Computer Resources
Support

Designing Supportable Software

\

[This articleisan extract from the“ Guidelinesfor Successful Acquisition and M anagement of
Softwar e-I ntensive Systems, Volumel, Version 2.0, Chapter 11, Softwar e Support, dated
June 1996. The content of the article has been edited to captur e the essence of the subject
matter without reproducing the chapter in itsentirety. Thiswritingisintended for school use
only to introduce the subject of softwar e support. Consult the complete document for greater
details.

\ /

Prepared and Edited by:

Richard A. Andrews, CPL
Professor of Acquisition Logistics
Defense Acquisition Univer sity

Midwest region

Softwar e Support

In Operation Desart Storm the intengity of battle coupled with large forces using Information Age
wegponry and communiceations crested the most intense eectronic battle field ever witnessed. The E-3
AWACS was an integral part of the battle serving asthe “eye’ that tracked al battle space aircraft and
directed interceptions while safeguarding our forces from surprise enemy aerid attack. The
overwhelming density of diverse eectronic Sgnas transmitted and received crested such a congested
environment that the E-3s full mission cgpability was greetly hindered. This E-3 problem had to be
quickly corrected and a dedicated software support team sprung into immediate action. The E-3 radar
software was rapidly revised, flight tested, and on itsway to deployed aircraft within 96 hours. This
quick reaction, modification, and change-out during the heet of battle emphasizes the operationa
necessity for eadly supportable software.

The ability to continuoudy support our mgjor software-intendve systemsis a paramount misson
requirement. Supportability iscritica because there is aways ainevitable need to correct latent defects,
modify the system to incorporate new requirements, enhance the existing system to add capability, and
ater it to increase performance. The ability to accommodate change is an integral part of mgor
software-intensive systems requirements.

Unfortunately, when we have fielded insupportable systems, we have often had to expend the
considerable time and funds necessary to provide the required support or we have had to abandon them
dtogether. We learned that it is far more cost-effective to address supportability as we define
requirements, design the system, and plan for its operationd life. In thisarticle you will learn how to
reduce the risk of acquiring, managing, and maintaining software-intensve systems by ensuring thet they
are modifiable, expandable, flexible, interoperable, and portable — i.e., supportable.

Softwar e support, often called re-development, addresses the maintenance life cycle phase where
magjor software costs occur. Support planning addresses the devel opment acquisition and entails RFP
development that provides for delivery of full documentation, datarights, and ddivery of the software
engineering environment (SEE) used by the devel oper.

When tasked with maintenance responsibility of legacy softwar e that has become
technologically obsolete, has deteriorated through year s of changes, or must be changed
anyway to work with new hardware or other software, it may be cost effectiveto re-engineer
it. Thisinvolves sysematic evaluation and dteration of an existing system to recondtitute it (or its
components) into anew form or converting it to Ada to perform within a new operationa environment,
to improve its performance, or to reduce maintenance costs. This process can combine severa
subprocesses, such as reverse engineering, restructuring, re-documentation, forward engineering, or
retargeting.

Software Support: A Total Life Cycle Approach

Software support (or maintenance) is redly apoor name for the post-deployment softwar e support
(PDSS) activity. In other engineering contexts, maintenance implies repairing broken or worn-out parts.
But softwar e does not break — nor doesit wear out. Itisfor thisreason that PDSSis often
called there-development phase. Asdefined by the | EEE, softwar e maintenanceisthe:

Modification of a software product after delivery to correct faults, to improve
performance, or other attributes, or to adapt the product to a changed environment.

Softwareisdivel Whether it isin production or not, it is dwaysin the process of becoming, evolving,
changing. Research on software maintenance shows that user requirements impacting software account
for 41% of post-deployment support costs, while hardware changes account for only 10%. That isto
say, over hadf of al software support is driven by changes in the systlem’s externa environment.
Because software must evolve in response to its externd environment, it is more like aliving thing than
an inanimate object that only needs to be designed once, and theresfter, infrequently repaired or
maintained. With software, development (and re-devel opment) is the norm in response to externd
changes. Therefore, designing for maintenance must be incorporated and unified with development.

Software support is both different from and the same as development. It is different because the
developer has no existing system from which to work; whereas, the maintainer must be able to read and
understand dready existing code and solve problems within an exigting framework which congrainsthe
solution set. The developer has no product knowledge because the product does not yet exist. The
maintainer must have complete product knowledge to do hisjob well. Support is the same as
development because the maintainer must perform the same tasks as the devel oper, such as define and
andyze user requirements, design a solution (within the congraints of the exigting solution), convert that
design into code, test the revised solution, and update documentation to reflect changes. Figure 1
illustrates how support tasks correspond to and mirror the development process.

Reviewing
documentation
(57%)
Understanding
the product
(30%)

Fgure 1 -- Support Tasks Superimpaosed on the Software Development Phase

-2

Softwar e Support Cost Drivers

Nothing will throw an infantry attack off stride as quickly asto promise it support which is not precisdy
delivered both in time and volume. — Brigadier Generd SL.A. Marshdl

The demand for precisely ddlivering software support in time and of high quality has never been grester.
However, software support is by far the biggest life cycle cost driver and the most significant source of
system risk for al mgjor DoD software-intensve acquisitions. Although software support actudly
occurs during the post-deployment phase, it must be planned for up front during requirements definition
and design. It must dso be budgeted for and continuoudy addressed throughout the system’ s life.
Developing supportable software is one of the most important criteria for software success. All the
causes of cost and schedule overruns, performance shortfals, and for programs being thrown off stride
are amplified once the system isin the hands of the maintainer. Therefore, the Software Crisis has redly
been the Maintenance Crigs. According to numerous DoD and industry studies, the typical cost to
maintain a software product is from 60% to 80% of totd life cycle costs. Your chdlengeisto minimize
the cost of software maintenance, and to avoid being a the heart of the Cridgs. These costs are
depicted on Figure 2

Data Processing Large, Complex Systems
Erwironments Erwironments

“didation Development
21% i 0%

laintenance |-

Requirementsf
Design
13%

f Mairtenance

Implementation
0%

Figure 2 -- Life Cycle Support Costs

These cogt increases during the software maintenance phase have historically been caused by dramatic
decreases in productivity (measured in line of code (L OC)/manmonths or function (festure)
pointsmanmonths.) Productivity drops of 40:1 have been reported during software support. For
example, what cost $150/LOC to develop might cost $1,000/LOC to maintain. This significant
increase in system cost demands that basic decisions about how the software will be maintained are
made during the concept and design phases. Easy access to the software and an inexpensive medium
for digtributing enhancements can have sgnificant effects on life cycle costs. A well thought out concept
of operationsincludes hardware provisions for spare connectors, card dots, and memory capacity to
facilitate interoperability to new software systems as they are fidlded and integrated into the defense
inventory. A flexible, modular architecture is dso essentia for ensuring understandability, modifiability,
interoperability, reusability, expandability, and portability — al prerequisites for supportable software.

-3-

Softwar e Support Activities

Based on a study of 487 commercid software development organizations, Figure 3 illustrates how
software support changes are distributed among support tasks. Most software support dollars are
spent on defining, designing, and testing changes. After these activities are performed (whether thereis
one unit or hundreds of unitsin the field), subsequent incressesin cost are margind. Support activities
include:

. Interacting with users to determine what changes or corrections are needed,

. Reading existing code to understand how it works,

. Changing exigting code to make it perform differently,

. Tegting the code to make sure it performs both old and new functions correctly, and

. Delivering the new version with sufficiently revised documentation to support the user and
the product.

FProffem Repals

Enhancement
S0%

-

R efinement
28%

ther
49

4' Theegt- - Dactine - Techhoiagy |7

Figure 3 -- Causes of Software Changes

During operationd testing, supportability evauations concentrate on software code, supporting
documentation and implementation, computer support resources, and life cycle process planning. Due
to itsimpact on software support, spare computing capacity is aso examined. Asan example, the four
areas the Air Force Operationd Test and Evauation Center (AFOTEC) evaluates for supportability are
illugrated in Figure 4. Maintainability evauations consst of questionnaires that concentrate on the
specific characterigtics of amaintainable system, such as consstency, modularity, and traceability.
Software supportability is evauated by the devel oper when the documentation and source code are
initidly basdined (usudly during initid integration test and evauation) and then periodicdly until the
completion of software development. The information gained during integration testing helps the
developer build more maintainable software.

Software
Suppartability

Software Spare Computer
Life Cycle Computing | |Maintainability Support
Frocess Capacity Resources
- Project - Timing - Docunertation - Personnel
Management - Sizing - Source Listing - Equipmerit
- Configurstion - Implementation - Facdilties
Management

Figure 4 -- AFOTEC Software Supportability Evauation Aress

Softwar e Support |ssues

In theory, software never wearsout! It has none of the physical properties found in hardware upon
which the forces of nature and the operationd environment can play that cause physica systemsto
declinein performance. When hardware beginsits life span, it often has a high failure rate (defects per
unit time) until manufacturing defects areironed out. The failure rate then drops to an acceptable low-
level where it remains (often for many years) until components begin to wear out. At this point, the
falure rate beginsto dimb again. Thistrend, cdled the * bathtub curve’ by hardware engineers, istrue
for dl hardware syslems — whether an automobile, aradio, or acomputer.

While software does not wear out in the physical sense, it does deteriorate! There is an astounding
difference when the software fallure rate is superimposed on the bathtub curve. Like hardware, new
software usudly has afairly high falure rate until the bugs are worked out. At which point failures drop
toavery low level. [A sgnificant exception is software devel oped using Cleanroom techniques where
initid falluresaredso low.] Theoreticaly, software should Stay e that low level indefinitdly because it
has no tangible components upon which the forces of the physical environment can play. However,
after software entersits operationd life (during PDSS), it undergoes changes to correct latent defects, to
adapt to changing user requirements, or to improve performance. These changes make the software
failure rate curve steadily begin an upward journey. Hardware deteriorates for lack of
maintenance, whereas software deteriorates because of maintenance! By making changes,
software maintainers often inadvertently introduce “ Sde-effects’ causing the defect rate to rise, as
illugtrated in Figure 5.

A

Hardware
— e S0 ftENe ("-I thEDrﬁ'lj
Software [in practice)

Ch= Cm
S e o T
a d

| o= =am
—

Sotware [in theary)

oo~ oM

Figure 5 -- Bathtub Curves for Hardware and Software

Although sde-effects can be quite complex, most are caused by one thing — there are no spare parts
for software! When software fails the part causing the failure cannot smply be replaced with a spare.
When software fails, from defects inserted during maintenance, often the only way to correct for the
cause of falureisthrough desgn modification. Every time the design is modified it weskensthe origind
gructure (or how the modules work internaly and with each other) and eventualy the software begins
to fal gpart. Undisciplined maintenance (or that performed in the field under stressed conditions)
frequently compounds the problem. Maintainers, struggling against time to make corrections,
modifications, or adaptations to new requirements, often compound the defects created by the last
generation of maintainers. In the rush to get the product to impatient users, they take short cuts —
exacerbating the software' s deterioration. Problems dso arise when thereis afailure to modify the
design when patches are made (causing the design and code to be out of synch), afailure to update
documentation, or afailure to use modern concepts of design and programming in initia development.

Most of the problems associated with software support can be directly traced back to deficienciesin
the way the original software product was planned, managed, and designed. Lack of sound software
engineering discipline, control, and attention to the design of modular software architectures during
development trandates into software support problems resulting in excessive maintenance costs. Some
classic software support issues include:

. Lack of requirements traceability;

. The evolution of software versons or releases that are difficult or impossible to trace [the
evolution of changes that are not documented];

. A difficult or impossble to define software devel opment process,

. Impossible to understand code [software understandability increases as the number of
software configuration itemsincreases|;

. Documentation that is nonexistent or of such poor quality thet it is useless [documentation
must be understandable and consistent with the source code to be of vaue]; and

. Inflexible software not designed to accommodate change [unless the architecture dlows for
change, modifications to the software are difficult and defect-prone].

-6-

Thislagt point is, perhaps, the most critica deficiency. The software architecture should carefully
address abgiraction, encapsulation, and information hiding to minimize dependencies. By separating
computationa and operationd details from interface cals, and by maximizing use of object-oriented
design, the software can be easly modified. Modifications can occur during development and during
post-deployment operation with less risk of introducing unwanted side effects.

Many factors play in the supportability equation. An undisciplined, poorly managed development
process where design, coding, and testing were conducted with inadvertent carelessness negatively
impact the support task. Design characterigtics that affect software supportability include: design
complexity (including related attributes of software Sze, structure, and interrel ationships); stability and
flexibility of the design itsdlf; adequacy of documentation to support PDSS; completeness of the
software development effort; and the extent and implementation of configuration management practices
for both operationa and support software.

Other factors within the development environment that impact software supportability include:

. Availability of qudified software personnd,

. System structure understandability,

. Ease of system handling,

. Use of standardized programming languages,

. Documentation structure standardization,

. Tedt case avalability,

. Built-in debugging mechanisms,

. Ddivery of the origind development SEE to the maintenance organizetion, and

. Avallability of gppropriate computer hardware to conduct maintenance activities.

Commer cial Software Support |ssues

Software support includes support of government-devel oped software, contractor-devel oped software,
and commercia software. 1ssuesto consider when supporting commercid software include:

. The acquisition agent must acquire appropriate documentation and data rights, licensing,
and subscription services (such as options to purchase or escrow proprietary information)
which alows the Government to support the software if contracted support becomes
unfeesible.

. The software support activity (SAA) must maintain gppropriate licensing and subscription
sarvices (vendor field change orders and software releases) throughout the life of the
sysem.

. Commercia resources must not be atered so as to preclude contractor logistics support or
void licensing or subscription services.

. The supporting command must provide logistics support and contract for subscription
sarvices required to update and maintain commercid assets. It must aso evauate

operationa and logigtic impacts of change due to subscription-related hardware and
software upgrades.

. The operating command must provide atechnica review of proposed changes during
upgrades and changes to commercial assets. It isresponsible for evaluating effectiveness
and misson impact of changes due to subscription-related software upgrades.

Planning for Support Success

Early planning for software support isamain DoD acquisition priority. Learning from costly past
mistakes, planners wanted to make their system a“ maintenance man’'s dream. Planning for support
suceess is accomplished by making it a source sdlection criterion that support issues be addressed
during the design age. By using standard software languages, software engineers are forced to use
common terminology, from ground support systems to operationa flight programs. Ada makes the
software much more supportable because it is written in much clearer text. Lack of documentation
killed usinthe past. .

As discussed above, decreases in productivity during PDSS can be tied to increases in software
complexity the longer it isin the support phase. The more modifications made to the software
(especidly to apoorly engineered product), the more complex it becomes with corresponding increases
in the introduction of defects. These exponentia increases in effort (and cost) are mainly the product of
poorly engineered software. Therefore, planning for supportability up front isamgor determinant of
software development success. Software, not devel oped with maintenance in mind, can end up so
poorly designed and documented that total re-development is actudly chegper than maintaining the
origina code. With today’ s shrinking defense dollars, failure to make software maintenance adesign
priority would not only be poor management on your part, but could very well result in an inability to
support your product. The need for good software maintenance planning is crucid.

Software Support Cost Estimation

The variety and undefined scope of future changes throughout the software life cycle make estimating
support codts one of the most difficult — yet one of the most important to consider due to their impact
on the DoD budget. Mogt software estimating model s estimate software support costs, however, the
types of activities, and therefore, the cogts included in their estimates, vary significantly from modd to
modd. Mogt parametrically-based software support estimating models provide atop-leve
gpproximation of sustaining engineering and support requirements. They do not produce estimates that
can be reliably used done as the basis for a software support budget or smilar purpose. Once software
has been transferred into a support environment, changes to the software (especialy mgor changes or
additions to basic software functionality) must be estimated using software models cdibrated to the re-
development environmern.

Softwar e Re-engineering

The motivation behind re-engineering isto get a handle on the ever-growing software maintenance
burden. The rapid evolution of software and hardware technology over the past 20 years has left DoD
with alegacy of millions of lines of falure-prone code, written in a conglomeration of languages, running
on a hodgepodge of incompatible hardware. The re-engineering option may prove beneficid where
large libraries of non-Ada code exigt.

“Re-engineering” is defined as the examination and ateration of a software system to recondtitute and
re-implement it in anew form. The re-engineering process involves recovering the design from an
exigting gpplication and using that information to recongtitute it to improve its quality and decrease
maintenance cods. While re-engineering re-implements existing system functions in a better, more
efficient manner, new or improved functions are also often added.

Re-engineering Decision

Re-engineering of old, worn-out or obsolete code is often economicdly judtified. The lengthy DoD
acquigtion process often takes a decade or more for large software-intensve sysems. By industry
gandards, military software is often obsolete before it enters the field, a which point a 20-year
operationd life usualy lays ahead. The cost of maintaining software over its extended life can be from
two to 10 times as much as the cogt to initidly develop it. The decision to re-engineer software is often
one based on the premise to “pay now or pay much more later.”

There are basically three Stuations when re-engineering is beneficid. These include:

. When the exigting system has become technologicaly obsolete and must be replaced,

. When the exigting system has deteriorated to the point where it has severe technica
problems; and

. When it might be expedient to upgrade the exigting system.

Y ou may choose to re-engineer if you reach the conclusion that it is better to pay now, rather than
waiting to pay-much-more-later. “Paying now” iswhat Secretary Perry caled avoiding the rathole
syndrome. He defines arathole as the dark place where software maintainers throw their money with
no possibility of return on investment. He equates the legacy software rathole with the old car rathole.
In the short-term, it is cheaper to fix your old car than it isto buy anew one. But over an extended
period, the out-of- pocket expense for parts and labor to patch your old clunker will cost you more
without increasing its resde vaue than investing in anew car. He adso explains that software
maintenance ratholes are like ratholes in the woods. Once you plug one up, the rat digs another. Re-
engineering, when cogt effective, can provide you with away to plug up al your ratholes and have a
gpanking new system with al the bells and whistles your user desires. 1t may wdll be the long-term,
low-cogt solution to your software maintenance problems. The reasons to re-engineer include:

. To reduce maintenance costs,

. To decrease defect rate,
. To convert to a better language or hardware platform,

-9-

. To lengthen the life-span, and
. To enable changesin the user’ s environment.

Another reason to re-engineer is often based on the logical migration of the system. Since the system
has to be dramatically changed anyway, it might aswell be upgraded to more current technology. Y our
re-engineering decison must be based on a thorough feasibility andysis of the codts, benefits, and risks
involved in continued patching (if possible) versus re-development (starting from scratch) versusre-
enginesring. Thisanadyssisbased on acaculation of the target system’s expected lifetime and the
comparison of re-engineering costs with the cogts of anew development. A rule of thumbis, re-
enginesring is a viable dternative when the cost to re-engineer is not more than 50% of the cost to re-
develop. It may aso be determined that it istoo expensive to re-engineer the entire system. Studies
conducted by magjor industry software developersindicate that 80% of the problems are caused by
20% of the software. Therefore, in some cases, only 20% of a system may need re-enginesring.

Re-enginearing is only one of severd options you have as a maintenance manager in fulfilling your user's
needs. These options must be weighed one againgt the other. Factors to consider, in addition to cog,
include:

. The added vaue of re-engineering relative to the value of anew system and the vaue of the
present system.

. Therisk of re-engineering reative to the risk of anew development and the risk of doing
nothing.

. The life expectancy of the existing system relative to the time required to re-engineer it and
the time required to re-develop it.

Re-engineering Process

Re-engineering involves a number of engineering concepts. How these engineering tasks make up the
re-engineering process and relate to each other isillugtrated on Figure 6. These methods include:

. Rever se engineering isthe process of examining an existing software system to abstract
its design and fundamenta requirements. It is aso the end-to-end process used to
understand the exigting software well enough to changeit. It isthe opposite of forward
engineering (the traditional way software is developed).

. Forward engineering isthe set of engineering activities that use the products and artifacts
derived from legacy software and new requirements to produce a new target system.

. Restructuring is the process of reorganizing or tranforming an existing system from one
representation form to another a the same relaive abstraction level, while preserving the
subject software’ s externd functiona behavior. Most commonly applied, restructuring
involves taking (perhaps unstructured) software and adding structure.

. Re-documentation is the process of analyzing the software to produce support
documentation in various forms, including users manuals and reformatting the system'’s
source code ligings.

-10 -

Other software support engineering concepts not illustrated on thisfigure include: r etar geting, the
process of transforming and hogting (or porting) exigting software to anew configuration; and sour ce
code trandation, the transformation of source code from one language to another or from one verson
of alanguage to another version.

Requiremernts |
constrairts, ! .
F:t:ujeu::ti-..-esl Desrgn Implementation
husiness rules) |
Faresard Fareward
enginearing > endinesting >
Rewverse Reverse
I . snglneerlng ______ enginesting | |
esign - == ﬁesﬁ
L - gn
reoovery ™ recovery| | i
— S — .
Re-engineering Fe-engineeting
(renonation) . (renavation)
" N N
| Redocumentation
Restructuring Festrudturing restructuring

Figure 6 -- Relationship Among Support Engineering Tasks

Y our re-engineering strategy can be fruitfully integrated into your domain engineering gpproach. This
may involve looking at re-engineering as atota migration plan which can involve anumber of
incremental steps — rather than asa single event a one point intime. A comprehensive model of the
re-engineered system can aso be developed and maintained while the implementation of the planis
staggered as resources permit.

Supportability Analyses (SA)

It has not been the practice for contractors to perform forma SA for software acquisitions. Even for
wegpon systems, most SA, is confined to hardware. At the 26th Annud Internationa Logistics
Symposium sponsored by the Society of Logigtics Engineers (SOLE), a paper was presented by A.G.
Johnson and T.A. Haden, from the United Kingdom Minisiry of Defense Army Electronics Branch.
This paper included a Software Supportability Checklist, modeled after those used for hardware. It is
reproduced in Table 1 for the benefit of program managers and contractors who desire to give
additiond attention to the SA of their software.

More and more, programs are integrating software engineers and logigtics personne throughout all

Integrated Product Teams (IPTs). In addition, Life Cycle Software Support (LCSS) IPTs are being
created to influence software design for supportability and to build a specification that describes the

-11-

software support concepts for the life of the wegpon system. Personne from acquisition centers,
support centers, customers, and contractors work together on the IPTs. Thus, program decisons
related to software development and support arejointly determined. Since each IPT is composed of
representatives from al disciplines, life cycle impact is dways congdered as are plans for future
software support. Because actua software support facility may gill be some years away, support
decisons are analyzed to determine future impact. LCSS IPT personnel ensure that decision makers
are briefed on the consequences of support decisons.

-12 -

Softvare

Supportability
Factor D escription
1 | Maintainability Fequirement for aMairtenance Taszk Analyvsiz (MTA)
2 | FTA, FMECA Fequirement for Fault Tree Analysiz (F TA) and Failure
Modes and Effects and Crhticality Analysis (FMEC 2110
be perfarmedto functional depth
3 | Defect Rate Fequirement to sate a contradual target defed rate
per lines of code over an agreed perod induding
confidence limits
4 | Fadure Identification Design to provide features that achieve failure
detedion and location times
5 | Falure Snapshot Design to provide features that achieve failure
detedion and location times
& | Tool Kit Provision of UsenMaintainers software tod kits 1o aid
failure location
¥ | Loading and Saving Deszign to allowloading or saving data in gpecified
Data times
g | Configuration Uzerimaintainter able to identify the configuration
Identification status (version) without acocompanying documentation
9 | Exception Handling Design to allowexception handling to predude failure
conditions from aborting sotware during operations
10 | Support Policy U=2 Study to include wha the sotware must do and not
Congiraints do
11 | Support Maintenance | Suppott spedfic maintenance palicies and manpower
Policy ceilings and skill level availakility to be stated
12 | Mainterance Cateqgories of zoftware suppott and maintenance to be
Software Support and | Sated
Cateqories
13 | Mediia Proposed media must: (&) suit the environmental
requrements, and (bl bhe acceptable as a
conzumakle tem
14 | Media Copying Simplify copying and distribution
15 | Media Marking Toallow physical and internal marking, safety critical
items to be separately marked
16 | Packaging Media packadgng to ke conzumakble, reusakle, and
robust
17 | Handling Media to require no gpedal precautions and meet
Uze Study requirements
15 | Storage Media ta require no gpedal precautions or fadilities

and meet Use Study requirements

Table 1a-- Software Supportability Checklist

-13-

Software

Supportability
Factor Description
19 | Transportation Media and packaging to require no spedal
requirements
20 | Training, U=ser zer training reguired to detect failures and invak e

exception handling

21 | Training, Support | Support training required to detect and locate &ilures
and irvoke exception handling

2 | Publications Uzer and Support publications will be reqguired

23 | Definition= The Reguirement must indude contradually agresd
won definitions of. incident, fault, filure, defed,
reliakility, and failure categories

24 | Resources Cod estimates must be sought for software
mairtenance

25 | Test Tools Contractor-owned and maintained sotware ted tools
and documentation must be provided

2 | Test Tool Access | Access to tedst toolsto be provided 1o softwere support
peraonnel

27 | IncidentFailure | Incident and filure repodingto be available

Reporting

Table 1b -- Software Supportability Checklist (cont.)

Managing a PDSS Program

Y ou employ the same tactics for successful management of PDSS as those employed for new-starts
and ongoing software developments. The solutions to your PDSS devel opment problems are dso the
same software engineering practices used throughout other phases of the life cycle. Unfortunately, you
are a the mercy of theinitial developer who may have burdened your program with problems. Planning
and execution of software support must begin during the concept exploration phase and continue until
the system isremoved from the inventory. The key areas that must be addressed areillustrated in
Figure 7. These key areas consist of processes, products, and support systems.

-14-

Software

Supportability
Processes Products Support
Systems
Program Sy=tem . Softvare .
Management Engineering Documentation Design Personnel Facilities
Configuration Software Equipment
Maragement D evelopment Souwrce Code @SIF)

Figure 7 -- Post-Deployment Software Support Key Considerations

Life cycle support strategies typicaly gpan the support spectrum from sole source contractor to full
government organic, with each strategy presenting different advantages and disadvantages needing
evaduation. A highleve IPT conssting of the operationd user, the PEO, and the acquisition agent must
make the support decison early in the acquisition process. This focuses attention on the software
support process and alows the acquisition agent to begin planning for it earlier in the program.

To effectively manage and control software development and to ensure software supportability requires
that we incorporate measurement in the developer’ s decision making and reporting processes. With
measurement, we can monitor the development effort, gain early insght into potentia problem areas that
can negatively impact the PDSS task, and ease verification procedures.

Support processes are the most important € ement for management, control, and improvement of
software support. The key processes that must be captured and recorded are program management,
configuration management, systems engineering, and software development. The key products essentia
to PDSS are documentation, source code, and a description of the software design and test

procedures. The basdine for PDSS activity isthe delivered products from the initid development. The
effectiveness of PDSSis governed by the usability and descriptiveness of the delivered documentation.
Source documents for these essentia products are contract CDRLS, CLINS, and the software support
documentation. Support systems include the people, facilities, tools, and equipment needed to perform
the maintenance task.

The following are key management activities to remember for PDSS success.

. Determine your life cycle support srategy early,

. Remember that software support is actudly software re-devel opment,

. Ensure adequacy of contractor software development processes during source selection,

. Identify supportability requirements and objectives in systems reguirement documents and
Statements of Objectives,

. Specify required documentation and verification methods in the appropriate CDRLS,

-15-

. Identify necessary software development and support tools in software development and
support plans, and
. Establish a computer resources | PT.

Addressing Softwar e Support in the RFP

Supportability is one of the most important issues to address in the RFP. 'Y our RFP must require that
offerors plan for supportability by stipulating that the software be devel oped with a supportable
architecture that anticipates change, uses accepted protocols and interfaces, and has documentation
consgtent with the code. This can only be achieved during initid software development and must be
addressed up front in the development contract. The higher the qudity of theinitial system, the easier it
will beto support. Therefore, the offeror’ s gpproach to supportability must be amajor source selection
criterion.

One method to emphasize the importance of supportability isto require pre-award competitive software
exercises (e.g., prototypes and demongtrations). These compute-offs can be followed by multiple
awards for desgn demongrations. The design demondrations are based on evolving, vaue-added
prototypes that ultimately converge into afully supported product a the end of theinitia procurement.
To make this acquisition Strategy effective, the developing contractor(s) must be forced to support
previous, but evolving, versions of the product the same way a PDSS maintainer would. The prototype
developers are forced to select design(s) that promulgates alow-cog, efficient solution with minimal
Sde-effects on software maintenance. The subsequent EMD development contract is awarded to the
most supportable design.

Whether a contractor maintains the software, or it is trangtioned to in-house government maintainers,
the maintainer must have the origina developer’s SEE and other essentia tools for proper code
maintenance. The following dedliverables must be required:

. Data rights to make and install changes,

. Source code and documentation adequate to understand the code,

. Computer resources (SEE, computers, compilers, etc.) needed to modify the source code
and produce object code,

. Equipment and support software to test the subject code, to diagnose problems, and to
test solutions, enhancements, and modifications,

. Equipment needed to digtribute and ingtal the new software,

. A workable system to identify problems, resolve new requirements, and manage the
support workload, and

. Skilled personnd to perform required maintenance tasks.

The way you structure the RFP to acquire and develop your initia software can profoundly impact the
availability and usefulness of the required support environment. Therefore, you must require thet all
offerors describe their plans for supportability as part of their proposal submisson. To ensurea
prospective offeror’ s systems engineering and software devel opment processes adequately address the

- 16 -

supportability of software, it isimperative you carefully evauate the offeror’ s software devel opment
processes during source selection. To do so these magjor areas must be addressed:

. Softwar e Development Plan (SDP). Require the submisson of an SDP with offerors
proposals that states how they intend to ensure their development process addresses
supportability relaive to the systlems engineering process. This plan is evauated during
source selection.

. Instructionsto Offerors (ITO). ThelTO and source selection evauation criteria must
address those areas you congder critica processes. The evaluation criteriamust describe
whet isrequired of the offerors proposal and how it will be evaluated.

Specifying Supportable Softwar e

Acquiring supportable software a so requires the specification of software product performance
requirements. The mgor instruments contained within the RFP are illustrated in Figure 8.

RFP
Staterment Instructions
Of . . To Model
Objectives Specification CORL Offerror Contract
(300) (TO)
R irements
et SRSIRS CORL
s Evaluation
- Characteristics S
Sowrce Criteria CLIHS
Verification Code

Figure 8 -- Acquigtion Instruments
Statement of Objectives (SOO)

The SOO defines an objective for efficient, life cycle software support consstent with tota system
requirements. The SOO dates that software supportability requirements and support characteristics are
to be managed as an integral part of system devel opment.

Specification Practices

In accordance with the Perry Memo, your RPF must describe what you want to procure — not how to
design or build it. 'You can provide top-level system specifications or requirements documents to satisfy
the “what you want.” These specifications can only contain performance requirements and key system
characteristics — they cannot contain design solutions or detailed design requiremerts. Y ou can
describe the methods you intend to use to verify that system requirements have been achieved. For
each performance requirement a corresponding method of verification should be provided. Therefore,
specify key software supportability characterigtics dong with corresponding verification methods in the
system specification or requirements document. Other characteristics you may wish to specify to ensure
your software acquidtion is supportable include module sze, complexity, programming language, and

spare memory.
-17 -

Documentation

Because software is unlike any other product, the only way to visudize and understand it is through its
documentation. Without accurate, high-quality documentation, software cannot be understood. In
essence, documentation is the most important aspect of software support. Documentation ddlivery
requirements specified in CDRLs include:

. Software and Interface Requirements Specifications,

. Software and Interface Design Descriptions,

. Database Descriptions,

. Software Product Specifications,

. Source Code Ligtings,

. Test plans/descriptions/reports,

. Software Development Plans,

. Software programming, users, and maintenance manuals.

The specific criteriafor government acceptance of software design information should be clearly
specified in the gppropriate CDRLSs (DD Form 1423) items. Thisincludes the verification methodology,
compoasition of the verification teams, and quantitative thresholds that must be met or exceeded.
Offerors should be encouraged to provide dternative verification gpproaches.

Life Cycle Software Support Strategies

To ensure the contractor’ s process for developing the software addresses information and
documentation management, quality, and verification procedures, typica life cycle support srategies
avallable for source sdlection include the following:

. Sole sour ce (original contractor). The origind contractor is awarded the software
support contract. The processes, products, and support system are dready in place at the
contractor’ sfacility and typicaly are the same as those used during the devel opment.

. Competitive (support equipment provided). A competitive contract is awarded and the
processes, products, and support systems are either transferred from the origina
contractor facility to the competing contractor or the items are duplicated. The origina
contractor can aso be a competitor.

. Organic/contractor mix. The Government and the contractor share responsibility for
software support. Each agent is assigned a percentage of the software to be supported.
Typicdly the Government and contractor are collocated. The processes, products, and
support system is relocated to a government support center or the items are duplicated.
Manning of the effort is shared by the Government and either the origind contractor or a
competitive contractor.

- 18-

Organic. The Government assumes responsibility for software CSCls. The processes,
products, and support systems are relocated to a government support center or duplicated.
Support processes are executed by government organic personnel.

-19-

