maximize the benefit of the models/prototypes in reducing software development risks.  Such testing is often referred to as system-in-the-loop or software-in-the-loop (SIL) testing.
5.02
Have mechanisms or forums been established to ensure appropriate interactions between simultaneously working software development teams?

This is an area that is frequently overlooked, even when the development teams are within the same company.  When the development teams are located in different companies, or mixed between government and private organizations the problem becomes exacerbated.  Continuous interaction is required throughout the development process, especially given that many projects set up parallel software tasks to reduce schedule risks.  Often there are unforeseen software to software interfaces that affect multiple modules being developed concurrently.  Effective inter-team communication is a key to resolving these and related issues.  A WBS that sufficiently details software tasks is helpful in identifying functional areas where software subteam interactions will be particularly important.
5.03
Have mechanisms or forums been established to ensure appropriate interactions between the simultaneously working hardware and software development teams?

As was mentioned in the introduction to this section, continuous interaction between hardware and software development teams is mandatory if problems are to be minimized.  A key to software risk reduction is software and hardware teams having insight into the progress each team has made.  Both formal and informal mechanisms are useful for this, including shared project work spaces, technical and status interchange meetings. One of the formal mechanisms that is useful, when done well, is to highlight, through the standard design change process, interface changes for both hardware and software teams.  Another useful mechanism is to identify and support software sub-teams within interface control working groups.
5.B
Reused/ COTS/ GOTS Software
For the purposes of the questions and elaborations below, whether off-the-shelf (OTS) software comes from a commercial source or government source is of less importance than the common attributes that OTS software shares, such as lack of source code visibility, lack of control over updates and modifications, and separation of the developing organization from the implementing organization.  We use “reuse/OTS software” to cover both COTS and GOTS.

Reused/OTS software is a natural target for program managers who want to reduce software development risk.  After all, what could be a better risk mitigation strategy than incorporating something that is already “proven”?  Experience with reused/OTS software has shown that, in the case of software reuse, there are risks that get introduced by the use of reused/OTS software that need to be considered in the decision as to if and where to use it.  When more risk is introduced by use of reused/OTS software than is mitigated, another solution is appropriate.  There are two main sources of risk in reused/OTS software:  (1) it was likely optimized around a different set of parameters than those that drive the current program, even if the overall function of the software is similar, and (2) insight into the nuances of the software’s internals is typically lacking; there is sufficient variation in how even simple software functions are implemented that this lack of insight can lead to significant surprises in the behavior of the software once incorporated into a new environment.

5.04
Has consideration been given to interoperability of reused/OTS software with other system- and system-external elements?

One of the biggest issues in incorporating reused/OTS software in a new system is the typical lack of knowledge about internal and external interfaces.  Other considerations that can affect interoperability with other system (internal or external) elements is the bandwidth and performance requirements of the software.  These are also elements that are frequently not made explicit in reused/OTS software.  Acceptance testing is often done on reused/OTS software only to verify that the software works in the initial development environment, and only tests the functionality of the software without looking at performance attributes, security, and other quality attributes that can affect the utility of the software when paired with other system elements.  Adding these considerations into any RFP-like instrument is one way to get additional information in some cases (where the provider is still available for supporting the software).  Especially in cases of legacy software use where the original developer is not available for support, robust acceptance testing that exercises both functional attributes of the software and the important non-functional quality attributes should be planned and resourced.  It should not be a surprise if incorporation of the reused/OTS software creates risks or issues for interoperability.
5.05
Has the ability of reused/OTS software to provide required safety, security, and privacy been confirmed?

One of the non-functionality quality attributes mentioned related to interoperability wrt 6.04 was security.  There are many cases of documented security breaches due to unknown behaviors of OTS software.  Privacy concerns and standards to redress them have increased in recent years. How software contributes to safety issues, especially in human-rated systems, has been a constant area of study for over two decades.  Especially where source code is not available for the reused/OTS software, safety, security, and privacy attributes are important to investigate through testing in environments that are relevant to the particular safety, security, and privacy issues of the program.  Not being able to confirm that these requirements can be met adds significant risk to the program and may hamper the system’s ability to meet required certifications if not appropriately mitigated.
5.06
Are the intended modifications of reused/OTS software understood and documented?
To achieve the lowest risk, OTS software in particularly is best used “as is”, without modification.  Sometimes, reused software is intended to be modified, and its source code, and even design documentation, is likely to be available.  In any case, the intended modifications of the reused/OTS software should be understood and documented, so that explicit risk mitigations can be planned to account for the types of modifications that are planned.  OTS modifications that involve vendors, in particular, need to be understood from both a technical and a business (ie data rights/licensing) viewpoint to avoid future issues with warranties, vendor support, etc.

5.07
Has the ability to remove or disable features/capabilities of reused/OTS software that are not required been addressed?

Often only a subset of the functionality provided by reused/OTS software is needed to meet a particular set of project requirements.  Ideally, the unnecessary portions of the software should be removed from the integrated system solution.  However, this is often infeasible due to such considerations as unknowable internal interfaces, behavioral interactions between required/optional functionality that enables some aspect of required functionality, and an inability to separate elements related to required functionality from elements containing unnecessary functionality.  In these and related cases, understanding the effects of the “extra” elements and planning mitigations related to their accidental or malicious invocation is a necessary risk management activity.
5.08
Has the suitability of reused/OTS software to be incorporated into the new system architecture been confirmed?

One of the challenges in reused/OTS software is understanding the software architecture of the provided software.  This is important because the reused/OTS software will be interacting with the software architecture of the integrated system solution, and not all software architectures are inherently compatible.  The more complex the reused/OTS software that is being used, the more likely this issue is to come up.
5.09
Has the similarity in the environment of any reused/COTS/GOTS software and the objective architecture environment, including platform type, been evaluated and documented?

The objective architecture environment is a description of the intended software architecture along with the anticipated hardware interfaces based on the selected or anticipated hardware.  The greater the similarity between the deployed environment of the source reused/OTS software and the objective environment, the less likely it is that interface problems will occur.  Understanding the reused/OTS software sufficiently to be able to document and evaluate both similarities and differences is one of the ways to understand the risks of using the provided software.  If source code for the provided software is unavailable, this will have to be accomplished via testing and evaluation in either a simulated or operational-level environment that allows exercise of the relevant hardware/software interfaces.
5.10
Is the software supplier for reused/COTS software viable in terms of the domain and business?

As the distance in time between a software product development and its use increases, it is less likely that the original developers of the product will be available.  Others with similar domain knowledge may be brought in, but it is not uncommon for a software vendor to minimize staff on a deployed product that is considered “self-sustaining”.  In addition to domain skill changes, software vendors compete in a highly volatile market, in general, and business viability of the owner of a product considered for incorporation into a system solution is an important consideration, especially for more complex, specialty OTS products.  Even internally-reused software has issues of how current the domain skills are of the software maintainers vs. those who originally developed the software.  Understanding and documenting these issues can help to mitigate risks related to current and future support of the reused/OTS software.
5.11
Are personnel with development-level knowledge of the reused/OTS software part of the project team?

When development-level knowledge of reused/OTS software is not available to the current project team, the likelihood that the software will be modified or used in a way that produces unanticipated behaviors is high.  However, with OTS software in particular this may not be able to be avoided.  In contrast, for complex software being reused where source code and designs are available, people with development-level knowledge should be included in the new software team.
5.12
Where OTS software is used, are the impacts of planned vendor upgrades of OTS software understood and accommodated in the software development plans?
For OTS software, the provider is often evolving the software in its original environment at the same time that it is being incorporated into your program.  If vendor upgrades are not considered in software development plans, it is highly likely that the software schedule will be negatively impacted, if for no other reason than the need to perform acceptance and regression tests on each new release.  Especially when upgrades are scheduled during planned periods of system test or beyond, the configuration issues associated with incorporating a new version of the OTS software can be significant.  Bear in mind that commercial software update cycles typically happen much more frequently than military development cycles.  When software is “refreshed”, it often means that an old version is being retired and will no longer be supported by the vendor/provider.  For systems with a life span of five years or more beyond purchase of the software (which sometimes is actually prior to initial deployment of the system), explicitly planning for how the OTS software will be refreshed, either by the current vendor or an alternative, will enable the transition between one product and another to be much smoother.
5.13
Does the program own appropriate data rights and documentation for reused/OTS software?

Appropriate data rights and licensing should be in place for any reused/OTS software planned for use in a system solution.  Without appropriate data rights, vendor support could become unavailable, the use of the software in its intended operational environment could be prevented, and legal action, in some cases, could be pursued against both individuals and organizations responsible for inappropriate use.  In addition to data rights issues, documentation related to reused/ OTS software is often left out unless it is explicitly negotiated as a part of the purchase.  It is rare to get detailed design documentation or source code from vendors; however, for reused software, it is not unreasonable to expect both source code and design documentation that includes architecture descriptions, logic & data flows, etc.
5.14
Have adverse effects on maintainability of reused/OTS software, (including modified reused/OTS software) been considered and mitigated?

Many of the adverse affects have been talked about in the questions above –effects related to security, business viability, domain skills availability, ability to disable unused aspects, etc.  This question is meant to encourage a look at the maintainability issues relate to reused/OTS software in their entirety, so that a valid picture of both the costs and benefits of incorporating a particular piece of reused/OTS software can be achieved prior to making a decision on where/how it will be incorporated into a system.
5.C
Metrics

5.15
Are adequate software metrics being consistently used to manage the software effort, including risk tracking?

Many software measures are available to monitor software work products and software processes, targeting size and stability, development process performance, resources and cost, product quality, schedule and progress, technical effectiveness, and customer satisfaction. The program manager’s main challenge is to find appropriate leading indicators that fit project characteristics. For example, Source Lines of Code (SLOC) is a common size and complexity measure for software being developed using procedural languages such as C, C++, or Java.  However, more and more systems are being developed using code generators and/or compositional languages, which make the use of SLOC as a complexity measure or main cost driver less straightforward.  Similarly, for example, Function Points are widely used in the Information Technology (IT) segment of the software market to estimate the complexity of software systems, but have not proved to be adequate for estimating embedded, real-time software projects.

Effective use of metrics in project management requires an organizational capability to carry out the full spectrum of metrics-related activities, such as establishing and sustaining commitment to the metrics program, plus planning, performing, and evaluating measurements.  Note, however, that simply collecting measures is not sufficient to make the process worthwhile.  Having explicit thresholds and action plans when those thresholds are violated are the fundamental means of metrics-based risk management; they are marks of a project where measures are truly treated as leading indicators that help steer the project, rather than trailing indicators, coming in too late for changing course.

Finally, regardless of the measures selected, an important part of establishing and sustaining commitment is ensuring that effective incentives are in place to encourage the reporting of accurate data during the collection process, and mechanisms to ensure that the measures are appropriately and ethically used by both contractor and government personnel. 
5.16
Are software complexity metrics other than size being used to provide insight into resources required to accomplish effective software detailed design? 

In estimating the software effort, software measures that explicitly help to understand the complexity of the task during the important transition from preliminary to detailed design play an important role.  “Complexity metrics”, when used by software engineers, often refer explicitly to a class of metrics known as “cyclomatic complexity”.  However, there are other complexity metrics available; many of them are included in design and development support tools for software, and their use can greatly aid in the effective estimation and completion of software designs.
5.D
Simulation

5.17
Are system simulation requirements to support software development clearly separated from simulation requirements to support other purposes?
To mitigate the timing and costs issues of testing software in its operational environment, system simulations are routinely used to enable interface testing, volume and load testing, performance testing, operator training, and security testing, among others.  However, the simulations produced to support early software integration and testing are often perceived as useful for other system engineering tasks, and the cost of producing effective simulations makes it tempting to “combine” requirements and build fewer simulation environments than requested by the various stakeholders.  Although there are some requirements that can be commonly addressed, it is also important to ensure that the unique software simulation requirements are addressed so that the goals that have been allocated to satisfy via the simulation can actually be achieved.
5.18
Will required simulation systems be ready in time to support software development?

In addition to getting the right simulation resources, it is important that access to system simulations that are singly or jointly managed is provided in the timeframe needed by the software team.  The most benign consequence of lack of access is schedule slip.  In some cases, inadequate access to appropriate simulation resources can result in lack of discovery of constraints or other software issues that impair the software’s mission and requirements satisfaction.
6.0  Reliability

6.01
Are hardware and software reliability requirements for the unit under evaluation and lower level units traceable to system reliability requirements derived from operational requirements?

Section 2.0 addressed the issue of requirements traceability.  Because of the importance of reliability and its impact on system operation it deserves to be separately highlighted.

6.02
Was data used to establish reliability predictions for legacy and developmental items obtained under conditions matching those of system operation?

Extrapolation of reliability data from one operational environment to another must be done with extreme care.  A case in point is the assumption that the reliability of a laser diode operating for several years as part of a package in an aircraft environment would operate for several years in a satellite environment.  The assumption neglected to take into account the intermittent operation on the aircraft (i.e. short operation times followed by long down times) in comparison to the operational requirements of the satellite (on continuously).  The issue as applied to legacy systems is particularly thorny in that, unless the legacy system is operated in identical environments in identical architectural configurations and in fact made by the same people (not just the same company) using the same materials, etc., one cannot be automatically assume that it will have the same reliability.

6.03
Has operational lifetime (including storage, carriage, and operational time) been included in the descriptions of the relevant and operational environments?

Often times we are constrained in our thinking relative to the concept of operational life.  It is very important to give thought to all aspects of the situations to be encountered in the life of a system -- not just the system operation itself in the nominal environment, but how ancillary operations and systems will impact life.  A case in point is where an aircraft munition was put into the field where it experienced substantial flight hours far beyond what was envisioned.  Thought had been given to storage, to deployment, etc., but no one had considered the many flight hours loitering, waiting for a target, without actual use.  During the course of these many flight missions, screws backed out and were lost as a result of the sustained and repeated vibration environment.  Fortunately no adverse mishaps occurred before this was discovered and corrected.

6.04
For the unit under evaluation, have clear distinctions between wear out mechanisms and random failures been established? 

Wear out mechanisms can often be attributed to random failures if sufficient in-depth investigation is not pursued.  It is extremely important to have a clear distinction, not only as a means of mitigating wear out, but also of understanding those cases where we do not understand the reason for failure.  This question is particularly appropriate for lower level units and may not necessarily be applicable to systems composed of units with different individual failure mechanisms.

6.05
Has the testing environment been derived from the operational environment such that it adequately probes the wear-out regime and mechanisms for failure?

It is not possible to overemphasize the importance of understanding the operational environment with respect to testing to ensure reliability.  A case in point, drawn from the space environment, would be where a particular orbit exposed the system to high radiation levels.  If the systems were not tested in an environment experiencing similar levels of radiation (even if it had been designed to be rad hard) there is a high probability that the system would fail on orbit.  
6.06
Has all available reliability data been used to influence the modeling, simulation, and reliability analysis for the unit under evaluation as well as for higher levels of integration?

There are two aspects to this question that are important to consider: the first is to make sure that one has in fact made use of all appropriate available data in modeling, simulation and subsequent reliability analysis; the other is to make sure that the impact of reliability on the entire system is considered as the unit is integrated into the system.  It is important to consider that increasing the reliability of a given unit may, in fact, have the unwanted consequence of decreasing the overall reliability of the system as a whole.  An example of this would be the case where, in order to improve reliability of a given subsystem, it was decided to use triple redundancy in key circuits.  Unfortunately, this resulted in negative power and weight margins for the total system placing the overall system at risk.

6.07
Does the available body of evidence provide confidence that subsystem integration will not degrade system reliability?

Overall system performance can be adversely affected by individual subsystems or through the integration of multiple subsystems that contribute to degradation in the aggregate.  When it comes to the technical performance per se, this is generally closely watched and decisions made accordingly.  Unfortunately this is not always the case with reliability, in part because it is not always immediately apparent.  A very important case to remember is the Three Mile Island Nuclear Reactor failure, one of the most significant nuclear accidents ever to occur in the United States.  The cause of this was a minor part failure in a secondary non-nuclear part of the system.  

6.08
Has a “reliability growth” program been established, as appropriate, and is it being followed?

A reliability growth plan/strategy should incorporate stressing aspects of the operational environment and result in the identification of many of the failure mechanisms before fielding.  As infant mortality and other issues are solved, reliability is expected to increase. The reliability growth plan should include a data collection strategy needed to identify the root causes of reliability problems.  This applies equally to software as it does to hardware.

6.09
Are reliability requirements achievable in a cost constrained environment, such that they avoid driving the UUE to unrealistic levels of complexity or performance?

Reliability is a critical factor influencing the complexity or performance of a component, subsystem, or system.  Reliability requirements may be directly addressed by establishing that a specific unit will function correctly over the lifetime of the full system.  To do this may require time consuming life testing, particularly if no valid means of accelerated testing have been developed.  Obtaining the robustness needed for long term operation may result in a very expensive, over-specified device operating under highly derated conditions (operating below specified bounds to extend lifetime).  Alternatively, reliability requirements may be addressed through redundancy, i.e. multiple units able to perform the same task.  Again, this adds expense for multiple units and complexity in addressing the switching between them.  Compounded, such complexity can, in turn, can drive the entire development timeline.  Consequently, care must be taken to ensure that reliability requirements at any level are derived correctly from high level system requirements.  Furthermore, if such system requirements result in ballooning complexity in the design, then such information should be fed back to the systems engineers and user community responsible for overall system requirements and trades.

7.0  Maintainability
For the Air Force, maintainability is obviously associated with aircraft on the flight line and their associated ground support equipment, but it is also applicable for space and cyber systems.  For space systems, the ground segment must be maintained, but even the space segment units must be maintained during integration, test, transport, and storage.  For cyber systems, software and hardware need refreshment for years after deployment.

7.01
Are maintainability requirements for the unit under evaluation and lower level units traceable to system maintainability requirements derived from operational requirements?

Section 2.0 addressed the issue of requirements traceability.  Because of the importance of maintainability and its impact on long term system operation, maintainability deserves to be separately highlighted.  Failure to consider maintainability early in a program may rarely lead to outright system failure, but it can and frequently does result in huge expenditures for maintenance, significant down times for systems and subsequent loss of capability to the war fighter. 

7.02
Was data used to establish maintainability predictions for legacy and developmental items obtained under conditions matching those of system operation?

As in the case with the operational environment itself, it is extremely important to evaluate and document the similarity between the maintenance environment of the legacy systems and that of the system under development.  This is required to ensure that the maintenance procedures being established for the system under development are appropriate for the conditions in which it will be operated and maintained.

7.03
Are modeling and simulation used to simulate and validate maintenance procedures for the unit under test and higher levels of integration?

Using modeling and simulation to simulate and validate maintenance procedures is highly important to low cost, efficient maintenance with rapid turn around.  The most effective place to deal with maintenance issues is during the design phase.  Taking maintenance into account in the design ensures that the maintenance process will be optimized for cost, efficiency and turn around at a minimum impact.  If consideration is given to maintenance only after the system is built, the result will be high cost, inefficient use of personnel and materials and long turn around times. 

7.04
Are personnel familiar with anticipated maintenance procedures part of the system design team?

Involvement of personnel in the design of the UUE who are familiar with maintenance procedures associated with units similar to the UUE is the only way to ensure that effective maintenance will be designed into the unit.  Anyone who is familiar with having to jack up an engine or remove the steering column to get at a spark plug will understand how important this is.

7.05
Are personnel familiar with the as-designed software part of (or planned to be part of) the sustainment team?

All too often, once software is deployed, the development personnel proceed to other jobs within the company, or even to other companies.  It is of vital importance to successful maintenance that personnel with intimate knowledge of the design of the software be retained as part of the sustainment team.

7.06
Has the anticipated maintenance concept, including the interval and associated costs of performing such maintenance, been made clear to the user community?

The importance of up-front consideration of maintenance and its impact on life cycle cost cannot be overemphasized.  It is an area that is given short shrift repeatedly, because it does not appear to be a current charge to a development program.  It can require extra effort to design systems that have improved maintainability, however, the resultant life cycle savings can be significant.  Consideration should be given to using developmental or operational test equipment for long term usage by maintainers and users.

7.07
Are software systems’ regression test suites that represent the anticipated operational state of the system available (or planned to be available) to the sustainment team? 

Regression test suites should include the set of test procedures and test environment elements needed to ensure that fixes made to the software during maintenance do not create failures in other parts of the system. The regression test suite could actually be a system simulation.  Regression testing should ensure baseline functionality has been retained and the system executes all mission use case profiles successfully.
8.0  Human Factors
Human factors is a complex topic, closely related to Human Systems Integration, safety and other areas.  Some of these questions deal with involving the right people as early as possible in the development process.  Human factors experts have specialized training that is outside the realm of most engineers and operators.  More backup material to help the program understand human factors issues is included in Appendix C.
8.01
Are there plans (contract actions, tools, training, tests, prototypes, etc.) to address human factors issues at each level of integration?

Human Factors are often considered at the top level, but it is important to remember that they need to be taken into consideration during design and planning for each level of integration, not only with respect to the integration itself, but also with respect to the cumulative effect on the overall system.  It is also appropriate that these issues should be discussed and outlined in a Systems Engineering Plan (SEP) and a Test and Evaluation Master Plan (TEMP).
8.02
Are SMEs available (operators, maintainers, trainers, members at C2 centers, etc.) throughout development to review/advise on human interface issues?

Operations must be at the forefront of all aspects of the design and testing.  Consequently, it is of the utmost importance that subject matter experts in the operational aspects of the system be involved throughout the development.

8.03
Are human performance models and analytic tools planned or being used for human factors design and analysis?

When available, such models can produce important insights well in advance of prototype testing.  Also, they can help diagnose unexpected performance or human reaction during testing.
8.04
Are prototypes and/ or engineering models planned or being used to validate the human factors design and analysis?  

As was mentioned in the software section, engineering models and/or prototypes are developed to retire hardware risks while thought is seldom given to their use in other areas.  Using such systems to validate human factors design and analysis is of considerable benefit and thus should be taken into consideration in the up-front planning/scheduling for the development of such models/prototypes.
9.0  People, organization, & skills
9.01
Are there uniquely-skilled people associated with the unit under evaluation and are they moving forward with the program?

Often, there are uniquely skilled people involved in the development of various elements critical to the success of a program who must be carried forward with the program. These people may be researchers who have intimate familiarity with the peculiarities of a particular technology, or technicians who have developed critical aspects of assembly and test, either in the technology development phase or in the early system development phase of the program. The type of skills/knowledge embodied in these individuals is the type that cannot be written down. It is gained only through in-depth experience with the UUE and can be communicated only in the course of further development through the interaction of these individuals with other members of the development team.     

9.02
Are the skills & competencies of the team working on the UUE adequate?

Given the level of sophistication and complexity of current programs, it is not enough to assess qualifications based simply on the number of mechanical designers, computer programmers etc.  Nor is it sufficient to rely totally on the numerical level of experience, i.e. the number of years of experience as a designer, programmer etc.  The critical aspect of skills and competencies is that of experience in areas of similar complexity and sophistication.   With respect to tools, simulations, etc., the appropriate level of targeted training provided must also be adequate.

9.03
Does the program have hardware managers experienced in the development of units of comparable complexity?

The criticality of having managers with “hands-on” experience both in the development and the management of the development of hardware of comparable complexity cannot be overemphasized.  Complex development programs require interaction on many different levels and the only way this experience can be obtained is by direct participation in programs of similar complexity in similar technical areas, and with comparable levels of responsibility.  This is particularly true in cases where software development is an integral part of the hardware development – something that in today’s sophisticated systems is always the case.  
9.04
Does the program have software managers experienced in the development of units of comparable complexity?

The criticality of having software managers with “hands-on” experience both in the development and the management of the development of software of comparable complexity also cannot be overemphasized.  Complex development programs require interaction on many different levels and the only way this experience can be obtained is by direct participation in programs of similar complexity in similar technical areas, and with comparable levels of responsibility.  This is particularly true in cases where software development is an integral part of the hardware development – something that in today’s sophisticated systems is always the case.
9.05
Are the number of people on the UUE development team sufficient?

When resources are scarce, it is frequently the case that there is an insufficient number of people in areas of “soft” products, i.e. systems engineering, risk analysis, safety, quality assurance, etc.  It is not that people are not working in these areas, but rather that an insufficient number of people results in inadequate “up-front” systems engineering – poorly defined requirements, inadequate risk assessments, etc.  These are not necessarily apparent at the time but will later have major adverse effects on the program.  Even in the case where there are “hard” products, e.g. hardware, or software code, an insufficient number of people will in the end result in “burn-out,” inefficiency, and mistakes - problems that again in the long run will have serious consequences for the program.  Alternatively, it is sometimes the case that a “lean engineering” analysis would reveal that people are spending their time on too much non-value added work, and that streamlining of processes may allow fewer people to get more done.  It should be noted that the issue of having a sufficient number of people applies to the program office and its oversight responsibilities as well as to the developer.
9.06
Have organizational barriers that impede development and sharing of knowledge been identified and associated risks mitigated?

Organizational barriers, both intentional and unintentional have frequently resulted in substantial cost overruns, schedule slips and even failure.  These barriers can occur in many forms: between the program office and other programs of record with which the system must interact during operation; between the program office and the developers; between different developers; between internal elements of a single developer; and between developers and users.  One example of this was a payload developer who was not included on IPTs with the user community, because they did not represent the “system” as a whole – this barrier in between the developer and the user community lead to confusion on requirements and capabilities.  Most unintentional barriers can be mitigated once recognized, e.g.: disparate geographic locations, incompatible communication systems, lack of discipline, etc.  Key aspects of such concerns are dealt with in the following subset of questions associated with this question.  Intentional barriers are more difficult, e.g.: proprietary issues between developers; lack of trust between developers; classified barriers.  Many of these can be resolved through the use of “third parties;” others may require substantial redirection of the program including replacement of developers/vendors.  In any case, the program should not proceed until these issues are resolved.  Historically, another effect is that government insight into contractor and subcontractor performance has also been impeded by a lack of access to data.

9.07
Have clear lines of authority been established?

With respect to relationships between the government and its contractors, who is in charge? Is it the government, or the contractor? Has a prime contractor been designated? Does the prime contractor have the authority to deal with their subcontractors?  Do they have clear lines of authority internal to the company?

With respect to the government program office, similar questions can be asked.  In the Air Force, some systems can have different parts of the system being built by different Air Force groups, but, in the group/wing command structure, these groups may not report to the program manager or to a common commander.  This type of situation can lead to confusion and duplication of effort.  Early identification of SE processes and their associated roles and responsibilities are critical to ensuring this is accomplished effectively.

9.08
Is authority appropriately balanced across disciplines (hardware, software, “ilities”) involved with the UUE?

A typical example of this occurred in the development of a sensor for a program.  The manager for the sensor had tremendous responsibility, but little authority, and thus did not have the necessary flexibility to trade off potential requirements flowed down to him, while mechanisms to seek relief from above were slow and cumbersome.  While it is important to balance authority across all disciplines, particular note should be taken with respect to software.  The area of software has traditionally been un-, (or under-)represented in the lines of authority.  This is in part due to the fact that most senior positions within a program (including the Program Manager) have hardware backgrounds and as such frequently do not understand software development.  It is also due in part to the historical role of software as being subservient to hardware – an add-on to “better” control the hardware (as opposed to early analog control systems) or to “better” process signals (as opposed to filter banks) etc. In this mindset, software grew up as a separate entity developed by a separate group in a sequential time frame (first the hardware is built then the software). While the evolutionary aspect of software vis-a-vis hardware may be responsible for its current position in the hierarchy, today’s systems are so interrelated that software cannot be developed independent from nor subservient to the hardware.  In this vein, it is of the utmost importance to ensure balanced authority between hardware and software systems.
9.09
Have clear divisions of responsibility been established?

With respect to the division of responsibility, one frequently overlooked area is of the  integration of elements – components, subsystems, systems. Responsibility for a given subsystem may be clearly defined, but the responsibility for integrating it into the parent system with the concomitant responsibility for understanding its interaction with its sister subsystems, the overall system and with other systems of record with which the final system is to interact is often overlooked.  It is imperative that the overarching areas of responsibility be clearly identified and relegated to the appropriate entities.  Key activities to be considered are development of interface control documents (pre-planning), system integration (merger of delegated subsystems), and verification & validation activities (ensuring proper functionality).

9.10
Is there a single entity responsible for the systems engineering associated with the unit under evaluation?

Given the importance of systems engineering with respect to the overall system performance, it is imperative that there be a lead systems engineer responsible for each element of the system, from the overall system itself, to each of the major subsystems, to the minor subsystems and so on down to the individual components under development.
9.11
Is there a single entity responsible for high-fidelity integrated systems modeling?

As is the case with systems engineering, if a program is to be successful, there must be a single entity responsible for high-fidelity end-to-end modeling of the integrated system.  If there are proprietary issues involved, or trust issues, then this is a prime example where the use of an independent third party (such as an FFRDC) to perform such modeling is necessary.
9.12
 Is there a single, designated entity responsible for verification of the modeling?

A model is only useful if it has been verified and it is again of vital importance to have a single entity responsible for verification.

9.13
Is the organization executing the development of the UUE well matched (scaling, experience, quantity, schedule, ......) for the planned products?

The ability to generate a good proposal is not necessarily a sign of experience in execution.  There are many subtleties associated with the successful execution of a complex program.  Knowledge of what has to be done in general is not a good indication of whether or not the knowledge exists at the “fine detail” level for execution.  If the organization has never undertaken a project of the complexity under consideration, then the risk must be judged accordingly.

 Appendix A.  Risk Definitions
The Department of the Air Force, Office of the Assistant Secretary for Acquisition, issued a Guidance Memorandum dated November 4, 2008 that immediately implemented changes to Air Force guidance regarding risk management across the life cycle framework.  The memorandum should be read in it’s entirety for proper implementation.  It standardized the 5x5 risk matrix shown in Figure 2-9, and gave the following definitions for Likelihood and Consequence.  These tables differ somewhat from the Likelihood and Consequence tables in the Risk Management Guide for DoD Acquisition.11
	LEVEL
	LIKELIHOOD
	PROBABILITY OF OCCURRENCE

	5
	Near Certainty
	81%-99 %

	4
	Highly Likely
	61%-80%

	3
	Likely
	41%-60%

	2
	Low Likelihood
	21%-40%

	1
	Not Likely
	5%-20%


Consequence tables exist for Performance, Schedule and Cost.  For performance, any root cause that, when evaluated by the cross-functional team, has a likelihood of generating one of the following consequences must be rated at Consequence Level 5 in performance:

· Will not meet Key Performance Parameter (KPP) Threshold
· CTE will not be at TRL 4 at Milestone (MS)/KDP A

· CTE will not be at TRL 6 at MS/KDP B

· CTE will not be at TRL 7 at MS/KDP C

· CTE will not be at TRL 8 at the Full-rate Production Decision point

· MRL will not be at 8 by MS C

· MRL will not be at 9 by Full-rate Production Decision point

· System availability threshold will not be met.

Note that the above conditions are sufficient to generate a Level 5, but not necessary.  In other words, there are many other ways to generate a Level 5 consequence in performance.  The full table appears next.

	
	Standard AF Consequence Criteria - Performance

	1
	Minimal consequence to technical performance but no overall impact to the program success.  A successful outcome is not dependent on this issue; the technical performance goals or technical design margins will still be met.

	2
	Minor reduction in technical performance or supportability, can be tolerated with little impact on program success.  Technical performance will be below the goal or technical design margins will be reduced, but within acceptable limits.

	3
	Moderate shortfall in technical performance or supportability with limited impact on program success.  Technical performance will be below the goal, but approaching unacceptable limits; or, technical design margins are significantly reduced and jeopardize achieving the system performance threshold values.

	4
	Significant degradation in technical performance or major shortfall in supportability with a moderate impact on program success.  Technical performance is unacceptably below the goal; or, no technical design margins available and system performance will be below threshold values. 

	5
	Severe degradation in technical/supportability threshold performance; will jeopardize program success; or will cause one of the triggers listed below


	
	Standard AF Consequence Criteria - Schedule

	1
	Negligible schedule slip

	2
	Schedule slip, but able to meet key dates (e.g. PDR, CDR, FRP, FOC) and has no significant impact to slack on critical path

	3
	Schedule slip that impacts ability to meet key dates (e.g. PDR, CDR, FRP, FOC) and/or significantly decreases slack on critical path

	4
	Will require change to program or project critical path.

	5
	Cannot meet key program or project milestones.


	
	Standard AF Consequence Criteria – Cost (A-B refers to MS/KDP)

	1
	For A-B Programs: 5% or less increase from MS A approved cost estimate

For Post-B & Other Programs: limited to <= 1% increase in Program Acquisition Unit Cost (PAUC) or Average Procurement Unit Cost (APUC) from current baseline estimate, or last approved program cost estimate

	2
	For A-B Programs: > 5% to 10% increase from MS A approved estimate

For Post-B & Other Programs: <= 1% increase in PAUC/APUC from current baseline estimate, or last approved program cost estimate, with potential for further cost increase

	3
	For A-B Programs: > 10% to 15% increase from MS A approved estimate

For Post-B & Other Programs: > 1 % but < 5% increase in PAUC/APUC from current baseline estimate, or last approved program cost estimate 

	4
	For A-B Programs: > 15%  to 20% increase from MS A approved estimate

For Post-B & Other Programs: 5% but < 10% increase in PAUC/APUC from current baseline estimate, or last approved cost estimate 

	5
	For A-B Programs: > 20% increase from MS A approved cost estimate

For Post-B & Other Programs: >= 10% increase in PAUC/APUC from current baseline estimate (danger zone for significant cost growth and Nunn-McCurdy breach), or last approved program cost estimate 


Appendix B.  Motivations for Ratings Scheme
As mentioned in the text, the RI3 rating scale is utilized in order to display the relative risks in several “ility” areas.  Without a method to translate from a two-dimensional (Likelihood, Consequence) space, to a one-dimensional model, then one is left displaying sets of scatter plots.  Of course, such a scheme is in use today, in particular, the red-yellow-green color scheme.

Rather than utilizing the red-yellow-green color scheme, the TD-1-12 team proposed usage of an arbitrary scale from one to five, without color, as shown in Figure 2-10.  There are several reasons for this.  For one, people hate to show or admit that their program is red.  There is always an inherent fear that higher level decision makers may not understand that it may be appropriate to be red at a given phase in a program.  Secondly, complacency sets in when one is green.  Finally, having only 3 levels to describe risk feels too simplistic to people; they inherently feel there are more than 3 levels.  This is why one often sees people rate themselves red/yellow, rather than red or yellow.  Five levels uses the fact that people are inherently comfortable with the intermediate zones between the colors and the fact that likelihood and consequence are subdivided to 5 levels.  As a concrete example of this, take the case of the example shown in the figure below.  Consider a program with only 3 risks.  If one has only three colors, than risks A, B, and C are all of equal importance.  Granted that there is subjectivity in the likelihood and consequence ratings, but can anyone disagree that one should look at risks B and C with a keener eye than risk A.
The mental barriers between green and yellow are immense.  Often, risks evaluated as green are typically not even reviewed by management.  Using the 5 level RI3 rating scheme for top level summaries helps reduce the size of these nonlinear mental jumps in importance.

[image: image15]
Appendix C.  Human Factors Addendum

As mentioned in section 7, this appendix provides more detail on the examples cited and also lists some relevant human factors documentation. 

C.1
Examples

A lack of appropriate Human Factors Engineering involvement in design can result in system shortcomings that require costly redesign, produce substandard system performance, or, in extreme cases, precipitate system failures endangering life and equipment.  Three examples of this are detailed below:

Three Mile Island Incident

On March 28, 1979, operators at Three Mile Island, a nuclear power plant in Pennsylvania, made a series of mistakes that led to a near meltdown of the plant’s reactor core.  This accident was caused by a series of equipment failures and operator errors.  The result of the accident was a release of approximately 1200 millirem/hour of radiation into the environment, forcing the evacuation of several thousand residents of the surrounding area.  Fortunately, there were no deaths as a direct result of the incident.  The near meltdown of the reactor occurred when a pilot-operated relief valve at the top of the pressurizer failed to close, resulting in a loss of the pressurizer steam bubble and a loss of reactor control system pressure and quantity.  The indicator lights on which the operators were relying to determine the position of the relief valve led them to believe that the valve was closed.  However, the indicator light was not displaying the actual system state—rather, it was showing the presence of a signal commanding the valve to close.  In other words, the operators believed the relief valve was closed when in reality the valve was open, though it had been commanded to close.  This led the system operators to conclude falsely that a leak had occurred, and they began to act accordingly.
However, they continued to make errors that increased the volatility of the system, such as confusing reactor B with reactor A (a problem directly attributable to the control panel layout).  Not until two hours into the accident, when an operator who had recently arrived finally realized that the relief valve was at fault, did the proper actions begin to be taken to correct the problem.  In the end, the investigation by the Nuclear Regulatory Commission into the human factors (HF) aspects of the accident determined that “the human errors which occurred during the incident were not due to operator deficiencies but rather to inadequacies in equipment design, information presentation, emergency procedures, and training”.22
Downing of Korean Air Lines Flight-007 (KAL-007)

A commercial airliner, KAL-007, was shot down by Soviet air-to-air missiles on September 1, 1983, when it strayed into Soviet air space.  A navigational error led the aircraft approximately 365 miles off course, placing it over Soviet military installations at Sakhalin Island.  All 269 people on board perished after a 90-second descent into the Pacific Ocean.  The most likely cause of the navigational error concerns the inertial navigation system (INS) installed in this large passenger aircraft.  The aircraft had three INS systems: one primary system and two backups.  Each INS could be programmed separately, or a “remote” mode could be chosen in which the crew programmed only the primary INS and the information was then automatically passed to the two backup units.  To ensure that the proper coordinates have been placed in the system, the INS checks the primary INS coordinates against the coordinates entered into the two backup units.
It is hypothesized that the crew, to save time and energy, chose the “remote” mode when programming the INS units and incorrectly entered the flight path coordinates.  This error would not have been detected when in this mode because a copy of the incorrect coordinates would have been used to check the original incorrect coordinates.  This INS system was designed to reduce workload and stress to the aircrew.  Unfortunately, the system was so automated that it caused inactivity, boredom, and complacency.  Due to the defective interface of its INS system, KAL-007 found itself off course and in unfriendly airspace, which led to tragedy.22, 23
Loss of the Mars Climate Orbiter (MCO)24
Description of Driving Event: 

The Mars Climate Orbiter (MCO) Mission objective was to orbit Mars as the first interplanetary weather satellite and provide a communications relay for the Mars Polar Lander (MPL).  The MCO was launched on December 11, 1998, and was lost sometime following the spacecraft's entry into Mars occultation during the Mars Orbit Insertion (MOI) maneuver.  The spacecraft's carrier signal was last seen at approximately 09:04:52 UTC on Thursday, September 23, 1999. 

Lesson(s) Learned: 

The MCO Mishap Investigation board (MIB) has determined that the root cause for the loss of the MCO spacecraft was the failure to use metric units in the coding of a ground software file, "Small Forces", used in trajectory models.  Specifically, thruster performance data in English units instead of metric units was used in the software application code titled SM_FORCES (small forces).  A file called Angular Momentum Desaturation (AMD) contained the output data from the SM_FORCES software.  The data in the AMD file was required to be in metric units per existing software interface documentation, and the trajectory modelers assumed the data was provided in metric units per the requirements. 

During the 9-month journey from Earth to Mars, propulsion maneuvers were periodically performed to remove angular momentum buildup in the on-board reaction wheels (flywheels).  These Angular Momentum Desaturation (AMD) events occurred 10-14 times more often than was expected by the operations navigation team.  This was because the MCO solar array was asymmetrical relative to the spacecraft body as compared to Mars Global Surveyor (MGS) which had symmetrical solar arrays.  This asymmetric effect significantly increased the Sun-induced (solar pressure-induced) momentum buildup on the spacecraft.  The increased AMD events coupled with the fact that the angular momentum (impulse) data was in English, rather than metric, units, resulted in small errors being introduced in the trajectory estimate over the course of the 9-month journey.  At the time of Mars insertion, the spacecraft trajectory was approximately 170 kilometers lower than planned.  As a result, MCO either was destroyed in the atmosphere or re-entered heliocentric space after leaving Mars' atmosphere.  The Board recognizes that mistakes occur on spacecraft projects.  However, sufficient processes are usually in place on projects to catch these mistakes before they become critical to mission success.  Unfortunately for MCO, the root cause was not caught by the processes in-place in the MCO project.
C.2 
Relevant Documentation

This section contains guidance and instructions applicable to human factors.
Although it is directly applicable only to space systems, the first table references the Air Force and Space and Missile Systems Center guidance on why Human Systems Integration (HSI) is required (HSI domains include human factors engineering (HFE), manpower and personnel, safety, occupational health, survivability, habitability, and training).  Other centers have similar guidance.
	NSS 03-01 
	Human Systems Integration Requirements per National Security Space (NSS) -3-01, 27 December 2004 

	AFI 63-1201 
	Air Force Instruction 63-1201, 23 July 2007, Attachment 5 Human Systems Integration 

	DoD 5000.2-R 
	DoD 5000.2-R Mandatory Procedures for Major Defense Acquisition Programs, Chapter 2, Para C2.8.5 and Chapter 5, Para C5.2.3.5.9 

	SMC HSI Policy Letter 
	SMC HSI Policy Letter from Gen. Hamel, 12 February 2006


Table C-1.  Air Force and Space and Missile Systems Center HIS Guidance 
The following two tables list specifications and standards that Human Factors / HSI typically start with and recommended references: 
	MIL-STD-1472F,CN 1 
	Design Criteria Standard Human Engineering, (23 Aug 99) CN 1: 5 Dec 03 

	ISO 9241 
	Ergonomic Requirements for Office Work with Visual Displays Units, Multiple Volumes, (1998) 

	HM-RB-2001-1 
	Space and Missile Systems Center Standard Practice. Human Computer Interface Display Conventions for Space Systems Operations, (1 Jan 01) 

	DoD HCI Style Guide 
	Department of Defense Human Computer Interface Style Guide, Version 3.0, (30 Apr 96) 

	COE UIS, REV 4.3 
	Common Operating Environment User Interface Specification, Version 4.3: (31 Dec 03)


Table C-2. Typical Starting List of HSI Specifications and Standards
	MIL-HDBK-46855A, Notice 1 Validation 
	Human Engineering Program Process and Procedures, 19 February 2004

	EIA HEB1 

Engineering Bulletin HEB1: Human Engineering – Principles and Practices.   
	Engineering Bulletin HEB1: Human Engineering – Principles and Practices.  6/1/2002


Table C-3. Recommended references (guidance only)
The following table is a recommended list of Data Item Descriptions (DIDs) for consideration:
	 DI-HFAC-81742 
	Human Engineering Program Plan, 04 April 2007 

	DI-HFAC-81743 
	Human Systems Integration Program Plan, 04 April 2007 

	DI-HFAC-80743B 
	Human Engineering Test Plan, 08 July 1998 

	DI-HFAC-80745B 
	Human Engineering System Analysis Report, 07 July 1998 

	DI-HFAC-81399A 
	Critical Task Analysis Report, 08 July 1998 

	DI-HFAC-80742B 
	Human Engineering Simulation Concept, 08 July 1998 

	DI-HFAC-80746B 
	Human Engineering Design Approach - Operator, 08 July 1998 

	DI-HFAC-80747B 
	Human Engineering Design Approach - Maintainer, 08 July 1998 

	DI-HFAC-80744B 
	Human Engineering Test Report, 08 July 1998 



Table C-4. Recommended list of Data Item Descriptions (DIDs)
Appendix D.  RI3 Tool

As of this writing, a web-based RI3 tool is under development.  Currently, there is an interim tool available as an Excel workbook.  A comparison of the current, interim tool and the future tool is shown below:
	
	Interim Tool
	Future Tool

	Format
	Excel Workbook
	Web-Enabled

	Matches Guidebook Questions
	Yes
	Yes

	Outputs Plots
	Yes
	Yes

	Handles multiple risks per question
	Partially
	Yes

	Automatically outputs to Active Risk Manager
	No
	Yes


The interim tool has been tested and found to be very useful in terms of tracking and providing a record of the risks associated with the questions.  The manual for the interim tool follows next.

Interim RI3 Calculator Instructions


The RI3 Calculator contains sets of questions arranged in 9 “ility” areas.  The questions are framed in such a manner that there are three ways to answer: yes, no, or not applicable.  Each question has 3 implicit follow-up questions:

1.
If yes, then what evidence supports this?

2.
If no, what risks result and what are their likelihood and consequence?

3.
If this question is not applicable, why?

The answer “Yes” represents a best practice for the area.  If the answer is “No”, then the evaluator is expected to:
a. Identify and itemize risks that the question draws out (particularly given that the best practice is not being followed) 

b. Rate the likelihood and consequence of the risks identified in step a.

Many questions may not be applicable for certain phases of the program in that case merely leave the rating and the rationale/risk blank.  In contrast, in the case of a yes answer, if one views there being additional residual risk, then one could still list a risk and rate it accordingly.

It is theoretically possible that one question may spawn more than one risk.  Within the limitations of the current calculator, these can only be addressed by including them the rationale description for the question.  The rating for the question should be given for the worst case risk based on the judgment of the evaluator.

In practice, it has been found that some questions may uncover the same risk.  This is to be expected, as questions may probe in the same area, but from different directions.  In this case, subsequent questions should be rated (in terms of likelihood and consequence) for that same risk.  However, in the box listing the “risk / rationale” for the subsequent questions, one should reference the original risk.

Note that the question sets can be answered in any order desired by simply selecting the category of interest via the appropriate button.

[image: image16.png]USAF

Risk Identification: Integration & llities (RI3) Calculator

Date Saved

Go to Index Clear Program Information | ClearAliData | Instructions‘ Save Data ‘

Program:

Date: 12/15/08

UUE:

WBS #:

Evaluator

Select Data Entry Method First

Go to
5X5Chart G‘é:" C
Entry Y





Figure C1.  RI3 Calculator 

Begin the process:

Enable Macros when workbook opens

Example:


Once the workbook is open and the macros enabled, one can begin by clicking on the “Go to Index” button and recalling the example listed.  The sample page shows the manner in which the data will be displayed for a given assessment.  Only the navigation buttons work on the example and the data cannot be deleted or changed.  All of the data is interconnected and can be entered and displayed either by way of the 5X5 Risk matrix or by a linearized version that shows the relative aspects of likelihood and consequence.  Once you have examined the example, click on the “Go to Calculator” button and start the process.

Start:

1. Enter Program name.
2. Date is automatically entered as Today’s date.
3. Enter the name of the Unit Under Evaluation (UUE).

4. Enter the WBS# of the UUE.
5. Enter the name of the evaluator. 
6. Data can be entered by using a 5X5 Risk Matrix or by separately selecting Likelihood and Consequence Values.  The data entry method is selected by simply clicking one of the buttons “Go to 5X5 Chart Entry” or “Go to LC Entry” to navigate to the desired place.  Data entered in either method is simultaneously entered in both formats and corrections can be made in from either entry method as well. 
[image: image17.png]Select # First Provide Rationale for Risk Assessment Select
Categories Then Select Appropriate Cell in 5X5 Chart Then ENTER| Categories
Design Maturity

& Stal Reliability

Complexity. PR

If Question is N/A click Next _ Next Maintainability

Integrabiity E

S x

=8} Human Factors
2

o]

Testability ||z

_ People,
Clear All 5X5 Risk Matrix ENTER Organization &
Software Data Ski
Development
102 409
6.02
Goto
Data
Entry JOTAOS | 405 517
Selection RS
o
° 105113 -
liities Roll- | © 1313 .4.03
up = 512 802
o 9.03
=
= 205309
.5.06 5.07 ,2.06 3.1 5.05]
5.08 5.09 9.08
GotolLC 9.09 913
Entry Enter
Correction
301,504
Goto
Program
ity Consequence





Figure C2.  5X5 Chart Entry

5X5 Chart Entry Method:

7. Selecting the 5X5 chart entry method takes you to the 5X5 Risk matrix.

a. In this case, the questions come up one at a time in the Question box above the Risk Matrix. 

b. Start by selecting a category, e.g. click the button for “Design Maturity & Stability,” the top left hand category.

c. The first question from that category will appear in the Question box.

d. Evaluate what the likelihood of the best practice implied by the question not occurring along with the impact to the program if the best practice does not occur.  

e. Enter the rationale for your evaluation in the box below the Question box.
f. Click on the cell in the 5X5 risk matrix that corresponds to your evaluation and click the enter button.
g. This enters the question number in the cell that you selected (multiple entries can be made in the same cell and they will all be retained until the chart is erased.
h. Simultaneously the likelihood value and the consequence value together with the comment are entered into the Appropriate Category Question sheet along with a linearized plot of the LC results. You can see this chart by clicking on the appropriate category button at the right of the 5X5 chart. (You will see this sheet later when we look at the LC method.) 
i. The linearized LC results are also plotted in a compact form in the ilities chart associated with the category of the question.  These are accessed by the appropriate “ilities button” at the right of the 5X5 chart. 
j. Simultaneously it plots the linearized LC result in the Ilities Roll-up chart on the line for that category.  The Ilities Roll-up chart displays the maximum value of the linearized result for each category.
k. When you click the Enter button, the next question comes up automatically.  If you continue, it will sequence through all categories as you enter the answers starting with which ever category you select and then going down the left hand side of the 5X5 chart and then going to the top of the right hand side of the chart and then down to the bottom of the right hand side and then starting over.
l.   If a question is not applicable click the next button.  Again you may continue to click the next button and cycle through all of the categories repeatedly.
m. You may manually select any category at any time if you do not want to rely on automatic sequencing.  Indication will be provided when a question set has been completed.  
n. You may change any answer (or randomly answer selected questions) by selecting the question number using the drop down box at the right of the 5X5 chart.  This places the question and the original response (if there is one) in their respective boxes at the top of the chart.  Enter the revised (or new) response in the rationale box, select the appropriate cell in the 5X5 matrix and then click the “Enter Correction” button.  This erases the original entry and replaces it with the corrected entry in all locations, including the ilities chart, the category question chart and the illities Roll-up chart.  You may also correct entries in the manner described in the LC entry section.
8. Use the ilities buttons at the right of the 5X5 chart to examine the ilities plots for each category
9. Use the category buttons at the right to examine the question sets.
[image: image18.png]lllities Charts

‘lllities Roll-up

DM&S
S&c
Integrabiity
Testability
sD
Reliability

llities 1 2
Design Maturity & Stabili
Scalability & Complexity
Integrability
Testability
Software Development
Reliability
Maintainability
Human Factors
People Orgs. & Skills

Least Pressing

Question Sets

Design Maturity | Scalability & ”
& Stability Complexity. Integrabiity
Software bl
i Reliabil
Testabilly | povelorment eliability
People,
Maintainability | Human Factors|  Organi

Skills

Most Pressing





Figure C3.  Illities Roll-up Chart
[image: image19.png]llities Roll-Up

Clear DS&M Chart

DS&M Ques

1 2 Bl

4 5

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

Least Pressing

Most Pressing

s Roll-Up

Clear Scal. & Comp. Chart

Scal. & Comp. Ques.

1 2 5]

4 5

2.01

2.02

2.03

2.04

2.05

2.06

207

2.08

2.09

2.10

Least Pressing

Most Pressing





Figure C4.  Individual Ilities Charts

LC Entry Method:

[image: image20.png]Data Entry by Likelihood and Consequence

People,
Design Matu " i Software P P . Py
& Stability Complexity littgpetifisy Testability Bl Reliability Maintainability | ~ Human Factors OrQZEZﬂznn &
Go to Program Entry‘ Clear all DMS Entries Enter DMS llities Data
Least Pressing ost Pressing
Ques.# | DesignMaturity&Skills | | . Risk / Rationale 1 2 3 4 5
Questions
a a
Are hardware and software design
101 requirements stable (have they been Yes. Cleared last design review.
finalized?)
v -
a a
Are hardware and software design
|| _ |subsystem requirements lack
102 requirements traceable to the top- 5 2
traceability, risk of potential redesign
level system requirements?
v -
a a
Have all hardware and software [—  |Keyhardware design parameters
103 design parameters and properties 3 depend on SW design which is lagging,
been validated? risk of needing HW redesign
- -
a a
Are the hardware and software
16 design parameters and properties -
flexible enough to handle evolving
inteligence inputs?
- -
a a
Are the design specifications for Due to the lack of maturity of SW design
063 hardware and software in sufficient 5 5 |and the dependence of the Hw design
: detail to proceed with the next stage [— ~ [upon it the HW development cannot
of developrent? || proceed - significant schedule risk
v -
a a
Have trade-off studies been [— | major elements have been subjected
106 conducted to weed-out incompatible [ | 2 1 |totradeoffs and CAIV analysis. Minor
or infeasible requirements? elements remain
- -
a a
Do the necessary design methods, Code for porting software from previous
67 analytical methods and B 5 |processorto new processor s new and
: corresponding tools exist for both [— ° |untested. Risk of further delays in SW
hardware and software? | development
- -





Figure C5.  LC Data Entry
10. Return to Category selection and select “Enter data using Likelihood and Consequence,” by clicking on the appropriate circle.
11. This takes you to the first category question set. 
a. Use the scroll button to the right of the question to select a Likelihood (1-5).
b. Use the scroll button the right of the Likelihood button to select a Consequence (1-5).
c. Enter your rationale/risk for the selection.
d. When you are through with a category, click on the “Enter ___ Ilities Data” Button.  The linearized plot of the question answers is then displayed for each question.
e. The data is simultaneously displayed on the individual ilities charts the Ilities Roll-up chart and the 5X5 Matrix chart.
12. Continue to enter data as desired.
13. You may enter corrections by going directly to the question in the Question set, clicking on the “Reset” box to the right of that question and then selecting a new Likelihood and Consequence and entering a new rationale.  Clicking the “enter data” button for that category or the “Plot All Ilities Data” enters the new data in the individual ilities charts, the Ilities Roll-up chart and the 5X5 matrix..
14. You may also enter corrections using the previously described method in the 5X5 chart entry process.
Saving the Data:

15. When have finished all of the evaluation, you can click the “Save Data” button at the top of the spread sheet.  It will enter a notation into the index according to the “Program Name””WBS #””UUE””Evaluator””Date”.  It will also create a copy of the entire spread sheet identifying it by the Program name and an index number associated with its position in the index.  The Calculator sheet will then be cleared in preparation for a new evaluation.
16. Data may be recalled by clicking the box for recall.  This will recall the data sheet which can be modified and resaved if desired.  It should be noted that recalling data clears the Calculator sheet, so if there is a current evaluation going on, that data should be saved before recalling a data set.
17. If the data is recalled and modified on the same day that it was originally saved and it is desired to retain both sets of data, the modified version must be given a name different from the original set in at least one of the identification areas, “Program Name””WBS #””UUE””Evaluator” (e.g. System A mod I).  If it is done on a different day, it will be distinguished from the original set by the date and nothing extra needs to be done.
18. Clicking the delete box deletes the item from the index and deletes the corresponding data sheet.
19. A sample data sheet is available for viewing by clicking on the Example recall box.  The data sheet is permanent and cannot be changed or deleted.
[image: image21.png]Program Index |

Program Name WBS # _ Unit Under Evaluation _ Evaluator Date Delete Recall
Example 1 System A Bilbro 11/19/200:

Program Alpl 1 System Beta Bilbro 12131





Figure C6.  Index
Acronyms
AAC – Air Armaments Center

AFIT – Air Force Institute of Technology

AFRL – Air Force Research Laboratory

AFSO21 – Air Force Smart Operations for the 21st Century

ASC – Aeronautical Systems Center

CMMI – Capability Maturity Model ® Integration

CTE – Critical Technology Element

COTS – Commercial Off the Shelf
D&SWS – Develop and Sustain Warfighting Systems (a core Air Force process)

DOD – Department of Defense

EMI – Electromagnetic Interference

ESC – Electronic Systems Center

FFRDC – Federally Funded Research and Development Center
FoS – Family of Systems
GAO – Government Accountability Office
GOTS – Government Off the Shelf
ICD – Interface Control Document

IPT – Integrated Product Team

IRT – Independent Review Team 

KDP – Key Decision Point

LHA – Logistics Health Assessment

MRL – Manufacturing Readiness Level
MRA – Manufacturing Readiness Assessment
NASA – National Aeronautics and Space Administration
OSD – Office of the Secretary of Defense

OTS – Off the Shelf

RF – Radio Frequency

RFP – Request for Proposal

RI3 – Risk Identification: Integration & Ilities
S&T – Science and Technology

SE – Systems Engineering or System Engineering
SEAM – Systems Engineering Assessment Model

SMC – Space and Missile Systems Center

SME – Subject Matter Expert

SoS – Systems of Systems

TBD – To Be Determined

TRL – Technology Readiness Level
TRA – Technology Readiness Assessment
UAV – Unmanned aerial vehicle 

UUE – Unit Under Evaluation
UUT – Unit Under Test

WBS – Work Breakdown Structure
Wrt – with respect to

Study Team Members and Acknowledgements

Participants
Dorothy Arbiter, The Aerospace Corporation
Joseph Baker, AFMC/EN

Greg Barnette, AAC/EN

James Bilbro, NASA Marshall Space Flight Center (ret.)

Larry Butterbaugh, AFRL/RHOX

Stacey Carswell, AFRL/RWMI

Lt Col Manuel Casipit, SMC/XR

John Cargill, AFCAA

Col Art Chin, SMC
Dr. Tom Christian, ASC/EN

Maj. Toby Edison, ESC/XR
G. Richard Freeman, AFIT
Dr. Robert Frueholz, The Aerospace Corporation
Suzanne Garcia, Carnegie Mellon University Software Engineering Institute
Dr. Peter Hantos,
 The Aerospace Corporation
Lt Col Don Hill, SAF/AQR

James Jeter, Warner Robbins ALC

Karen Merritt, AFOTEC

Sara Miller, The Aerospace Corporation
Jim Morgan, AFRL/RXM
Bill Nolte, AFRL/XP
Dr. Paul Phister, AFRL/RI
John Remen, AFRL/RZS

Duane Sauve, Ogden ALC

George Sarmiento, Oasis Systems, supporting AFMC/A5S

Dr. Donna Senft, AFRL/RVSV

Charles Skira, AFRL/RZTP

Marc Smith, AFMC/A2

Linda Taylor, SMC/EA
Robert Taylor, Center for Reengineering and Enabling Technology

Keith Thompson, AFMC/A2/5
Lt Col Mark Wilson,
 SAF/AQR

Dr. Kyle Y. Yang,
 MIT Lincoln Laboratory
Selected Consultants

Leroy J Harkless, The Aerospace Corporation
John Mistretta, AAC/EN

Magdy (Mike) Sorial, 672nd Armaments Systems Squadron 

Acknowledgements
I wish to gratefully acknowledge the leadership and guidance given to this team by the original Technology Development Subprocess Owner, Maj Gen Ellen Pawlikowski.  Then-Brig Gen Pawlikowski actively participated in working meetings to help define the process reengineering required and lay down guideposts for the future team to follow.  Her considerable insight into technology development issues enabled us to bite off a meaningful part of the problem.  Furthermore, her generous donation of the time of significant SMC resources (particularly FFRDC resources) was the critical enabling factor allowing the work to be done.  I’d like to thank Brig Gen Susan Mashiko, SMC/CV, and Col Art Chin for enabling those resources to continue to support the team.

I’d like to thank the current Technology Development Subprocess Owners, Ms. Judy Stokley, AAC/CA, Maj Gen Curtis Bedke, AFRL/CC, and Mr. Terry Jaggers, SAF/AQR, for their support.  None of the current process owners was part of the leadership team that stood up this initiative, but they have taken the time to learn what we are doing and have supported our efforts.
Also, I would like to thank Dr. Kenneth Barker, from AFRL/XP, the Technology Development Subprocess Design Team Lead.  Dr. Barker led the original design team to help define the problems that should be solved, and gave invaluable advice during the “implementation” phase of this project, in which we actually designed solutions.
In addition, I would like to thank the program office participants from the variety of programs (both DoD and NASA) surveyed, who wish to remain anonymous.
Last, but certainly not least, I should like to thank the team members who were actively involved in this project.  Each participating team member contributed valuable hours to this project, stealing time away from other efforts.  At the risk of leaving some out when many should be acknowledged, I will mention a few, such as Dr. Tom Christian and John Cargill, who volunteered out of thin bringing, respectively an air and cost background that were light on.  Peter Hantos undertook the considerable task of coordinating views and formulating recommendations for our software subteam as well as working RI3.  Bob Frueholz provided sage, patient advice at every meeting, documented test cases, and helped validate the RI3 methodology.  Greg Barnette brought his excellent background in test and weapons systems to the table to remind us to keep the program office needs in mind.  Suze Garcia used her spare time to help translate between the software world and the hardware world, remind us about process, and write.  Mark Wilson helped us understand the myriad of related activities in the Beltway.  Duane Sauve banged the table at appropriate times to remind us of the needs of the “loggies.”  And finally, I must mention our twin guiding lights in the area of maturity assessment, Bill Nolte and Jim Bilbro.  Through Bill we gained access to the vast repository of references and knowledge in this area, and we benefitted from his writing.  Jim applied his decades of experience to help everything here from grand design to minor Excel programming, sharing generously from methodologies that he originally developed at NASA and going above and beyond the call of duty.  It was a pleasure and an honor to work with the participants involved.
Kyle Yang

El Segundo, CA

December 2008

References

1.  United States Government Accountability Office, “Defense Acquisitions: Assessment of Selected Weapon Programs,” GAO-08-467SP, March 2008. 

2.  Arena, Mark; Obaid Younossi, Lionel Galway, Bernard Fox, John Graser, Jerry Sollinger, Felicia Wu, and Carolyn Wong, “Impossible Certainty: Cost Risk Analysis for Air Force Systems,” MG-415, Rand Corporation, 2006, download from http://www.rand.org/pubs/monographs/2006/RAND_MG415.pdf, retrieved Dec 11, 2008.

3.  Rebentisch, Eric, “Preliminary Observations on Program Instability,” White Paper LEAN 96-03, October 10, 1996, download from http://lean.mit.edu/index.php?option=com_docman&task=doc_download&gid=835&Itemid=332, retrieved Aug 28, 2008.
4.  Mankins, John C., “Technology Readiness Levels,” White Paper, NASA Office of Space Access and Technology, April 6, 1995, download from http://www.hq.nasa.gov/office/codeq/trl/index.htm, retrieved Dec 13, 2008.
5.  DUSD(S&T) Technology Readiness Assessment Deskbook, May, 2005.

6.  Fast, William, “Sources of Program Cost Growth,” Defense AT&L, March-April 2007, pp. 24-27.

7.  Battershell, A. Lee, “Technology Approach: DoD Versus Boeing (A Comparative Study),” Acquisition Review Quarterly, Summer 1995, pp. 213-230.

8.  Air Force Cost Analysis Agency, “Air Force Cost Risk and Uncertainty Handbook,” July 2007, download from https://www.my.af.mil/gcss-af/USAF/AFP40/d/1074111409/Files/editorial/AFCostRiskandUncertaintyHandbookJul07.pdf
9.  Haskins, Celia, ed., Systems Engineering Handbook: A Guide of System Life Cycle Processes and Activities, International Council on Systems Engineering, INCOSE-TP-2003-002-03.1, Version 3.1, August 2007, p. 9.2.

10.  Nolte, William L, “Did I Ever Tell You about the Whale? or Measuring Technology Maturity,” Information Age Publishing Co., Charlotte, NC, 2008.

11.  Department of Defense, Risk Management Guide for DoD Acquisition, Version 1.0, Sixth Edition, August, 2006, download from http://www.dau.mil/puba/gdbks/risk_management.asp, retrieved July 25, 2008.

12.  Mandelbaum, Jay, “Technology Readiness Assessment,” Technology Maturity Conference, Virginia Beach Virginia, Sep 11-13, 2007.

13.  Moon, Terry; Jim Smith, and Stephen Cook, “Technology Readiness and Technical Risk Assessment,” Australian Defense Organisation, 2005, download from http://hdl.handle.net/1947/4617, retrieved Dec 11, 2008.

14.  Hobson, Brent, “A Technology Maturity Measurement System for the Department of National Defence,” White Paper. Defence R & D Canada – Atlantic Contract Report 2005-279, May, 2006.

15.  Interviews with Philip Harvey and Mark Alcock, United Kingdom British Ministry of Defence, conducted by William Nolte and TD1-12, March 11, 2008.

16.  United Kingdom Ministry of Defence, Acquisition Operating Framework: Technology Management, download from website, http://www.ams.mod.uk/aofcontent/tactical/techman/index.htm, retrieved Dec 12, 2008.
17.  Rasky, Daniel J; Paul Kolodziej, Stanley R. Farkas, and Leland Dutro, “The Phased Development Approach: For Advanced Technology and Complex Systems,” American Institute of Aeronautics and Astronautics 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan 6-9, 2003; (AIAA)-2003-1180, pp. 1-12.

18.  Mackey, Ryan, “Readiness Levels for Spacecraft Information Technologies,” In Proceedings of the 2003 IEEE Aerospace Conference, March 2003, pp. 391-398.

19.  Thomas, L. Dale and Robert A. Mog,  “A Quantitative Metric of System Development Complexity: Validation Results,” Proceedings of the Seventh Annual International Symposium of the International Council on Systems Engineering (INCOSE), Los Angeles, August 3-7, 1997.

20.  Bilbro, James, “Systematic Assessment of the Program/Project Impacts of Technological Advancement and Insertion,” Revision A.  JB Consulting International October, 2007. (This is a revision of a white paper originally written at the George C. Marshall Space Flight Center).

21.  National Research Council, “Pre-Milestone A and Early-Phase Systems Engineering: A Retrospective Review and Benefits for Future Air Force Acquisition,” National Academies Press, 2008, download from http://www.nap.edu/catalog/12065.html.
22.  Malone, T.B., “Human Factors and Human Error,” Proceedings of the Human Factors and Ergonomics Society 34th Annual Meeting, Santa Monica, CA (1990). pp. 651-654.

23.  Stein, K.J., “Human Factors Analyzed in 007 Navigation Error,”  Aviation Week & Space Technology, 1983.

24.  Mars Climate Orbiter Mishap Investigation Board, “Phase 1 Report,” 1999-12-01, download from http://www.nasa.gov/offices/oce/llis/0641.html, retrieved Dec 11, 2008.
�





�





Figure 1-1.   DOD Risk Management Process





�


Figure 2-1.  Illustration from Ref Y20 of Lifecycle Cost using  prior DoD 5000 nomenclature.





�


Figure 2-3.  Evaluation of the UUE as a System in a System of Systems





Figure 2-4.  Top-Down, Bottom-Up Iterative Approach





Component





System





Subsystem





Subsystem





Top Down





Bottom Up





UUE = System





UUE = Subsystems





UUE = Components





UUE = Components





UUE = System





UUE = Subsystems





Figure 2-5.  Following the WBS





1.0 System





1.1 Subsystem A Subystem





1.2 Subsystem B Subystem





1.7 Subsystem G Subystem





1.1 Subsystem A





1.1.1 Component  Subystem





1.1.2 Component  Subystem





1.1.7 Component  Subystem





RI3


Pre-Milestone A





Early Risk Identification from a System Perspective





Areas of Insufficient Information





Enhanced Risk Mitigation





Improved Cost Projections





�Least Pressing	Most Pressing





Figure 2-7.  Example of RI3 Output showing areas in need of special attention�








5





4





3





2





1





1





2





3





4





5





TRLA





Guidebook





Likelihood





Consequence





Questions:





•





Integration





•





ilities





Risks





Additional 





Summary Displays





Risk 





Management











Risk 





Identification





Active Risk 





Manager 





(ARM) 





compatible 





file





Cost Modeling 





Tool





Improved 





Cost 





Estimation





Least Pressing                                    Most Pressing





�


Figure 2-9.  Standard colors chosen to represent risks in a 5x5 matrix.  Also shown are labels denoting an example set of risks derived from questions in the integration area (I1, I2, …I7).





I1





I4





I2





I3





I5, I6





I7





�


      1               2             3               4             5


Least Pressing	Most Pressing


Figure 2-11.  Example RI3 Ratings for 21 Individual Software Risks.  Risk S14 is the most pressing issue.








�Least Pressing	Most Pressing


Figure 2-12.  RI3 Relative Ratings





Milestone A RI3 Result			           Milestone B RI3 Result





�


Figure 2-14.  RI3 applied to equal level components in the WBS





�


Least Pressing                                               Most Pressing





Figure 2-15.  RI3 ratings for the components of a subsystem, highlighting their most pressing risks





�


Figure 2-16.  The RI3 methodology can be applied at all levels of a system.





Philosophical Comment:  Many of the questions are posed in a manner similar to, “Has the program adequately handled…?” or “has the program adequately examined…?”  In some cases, when appropriate, the italicized text after the question gives an indication of potential metrics or other measures that may help a program understand this area.  Note, however, that the RI3 guidebook is not here to prescribe solutions nor particular metrics, because every program has different needs.  The goal is to ensure that the program is thinking about these issues as part of its business.  The program is left to consider “how much is enough?” and “what is adequate?” given its situation and, therefore, if any risks are remaining.





�


Figure App A.  For this program with 3 risks, are Risks B and C really of no more importance than risk A?








� Technology 1 a: the practical application of knowledge especially in a particular area: engineering  <medical technology> b: a capability given by the practical application of knowledge <a car's fuel-saving technology>.  Merriam Webster Dictionary.


� “Ilities” and “ility” in the rest of this guidebook refer to characteristics of a unit or a technical discipline that is typically associated with the support, operation, and maintenance of said unit.  This can also include items that do not end with “ility,” such as integration, training and human factors.  For a more complete discussion, see Reference 9.


� Software Subteam Lead


� Team Lead, January 2008-May 2008


� Team Lead





PAGE  
I n t e g r i t y  -  S e r v i c e  -  E x c e l l e n c e

[image: image27.png]Likelihood

Risk Level

B High

Medium

. Low

3 4 5
Conseguence

Sample Risk Reporting Matrix



[image: image28.wmf] 

#

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

Software

Clear

[image: image29.wmf]0

1

2

3

4

5

People, Org., Skills

Des. Maturity & Stab.

Scalability & Complexity

Reliability

Maintainability

Software Development

Human Factors

Integrability

Testability

[image: image30.jpg]Project XYZ

System A SystemB SystemC

Subsystema Subsystemb Subsystem ¢
Component o Component p Componenty
T —
1ities?? lities#2 mmm— itios+? mmmm—

lities?3 s lities 23 = lities#3 =



[image: image31.wmf]0

1

2

3

4

5

Component

alpha

Component

beta

…

Component

gamma

[image: image32.jpg]Project XYZ

53—

1

System A ‘ System C'

lities#1
lities#2
lities#3 =

Subsystem b

Component « Component Component 7




[image: image33.emf]5

B

4

3

C

2

1

A

1 2 3 4 5

5

B

4

3

C

2

1

A

1 2 3 4 5

Consequence

Likelihood

[image: image34.emf][image: image35.emf][image: image36.emf][image: image37.emf][image: image38.emf][image: image39.emf][image: image40.emf][image: image41.emf][image: image42.emf][image: image43.emf][image: image44.emf][image: image45.emf][image: image46.emf][image: image47.emf][image: image48.emf][image: image49.emf][image: image50.emf][image: image51.emf][image: image52.emf][image: image53.emf][image: image54.emf][image: image55.emf][image: image56.emf][image: image57.emf][image: image58.emf][image: image59.png]People, Org., Skills

Des. Maturity & Stability
Scalability & Complexity
Reliability
Maintainability

Software Development
Human Factors
Integrability

Testability

I‘I|'I‘I‘

(=)

-

N

(&)




[image: image60.emf]IOC

B

A

Technology 

Development

Engineering and 

Manufacturing 

Development & 

Demonstration

Production & 

Deployment

Systems Acquisition

Operations & 

Support

C

Sustainment

FRP 

Decision

Review

FOC

LRIP/IOT&E

Post-CDR

Assessment

Pre-Systems Acquisition

(Program

Initiation)

Materiel

Solution

Analysis

Materiel 

Development 

Decision

2.Risk ID

4.Handling/Mitigation

Planning

5.Mitigation

& Tracking

3.Risk

Analysis

Cross 

Functional 

Team

1.Risk 

Mgmt 

Planning

Cost / Schedule / Performance

Assess Risk & 

Mitigation Planning

Mitigate Risks 

Identified in 

MSA & Track

Assess new 

Risks & Plan 

Mitigation

Mitigate Risks 

Identified in 

Tech Dev & 

Track

Assess new 

Risks & Plan 

Mitigation

In LRIP/IOT&E, 

Mitigate Risks 

Identified in 

EMDD & Track

Track

[image: image61.png]People, Org., SKills
Des. Maturity &..
Scalability &..
Reliability
Maintainability
Software..

Human Factors
Integrability
Testability




[image: image62.png]People, Org., SKills
Des. Maturity &..
Scalability &..
Reliability
Maintainability
Software..

Human Factors
Integrability
Testability




