

Computer Resources
Support

Designing Supportable Software

This article is an extract from the “Guidelines for Successful Acquisition and Management of
Software-Intensive Systems, Volume I, Version 2.0, Chapter 11, Software Support, dated
June 1996. The content of the article has been edited to capture the essence of the subject
matter without reproducing the chapter in its entirety. This writing is intended for school use
only to introduce the subject of software support. Consult the complete document for greater
details.

Prepared and Edited by:

Richard A. Andrews, CPL

Professor of Acquisition Logistics

Defense Acquisition University

Midwest region

- 1 -

Software Support

In Operation Desert Storm the intensity of battle coupled with large forces using Information Age
weaponry and communications created the most intense electronic battle field ever witnessed. The E-3
AWACS was an integral part of the battle serving as the “eye” that tracked all battle space aircraft and
directed interceptions while safeguarding our forces from surprise enemy aerial attack. The
overwhelming density of diverse electronic signals transmitted and received created such a congested
environment that the E-3s’ full mission capability was greatly hindered. This E-3 problem had to be
quickly corrected and a dedicated software support team sprung into immediate action. The E-3 radar
software was rapidly revised, flight tested, and on its way to deployed aircraft within 96 hours. This
quick reaction, modification, and change-out during the heat of battle emphasizes the operational
necessity for easily supportable software.

The ability to continuously support our major software-intensive systems is a paramount mission
requirement. Supportability is critical because there is always a inevitable need to correct latent defects,
modify the system to incorporate new requirements, enhance the existing system to add capability, and
alter it to increase performance. The ability to accommodate change is an integral part of major
software-intensive systems requirements.

Unfortunately, when we have fielded insupportable systems, we have often had to expend the
considerable time and funds necessary to provide the required support or we have had to abandon them
altogether. We learned that it is far more cost-effective to address supportability as we define
requirements, design the system, and plan for its operational life. In this article you will learn how to
reduce the risk of acquiring, managing, and maintaining software-intensive systems by ensuring that they
are modifiable, expandable, flexible, interoperable, and portable — i.e., supportable.

Software support, often called re-development, addresses the maintenance life cycle phase where
major software costs occur. Support planning addresses the development acquisition and entails RFP
development that provides for delivery of full documentation, data rights, and delivery of the software
engineering environment (SEE) used by the developer.

When tasked with maintenance responsibility of legacy software that has become
technologically obsolete, has deteriorated through years of changes, or must be changed
anyway to work with new hardware or other software, it may be cost effective to re-engineer
it. This involves systematic evaluation and alteration of an existing system to reconstitute it (or its
components) into a new form or converting it to Ada to perform within a new operational environment,
to improve its performance, or to reduce maintenance costs. This process can combine several
subprocesses, such as reverse engineering, restructuring, re-documentation, forward engineering, or
retargeting.

- 2 -

Software Support: A Total Life Cycle Approach

Software support (or maintenance) is really a poor name for the post-deployment software support
(PDSS) activity. In other engineering contexts, maintenance implies repairing broken or worn-out parts.
But software does not break — nor does it wear out. It is for this reason that PDSS is often
called the re-development phase. As defined by the IEEE, software maintenance is the:

Modification of a software product after delivery to correct faults, to improve
performance, or other attributes, or to adapt the product to a changed environment.

Software is alive! Whether it is in production or not, it is always in the process of becoming, evolving,
changing. Research on software maintenance shows that user requirements impacting software account
for 41% of post-deployment support costs, while hardware changes account for only 10%. That is to
say, over half of all software support is driven by changes in the system’s external environment.
Because software must evolve in response to its external environment, it is more like a living thing than
an inanimate object that only needs to be designed once, and thereafter, infrequently repaired or
maintained. With software, development (and re-development) is the norm in response to external
changes. Therefore, designing for maintenance must be incorporated and unified with development.

Software support is both different from and the same as development. It is different because the
developer has no existing system from which to work; whereas, the maintainer must be able to read and
understand already existing code and solve problems within an existing framework which constrains the
solution set. The developer has no product knowledge because the product does not yet exist. The
maintainer must have complete product knowledge to do his job well. Support is the same as
development because the maintainer must perform the same tasks as the developer, such as define and
analyze user requirements, design a solution (within the constraints of the existing solution), convert that
design into code, test the revised solution, and update documentation to reflect changes. Figure 1
illustrates how support tasks correspond to and mirror the development process.

Figure 1 -- Support Tasks Superimposed on the Software Development Phase

- 3 -

Software Support Cost Drivers

Nothing will throw an infantry attack off stride as quickly as to promise it support which is not precisely
delivered both in time and volume. — Brigadier General S.L.A. Marshall

The demand for precisely delivering software support in time and of high quality has never been greater.
However, software support is by far the biggest life cycle cost driver and the most significant source of
system risk for all major DoD software-intensive acquisitions. Although software support actually
occurs during the post-deployment phase, it must be planned for up front during requirements definition
and design. It must also be budgeted for and continuously addressed throughout the system’s life.
Developing supportable software is one of the most important criteria for software success. All the
causes of cost and schedule overruns, performance shortfalls, and for programs being thrown off stride
are amplified once the system is in the hands of the maintainer. Therefore, the Software Crisis has really
been the Maintenance Crisis. According to numerous DoD and industry studies, the typical cost to
maintain a software product is from 60% to 80% of total life cycle costs. Your challenge is to minimize
the cost of software maintenance, and to avoid being at the heart of the Crisis. These costs are
depicted on Figure 2

 Figure 2 -- Life Cycle Support Costs

These cost increases during the software maintenance phase have historically been caused by dramatic
decreases in productivity (measured in line of code (LOC)/manmonths or function (feature)
points/manmonths.) Productivity drops of 40:1 have been reported during software support. For
example, what cost $150/LOC to develop might cost $1,000/LOC to maintain. This significant
increase in system cost demands that basic decisions about how the software will be maintained are
made during the concept and design phases. Easy access to the software and an inexpensive medium
for distributing enhancements can have significant effects on life cycle costs. A well thought out concept
of operations includes hardware provisions for spare connectors, card slots, and memory capacity to
facilitate interoperability to new software systems as they are fielded and integrated into the defense
inventory. A flexible, modular architecture is also essential for ensuring understandability, modifiability,
interoperability, reusability, expandability, and portability — all prerequisites for supportable software.

- 4 -

Software Support Activities

Based on a study of 487 commercial software development organizations, Figure 3 illustrates how
software support changes are distributed among support tasks. Most software support dollars are
spent on defining, designing, and testing changes. After these activities are performed (whether there is
one unit or hundreds of units in the field), subsequent increases in cost are marginal. Support activities
include:

• Interacting with users to determine what changes or corrections are needed,
• Reading existing code to understand how it works,
• Changing existing code to make it perform differently,
• Testing the code to make sure it performs both old and new functions correctly, and
• Delivering the new version with sufficiently revised documentation to support the user and

the product.

Figure 3 -- Causes of Software Changes

During operational testing, supportability evaluations concentrate on software code, supporting
documentation and implementation, computer support resources, and life cycle process planning. Due
to its impact on software support, spare computing capacity is also examined. As an example, the four
areas the Air Force Operational Test and Evaluation Center (AFOTEC) evaluates for supportability are
illustrated in Figure 4. Maintainability evaluations consist of questionnaires that concentrate on the
specific characteristics of a maintainable system, such as consistency, modularity, and traceability.
Software supportability is evaluated by the developer when the documentation and source code are
initially baselined (usually during initial integration test and evaluation) and then periodically until the
completion of software development. The information gained during integration testing helps the
developer build more maintainable software.

- 5 -

Figure 4 -- AFOTEC Software Supportability Evaluation Areas

Software Support Issues

In theory, software never wears out! It has none of the physical properties found in hardware upon
which the forces of nature and the operational environment can play that cause physical systems to
decline in performance. When hardware begins its life span, it often has a high failure rate (defects per
unit time) until manufacturing defects are ironed out. The failure rate then drops to an acceptable low-
level where it remains (often for many years) until components begin to wear out. At this point, the
failure rate begins to climb again. This trend, called the “bathtub curve” by hardware engineers, is true
for all hardware systems — whether an automobile, a radio, or a computer.

While software does not wear out in the physical sense, it does deteriorate! There is an astounding
difference when the software failure rate is superimposed on the bathtub curve. Like hardware, new
software usually has a fairly high failure rate until the bugs are worked out. At which point failures drop
to a very low level. [A significant exception is software developed using Cleanroom techniques where
initial failures are also low.] Theoretically, software should stay at that low level indefinitely because it
has no tangible components upon which the forces of the physical environment can play. However,
after software enters its operational life (during PDSS), it undergoes changes to correct latent defects, to
adapt to changing user requirements, or to improve performance. These changes make the software
failure rate curve steadily begin an upward journey. Hardware deteriorates for lack of
maintenance, whereas software deteriorates because of maintenance! By making changes,
software maintainers often inadvertently introduce “side-effects” causing the defect rate to rise, as
illustrated in Figure 5.

- 6 -

Figure 5 -- Bathtub Curves for Hardware and Software

Although side-effects can be quite complex, most are caused by one thing — there are no spare parts
for software! When software fails the part causing the failure cannot simply be replaced with a spare.
When software fails, from defects inserted during maintenance, often the only way to correct for the
cause of failure is through design modification. Every time the design is modified it weakens the original
structure (or how the modules work internally and with each other) and eventually the software begins
to fall apart. Undisciplined maintenance (or that performed in the field under stressed conditions)
frequently compounds the problem. Maintainers, struggling against time to make corrections,
modifications, or adaptations to new requirements, often compound the defects created by the last
generation of maintainers. In the rush to get the product to impatient users, they take short cuts —
exacerbating the software’s deterioration. Problems also arise when there is a failure to modify the
design when patches are made (causing the design and code to be out of synch), a failure to update
documentation, or a failure to use modern concepts of design and programming in initial development.

Most of the problems associated with software support can be directly traced back to deficiencies in
the way the original software product was planned, managed, and designed. Lack of sound software
engineering discipline, control, and attention to the design of modular software architectures during
development translates into software support problems resulting in excessive maintenance costs. Some
classic software support issues include:

 • Lack of requirements traceability;

• The evolution of software versions or releases that are difficult or impossible to trace [the
evolution of changes that are not documented];

• A difficult or impossible to define software development process;
• Impossible to understand code [software understandability increases as the number of

software configuration items increases];
• Documentation that is nonexistent or of such poor quality that it is useless [documentation

must be understandable and consistent with the source code to be of value]; and
• Inflexible software not designed to accommodate change [unless the architecture allows for

change, modifications to the software are difficult and defect-prone].

- 7 -

This last point is, perhaps, the most critical deficiency. The software architecture should carefully
address abstraction, encapsulation, and information hiding to minimize dependencies. By separating
computational and operational details from interface calls, and by maximizing use of object-oriented
design, the software can be easily modified. Modifications can occur during development and during
post-deployment operation with less risk of introducing unwanted side effects.

Many factors play in the supportability equation. An undisciplined, poorly managed development
process where design, coding, and testing were conducted with inadvertent carelessness negatively
impact the support task. Design characteristics that affect software supportability include: design
complexity (including related attributes of software size, structure, and interrelationships); stability and
flexibility of the design itself; adequacy of documentation to support PDSS; completeness of the
software development effort; and the extent and implementation of configuration management practices
for both operational and support software.

Other factors within the development environment that impact software supportability include:

• Availability of qualified software personnel,
• System structure understandability,
• Ease of system handling,
• Use of standardized programming languages,
• Documentation structure standardization,
• Test case availability,
• Built-in debugging mechanisms,
• Delivery of the original development SEE to the maintenance organization, and
• Availability of appropriate computer hardware to conduct maintenance activities.

Commercial Software Support Issues

Software support includes support of government-developed software, contractor-developed software,
and commercial software. Issues to consider when supporting commercial software include:

• The acquisition agent must acquire appropriate documentation and data rights, licensing,
and subscription services (such as options to purchase or escrow proprietary information)
which allows the Government to support the software if contracted support becomes
unfeasible.

• The software support activity (SAA) must maintain appropriate licensing and subscription
services (vendor field change orders and software releases) throughout the life of the
system.

• Commercial resources must not be altered so as to preclude contractor logistics support or
void licensing or subscription services.

• The supporting command must provide logistics support and contract for subscription
services required to update and maintain commercial assets. It must also evaluate

- 8 -

operational and logistic impacts of change due to subscription-related hardware and
software upgrades.

• The operating command must provide a technical review of proposed changes during
upgrades and changes to commercial assets. It is responsible for evaluating effectiveness
and mission impact of changes due to subscription-related software upgrades.

Planning for Support Success

Early planning for software support is a main DoD acquisition priority. Learning from costly past
mistakes, planners wanted to make their system a “maintenance man’s dream. Planning for support
success is accomplished by making it a source selection criterion that support issues be addressed
during the design stage. By using standard software languages, software engineers are forced to use
common terminology, from ground support systems to operational flight programs. Ada makes the
software much more supportable because it is written in much clearer text. Lack of documentation
killed us in the past. .

As discussed above, decreases in productivity during PDSS can be tied to increases in software
complexity the longer it is in the support phase. The more modifications made to the software
(especially to a poorly engineered product), the more complex it becomes with corresponding increases
in the introduction of defects. These exponential increases in effort (and cost) are mainly the product of
poorly engineered software. Therefore, planning for supportability up front is a major determinant of
software development success. Software, not developed with maintenance in mind, can end up so
poorly designed and documented that total re-development is actually cheaper than maintaining the
original code. With today’s shrinking defense dollars, failure to make software maintenance a design
priority would not only be poor management on your part, but could very well result in an inability to
support your product. The need for good software maintenance planning is crucial.

Software Support Cost Estimation

The variety and undefined scope of future changes throughout the software life cycle make estimating
support costs one of the most difficult — yet one of the most important to consider due to their impact
on the DoD budget. Most software estimating models estimate software support costs; however, the
types of activities, and therefore, the costs included in their estimates, vary significantly from model to
model. Most parametrically-based software support estimating models provide a top-level
approximation of sustaining engineering and support requirements. They do not produce estimates that
can be reliably used alone as the basis for a software support budget or similar purpose. Once software
has been transferred into a support environment, changes to the software (especially major changes or
additions to basic software functionality) must be estimated using software models calibrated to the re-
development environment.

Software Re-engineering

- 9 -

The motivation behind re-engineering is to get a handle on the ever-growing software maintenance
burden. The rapid evolution of software and hardware technology over the past 20 years has left DoD
with a legacy of millions of lines of failure-prone code, written in a conglomeration of languages, running
on a hodgepodge of incompatible hardware. The re-engineering option may prove beneficial where
large libraries of non-Ada code exist.

“Re-engineering” is defined as the examination and alteration of a software system to reconstitute and
re-implement it in a new form. The re-engineering process involves recovering the design from an
existing application and using that information to reconstitute it to improve its quality and decrease
maintenance costs. While re-engineering re-implements existing system functions in a better, more
efficient manner, new or improved functions are also often added.

Re-engineering Decision

Re-engineering of old, worn-out or obsolete code is often economically justified. The lengthy DoD
acquisition process often takes a decade or more for large software-intensive systems. By industry
standards, military software is often obsolete before it enters the field, at which point a 20-year
operational life usually lays ahead. The cost of maintaining software over its extended life can be from
two to 10 times as much as the cost to initially develop it. The decision to re-engineer software is often
one based on the premise to “pay now or pay much more later.”

There are basically three situations when re-engineering is beneficial. These include:

• When the existing system has become technologically obsolete and must be replaced;
• When the existing system has deteriorated to the point where it has severe technical

problems; and
• When it might be expedient to upgrade the existing system.

You may choose to re-engineer if you reach the conclusion that it is better to pay now, rather than
waiting to pay-much-more-later. “Paying now” is what Secretary Perry called avoiding the rathole
syndrome. He defines a rathole as the dark place where software maintainers throw their money with
no possibility of return on investment. He equates the legacy software rathole with the old car rathole.
In the short-term, it is cheaper to fix your old car than it is to buy a new one. But over an extended
period, the out-of-pocket expense for parts and labor to patch your old clunker will cost you more
without increasing its resale value than investing in a new car. He also explains that software
maintenance ratholes are like ratholes in the woods. Once you plug one up, the rat digs another. Re-
engineering, when cost effective, can provide you with a way to plug up all your ratholes and have a
spanking new system with all the bells and whistles your user desires. It may well be the long-term,
low-cost solution to your software maintenance problems. The reasons to re-engineer include:

• To reduce maintenance costs,
• To decrease defect rate,
• To convert to a better language or hardware platform,

- 10 -

• To lengthen the life-span, and
• To enable changes in the user’s environment.

Another reason to re-engineer is often based on the logical migration of the system. Since the system
has to be dramatically changed anyway, it might as well be upgraded to more current technology. Your
re-engineering decision must be based on a thorough feasibility analysis of the costs, benefits, and risks
involved in continued patching (if possible) versus re-development (starting from scratch) versus re-
engineering. This analysis is based on a calculation of the target system’s expected lifetime and the
comparison of re-engineering costs with the costs of a new development. A rule of thumb is, re-
engineering is a viable alternative when the cost to re-engineer is not more than 50% of the cost to re-
develop. It may also be determined that it is too expensive to re-engineer the entire system. Studies
conducted by major industry software developers indicate that 80% of the problems are caused by
20% of the software. Therefore, in some cases, only 20% of a system may need re-engineering.

Re-engineering is only one of several options you have as a maintenance manager in fulfilling your user’s
needs. These options must be weighed one against the other. Factors to consider, in addition to cost,
include:

• The added value of re-engineering relative to the value of a new system and the value of the
present system.

• The risk of re-engineering relative to the risk of a new development and the risk of doing
nothing.

• The life expectancy of the existing system relative to the time required to re-engineer it and
the time required to re-develop it.

Re-engineering Process

Re-engineering involves a number of engineering concepts. How these engineering tasks make up the
re-engineering process and relate to each other is illustrated on Figure 6. These methods include:

• Reverse engineering is the process of examining an existing software system to abstract
its design and fundamental requirements. It is also the end-to-end process used to
understand the existing software well enough to change it. It is the opposite of forward
engineering (the traditional way software is developed).

• Forward engineering is the set of engineering activities that use the products and artifacts
derived from legacy software and new requirements to produce a new target system.

• Restructuring is the process of reorganizing or transforming an existing system from one
representation form to another at the same relative abstraction level, while preserving the
subject software’s external functional behavior. Most commonly applied, restructuring
involves taking (perhaps unstructured) software and adding structure.

• Re-documentation is the process of analyzing the software to produce support
documentation in various forms, including users’ manuals and reformatting the system’s
source code listings.

- 11 -

Other software support engineering concepts not illustrated on this figure include: retargeting, the
process of transforming and hosting (or porting) existing software to a new configuration; and source
code translation, the transformation of source code from one language to another or from one version
of a language to another version.

Figure 6 -- Relationship Among Support Engineering Tasks

Your re-engineering strategy can be fruitfully integrated into your domain engineering approach. This
may involve looking at re-engineering as a total migration plan which can involve a number of
incremental steps — rather than as a single event at one point in time. A comprehensive model of the
re-engineered system can also be developed and maintained while the implementation of the plan is
staggered as resources permit.

Supportability Analyses (SA)

It has not been the practice for contractors to perform formal SA for software acquisitions. Even for
weapon systems, most SA, is confined to hardware. At the 26th Annual International Logistics
Symposium sponsored by the Society of Logistics Engineers (SOLE), a paper was presented by A.G.
Johnson and T.A. Haden, from the United Kingdom Ministry of Defense Army Electronics Branch.
This paper included a Software Supportability Checklist, modeled after those used for hardware. It is
reproduced in Table 1 for the benefit of program managers and contractors who desire to give
additional attention to the SA of their software.

More and more, programs are integrating software engineers and logistics personnel throughout all
Integrated Product Teams (IPTs). In addition, Life Cycle Software Support (LCSS) IPTs are being
created to influence software design for supportability and to build a specification that describes the

- 12 -

software support concepts for the life of the weapon system. Personnel from acquisition centers,
support centers, customers, and contractors work together on the IPTs. Thus, program decisions
related to software development and support are jointly determined. Since each IPT is composed of
representatives from all disciplines, life cycle impact is always considered as are plans for future
software support. Because actual software support facility may still be some years away, support
decisions are analyzed to determine future impact. LCSS IPT personnel ensure that decision makers
are briefed on the consequences of support decisions.

- 13 -

 Table 1a -- Software Supportability Checklist

- 14 -

Table 1b -- Software Supportability Checklist (cont.)

Managing a PDSS Program

You employ the same tactics for successful management of PDSS as those employed for new-starts
and ongoing software developments. The solutions to your PDSS development problems are also the
same software engineering practices used throughout other phases of the life cycle. Unfortunately, you
are at the mercy of the initial developer who may have burdened your program with problems. Planning
and execution of software support must begin during the concept exploration phase and continue until
the system is removed from the inventory. The key areas that must be addressed are illustrated in
Figure 7. These key areas consist of processes, products, and support systems.

- 15 -

Figure 7 -- Post-Deployment Software Support Key Considerations

Life cycle support strategies typically span the support spectrum from sole source contractor to full
government organic, with each strategy presenting different advantages and disadvantages needing
evaluation. A high level IPT consisting of the operational user, the PEO, and the acquisition agent must
make the support decision early in the acquisition process. This focuses attention on the software
support process and allows the acquisition agent to begin planning for it earlier in the program.

To effectively manage and control software development and to ensure software supportability requires
that we incorporate measurement in the developer’s decision making and reporting processes. With
measurement, we can monitor the development effort, gain early insight into potential problem areas that
can negatively impact the PDSS task, and ease verification procedures.

Support processes are the most important element for management, control, and improvement of
software support. The key processes that must be captured and recorded are program management,
configuration management, systems engineering, and software development. The key products essential
to PDSS are documentation, source code, and a description of the software design and test
procedures. The baseline for PDSS activity is the delivered products from the initial development. The
effectiveness of PDSS is governed by the usability and descriptiveness of the delivered documentation.
Source documents for these essential products are contract CDRLs, CLINs, and the software support
documentation. Support systems include the people, facilities, tools, and equipment needed to perform
the maintenance task.

The following are key management activities to remember for PDSS success:

• Determine your life cycle support strategy early,
• Remember that software support is actually software re-development,
• Ensure adequacy of contractor software development processes during source selection,
• Identify supportability requirements and objectives in systems requirement documents and

Statements of Objectives,
• Specify required documentation and verification methods in the appropriate CDRLs,

- 16 -

• Identify necessary software development and support tools in software development and
support plans, and

• Establish a computer resources IPT.

Addressing Software Support in the RFP

Supportability is one of the most important issues to address in the RFP. Your RFP must require that
offerors plan for supportability by stipulating that the software be developed with a supportable
architecture that anticipates change, uses accepted protocols and interfaces, and has documentation
consistent with the code. This can only be achieved during initial software development and must be
addressed up front in the development contract. The higher the quality of the initial system, the easier it
will be to support. Therefore, the offeror’s approach to supportability must be a major source selection
criterion.

One method to emphasize the importance of supportability is to require pre-award competitive software
exercises (e.g., prototypes and demonstrations). These compute-offs can be followed by multiple
awards for design demonstrations. The design demonstrations are based on evolving, value-added
prototypes that ultimately converge into a fully supported product at the end of the initial procurement.
To make this acquisition strategy effective, the developing contractor(s) must be forced to support
previous, but evolving, versions of the product the same way a PDSS maintainer would. The prototype
developers are forced to select design(s) that promulgates a low-cost, efficient solution with minimal
side-effects on software maintenance. The subsequent EMD development contract is awarded to the
most supportable design.

Whether a contractor maintains the software, or it is transitioned to in-house government maintainers,
the maintainer must have the original developer’s SEE and other essential tools for proper code
maintenance. The following deliverables must be required:

• Data rights to make and install changes,
• Source code and documentation adequate to understand the code,
• Computer resources (SEE, computers, compilers, etc.) needed to modify the source code

and produce object code,
• Equipment and support software to test the subject code, to diagnose problems, and to

test solutions, enhancements, and modifications,
• Equipment needed to distribute and install the new software,
• A workable system to identify problems, resolve new requirements, and manage the

support workload, and
• Skilled personnel to perform required maintenance tasks.

The way you structure the RFP to acquire and develop your initial software can profoundly impact the
availability and usefulness of the required support environment. Therefore, you must require that all
offerors describe their plans for supportability as part of their proposal submission. To ensure a
prospective offeror’s systems engineering and software development processes adequately address the

- 17 -

supportability of software, it is imperative you carefully evaluate the offeror’s software development
processes during source selection. To do so these major areas must be addressed:

• Software Development Plan (SDP). Require the submission of an SDP with offerors’
proposals that states how they intend to ensure their development process addresses
supportability relative to the systems engineering process. This plan is evaluated during
source selection.

• Instructions to Offerors (ITO). The ITO and source selection evaluation criteria must
address those areas you consider critical processes. The evaluation criteria must describe
what is required of the offerors’ proposal and how it will be evaluated.

Specifying Supportable Software

Acquiring supportable software also requires the specification of software product performance
requirements. The major instruments contained within the RFP are illustrated in Figure 8.

Figure 8 -- Acquisition Instruments
Statement of Objectives (SOO)

The SOO defines an objective for efficient, life cycle software support consistent with total system
requirements. The SOO states that software supportability requirements and support characteristics are
to be managed as an integral part of system development.

Specification Practices

In accordance with the Perry Memo, your RPF must describe what you want to procure — not how to
design or build it. You can provide top-level system specifications or requirements documents to satisfy
the “what you want.” These specifications can only contain performance requirements and key system
characteristics — they cannot contain design solutions or detailed design requirements. You can
describe the methods you intend to use to verify that system requirements have been achieved. For
each performance requirement a corresponding method of verification should be provided. Therefore,
specify key software supportability characteristics along with corresponding verification methods in the
system specification or requirements document. Other characteristics you may wish to specify to ensure
your software acquisition is supportable include module size, complexity, programming language, and
spare memory.

- 18 -

Documentation

Because software is unlike any other product, the only way to visualize and understand it is through its
documentation. Without accurate, high-quality documentation, software cannot be understood. In
essence, documentation is the most important aspect of software support. Documentation delivery
requirements specified in CDRLs include:

• Software and Interface Requirements Specifications,
• Software and Interface Design Descriptions,
• Database Descriptions,
• Software Product Specifications,
• Source Code Listings,
• Test plans/descriptions/reports,
• Software Development Plans,
• Software programming, users, and maintenance manuals.

The specific criteria for government acceptance of software design information should be clearly
specified in the appropriate CDRLs (DD Form 1423) items. This includes the verification methodology,
composition of the verification teams, and quantitative thresholds that must be met or exceeded.
Offerors should be encouraged to provide alternative verification approaches.

Life Cycle Software Support Strategies

To ensure the contractor’s process for developing the software addresses information and
documentation management, quality, and verification procedures, typical life cycle support strategies
available for source selection include the following:

• Sole source (original contractor). The original contractor is awarded the software
support contract. The processes, products, and support system are already in place at the
contractor’s facility and typically are the same as those used during the development.

• Competitive (support equipment provided). A competitive contract is awarded and the
processes, products, and support systems are either transferred from the original
contractor facility to the competing contractor or the items are duplicated. The original
contractor can also be a competitor.

• Organic/contractor mix. The Government and the contractor share responsibility for
software support. Each agent is assigned a percentage of the software to be supported.
Typically the Government and contractor are collocated. The processes, products, and
support system is relocated to a government support center or the items are duplicated.
Manning of the effort is shared by the Government and either the original contractor or a
competitive contractor.

- 19 -

• Organic. The Government assumes responsibility for software CSCIs. The processes,
products, and support systems are relocated to a government support center or duplicated.
Support processes are executed by government organic personnel.

