
Action

Issues

Measures

Indicators

Analysis

Information

A guide to objective program insight

Version 2.1
March 27, 1996

Joint Logistics Commanders
Joint Group on Systems Engineering

PRACTICAL

 SOFTWARE

 MEASUREMENT

Page i

Foreword

One of the most challenging tasks in the Department of Defense is
to deliver a software intensive system that meets program cost,
schedule, and performance objectives. With more of the capability
in today’s Weapons and Automated Information Systems
implemented in software, effective management of software
development and support efforts has become critical to program
success.

The introduction of new acquisition requirements and advanced
software technologies increases the need for more effective
software management techniques. Development plans must
accurately reflect a program’s technical and management objectives,
as well as the software team’s capabilities. Software cost,
progress, and quality must be evaluated throughout the course of
the program, and related issues and risks must be identified,
prioritized, and managed. As a DoD Program Manager, you need
the right information to make informed “software” decisions.

Practical Software Measurement: A Guide to Objective Program
Insight, was developed to help meet these software management
challenges. PSM describes how to define and implement a software
measurement process to address the unique management and
information needs of your program. The guidance in Practical
Software Measurement is based on actual software measurement
experience on DoD and Industry programs. It represents the best
practices used by measurement professionals within the software
acquisition and engineering communities.

This version of Practical Software Measurement explains how to
select the measures for your program and how to analyze the
measurement results to identify and manage your software issues.
Practical Software Measurement Version 3.0, currently under
development, will contain more extensive software analysis and
estimation guidance. We welcome your contributions to Practical
Software Measurement, and your participation in the project.

John McGarry
NAVAL UNDERSEA WARFARE CENTER

Page ii

Page iii

Acknowledgments

The following software measurement professionals have been principal contributors in
the development of Practical Software Measurement: A Guide to Objective Program
Insight.

Elizabeth Bailey
INSTITUTE FOR DEFENSE ANALYSES

Cheryl Jones
NAVAL UNDERSEA WARFARE CENTER

David Card
SOFTWARE PRODUCTIVITY SOLUTIONS, INC.

Beth Layman
SOFTWARE PRODUCTIVITY SOLUTIONS, INC.

Joseph Dean
TECOLOTE RESEARCH, INC.

John McGarry
NAVAL UNDERSEA WARFARE CENTER

The following software measurement professionals have participated in the development of
Practical Software Measurement: A Guide to Objective Program Insight.

Bruce Allgood
US AIR FORCE
SOFTWARE TECHNOLOGY SUPPORT CENTER

Paul Janusz
US ARMY ARDEC

James Arthur
VIRGINIA POLYTECHNIC INSTITUTE

John Keddy
NAVAL UNDERSEA WARFARE CENTER

Lt. Col. Terrence Brotherton
INFORMATION RESOURCES MANAGEMENT COLLEGE

Kenneth Kelley
DEFENSE INFORMATION SYSTEMS AGENCY

Luke Campbell
NAVAL AIR WARFARE CENTER

Ron Larson
US NAVY PEO CU

Anita Carleton
SOFTWARE ENGINEERING INSTITUTE

Steven Law
DEFENSE INFORMATION SYSTEMS AGENCY

David Castellano
US ARMY ARDEC

Scott Lucero
US ARMY
OPERATIONAL TEST AND EVALUATION COMMAND

Carl Crawford
NAVAL SURFACE WARFARE CENTER

John Marciniak
KAMAN SCIENCES CORPORATION

Deborah DeToma
GTE GOVERNMENT SYSTEMS CORPORATION

Charles McPherson
US ARMY MATERIEL COMMAND

Page iv

Jim Dobbins
DEFENSE SYSTEMS MANAGEMENT COLLEGE

Richard Nance
VIRGINIA POLYTECHNIC INSTITUTE

David R. Erickson
US AIR FORCE
SOFTWARE TECHNOLOGY SUPPORT CENTER

Raymond Paul
OFFICE OF THE UNDER SECRETARY OF DEFENSE - A&T

Mike Falat
DEFENSE INFORMATION SYSTEMS AGENCY

Margaret Powell
NAVAL INFORMATION SYSTEMS MANAGEMENT CENTER

William Farr
NAVAL SURFACE WARFARE CENTER

Edward Primm
NAVAL SURFACE WARFARE CENTER

Stewart Fenick
US ARMY CECOM

Bryce Ragland
US AIR FORCE
SOFTWARE TECHNOLOGY SUPPORT CENTER

William Florac
SOFTWARE ENGINEERING INSTITUTE

Anthony Shumskas
BDM ENGINEERING SERVICES COMPANY

John Gaffney
SOFTWARE PRODUCTIVITY CONSORTIUM

Lynn Simms
LOGICON

Tony Guido
NAVAL AIR SYSTEMS COMMAND

Raghu Singh
SPACE AND NAVAL WARFARE SYSTEMS COMMAND

Fred Hall
INDEPENDENT ENGINEERING, INC.

O.T. Smith
US AIR FORCE MATERIEL COMMAND

Robert Hegland
US ARMY
INFORMATION SYSTEMS SOFTWARE CENTER

George Stark
THE MITRE CORPORATION

Jeffrey Heimberger
SOFTWARE PRODUCTIVITY SOLUTIONS, INC.

Stephen Thompson
US ARMY PEO STAMIS

Scott Hissam
LORAL DEFENSE SYSTEMS - EAST

Sharyn Tolochko
US ARMY ARDEC

Kevin Holt
DEFENSE LOGISTICS AGENCY

Page v

Software Measurement Principles

•	 Program issues and objectives drive the
measurement requirements

•	 The developer's process defines how the software
is actually measured

•	 Collect and analyze low level data

•	 Implement an independent analysis capability

•	 Use a structured analysis process to trace the
measures to the decisions

•	 Interpret the measurement results in the context of
other program information

•	 Integrate software measurement into the program
management process throughout the life cycle

•	 Use the measurement process as a basis for
objective communications

•	 Focus initially on single program analysis

Page vi

Page vii

SCOPE AND STRUCTURE OF THE GUIDE

Practical Software Measurement: A Guide to Objective Program
Insight (PSM), provides a basic introduction to software
measurement for Department of Defense (DoD) Program
Managers and their technical staff responsible for implementing a
software measurement program. PSM applies to both weapons
systems and automated information systems. Although it is
written from a DoD perspective, the principles and approach of
PSM apply equally well to other large scale government and
commercial software programs.

While it supports DoD and commercial software process and
acquisition standards, PSM does not depend on the adoption of
any specific standard. It provides a flexible framework for
integrating measurement into existing software management and
development processes. The Guide covers three major topics:

• tailoring the software measures to meet program needs

• applying software measures to obtain insight into
program issues

• implementing a measurement process within an
organization

The Guide addresses software measurement with respect to
program management, and focuses on program tracking. While the
measures used to achieve management insight and control over a
program also are used for the purposes of process improvement
and product engineering, those topics are not explored except
where they are necessary to attain the Program Manager's goals.
Even in the program management area, the Guide does not provide
an exhaustive treatment of all possible measures. Instead, it
focuses on the most commonly used measures and techniques.

The Guide is organized into six parts that provide increasingly
detailed treatments of the three topics: tailoring, applying, and
implementing software measures.

Page viii

The six parts are as follows:

• Part 1, The Software Measurement Process - describes a
basic measurement process which can be applied to any
program. In particular, it focuses on providing the DoD
Program Manager with visibility into an ongoing
program.

• Part 2, Selecting and Specifying Program Measures -
provides a series of tables that help the user to select
the measures that best address the program's issues.

• Part 3, Analysis Techniques and Examples - explains
basic software measurement analysis techniques and
provides sample analyses.

• Part 4, Acquisition and Contract Implementation -
provides examples of contract language and work break-
down structures used to specify measurement
requirements in two-party contractual situations.

• Part 5, Software Measurement Case Studies - illustrate
many of the key points made in Part 1 of the Guide.
The case studies include two complete examples of
software measurement as applied to typical DoD
programs. One example is a weapons system. The
other is an automated information system.

• Part 6, Supplemental Information - contains a
glossary, list of acronyms, bibliography, project
description, document comment form, and index.

The following figure shows how the six parts of the Guide address
the elements of the measurement process. Part 1 introduces the
basic concepts, principles, and terminology of PSM. Everyone
should read this part of the Guide. Parts 2, 3, and 4 serve as
detailed references to the Program Manager and measurement
analyst for the performance of measurement functions. The reader
should familiarize himself with the contents and organization of
these sections, but need not read them in detail until performing the
corresponding function. Part 5 illustrates the application of PSM
in two typical program scenarios. Read at least the case study that
most closely approximates the type of program you are involved
with. Part 6 may be useful for clarification at any time.

Page ix

Part 1
The Software
Measurement
Process

Part 2
Selecting and
Specifying
Program
Measures

Part 3
Analysis
Techniques
and
Examples

Part 4
Acquisition and
Contract
Implementation

Part 6
Supplemental
Information

PSM
2.1

Chapter 1
Program
Management
and the
Measurement
Process

Chapter 2
Tailoring
Software
Measures

Chapter 3
Applying
Software
Measures

Chapter 4
Implementing a
Measurement
Process

Case
Study 5A
Weapons
System

Case
Study 5B
Automated
Information
System

Part 5
Software
Measurement
Case Studies

Practical Examples

Practical Software Measurement
Version 2.1

Detailed Guidance

Basic Guidance

Page x

Page xi

TABLE OF CONTENTS

PART 1 - THE SOFTWARE MEASUREMENT PROCESS1

CHAPTER 1 - PROGRAM MANAGEMENT AND THE MEASUREMENT PROCESS7

1.1 Managing a Software Intensive Program ..7

1.2 Overview of the Software Measurement Process...10

1.3 Software Measurement Principles ...11

1.4 Measurement Implementation Considerations...20

CHAPTER 2 - TAILORING SOFTWARE MEASURES ..23

2.1 Measurement Tailoring Overview...23

2.2 Identify and Prioritize Program Issues ...24

2.3 Select and Specify Program Measures..30

2.4 Integrate Measures into the Developer's Process ..36

CHAPTER 3 - APPLYING SOFTWARE MEASURES ...43

3.1 Measurement Application Overview..43

3.2 Collect and Process Data ..43

3.3 Define and Generate Indicators ...47

3.4 Analyze Issues ..54

3.5 Report Results..63

3.6 Take Action...64

3.7 Life Cycle Application ...66

CHAPTER 4 - IMPLEMENTING A MEASUREMENT PROCESS ...71

4.1 Measurement Implementation Overview ..71

4.2 Measurement Implementation Activities ..72

4.3 Using the Measurement Results ...82

PART 2 - SELECTING AND SPECIFYING PROGRAM MEASURES......87

CHAPTER 1 - HOW TO SELECT AND SPECIFY PROGRAM MEASURES........................93

1.1 Introduction ...93

1.2 Mapping Program Issues to Common Issues ..95

1.3 Selecting the Appropriate Measurement Categories ..96

1.4 Selecting the Applicable Measures.. 99

Page xii

TABLE OF CONTENTS - continued

1.5 Specifying Measurement Data and Implementation Requirements ... 101

1.6 Selecting and Specifying Measures for Existing Programs... 104

CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND
SPECIFICATION TABLES... 107

2.1 Introduction ... 107

2.2 How To Use the Measurement Tables... 107

CHAPTER 3 - MEASUREMENT SELECTION AND SPECIFICATION EXAMPLE............ 195

3.1 Program Scenario.. 195

3.2 Measurement Selection Summary... 196

PART 3 - ANALYSIS TECHNIQUES AND EXAMPLES....................... 199

CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW.. 205

1.1 Collect and Process Data .. 205

1.2 Define and Generate Indicators ... 206

1.3 Analyze Issues .. 207

1.4 Report Results.. 207

1.5 Take Action... 208

CHAPTER 2 - INDICATOR DEFINITION .. 209

CHAPTER 3 - SINGLE INDICATOR EXAMPLES... 213

3.1 Milestone Progress Indicator ... 216

3.2 Design Progress Indicator ... 218

3.3 Schedule Variance Indicator... 220

3.4 Incremental Build Content Indicator ... 222

3.5 Effort Allocation Indicator ... 224

3.6 Staff Experience Indicator .. 226

3.7 Cost Profile Indicator ... 228

3.8 Resource Utilization Indicator.. 230

3.9 Software Size Indicator... 232

3.10 Requirements Stability Indicator .. 234

3.11 Response Time Indicator .. 236

3.12 Problem Report Status Indicator... 238

Page xiii

TABLE OF CONTENTS - continued

3.13 Problem Report Aging Indicator... 240

3.14 Defect Density Indicator .. 242

3.15 Software Complexity Indicator ... 244

3.16 Software Process Maturity Indicator .. 246

3.17 Software Productivity Indicator .. 248

3.18 Rework Effort Indicator ... 250

3.19 Software Origin Indicator .. 252

CHAPTER 4 - INTEGRATED INDICATOR EXAMPLES .. 255

4.1 Design Completion Analysis... 256

4.2 Test Completion Analysis .. 258

4.3 Readiness for Delivery Analysis ... 260

4.4 Maintenance Analysis .. 262

PART 4 - ACQUISITION AND CONTRACT IMPLEMENTATION.......... 265

CHAPTER 1 - CONTRACT IMPLEMENTATION GUIDANCE... 271

1.1 Contract Planning and Preparation.. 271

1.2 Proposal Evaluation... 271

1.3 Negotiation.. 272

1.4 Contract Modifications... 273

CHAPTER 2 - SAMPLE RFP WORDING.. 275

2.1 Requirements for Software Measures ... 275

2.2 Developer Access .. 276

2.3 Data Alternatives... 277

2.4 Draft Measurement Plan.. 277

2.5 Proposal Evaluation Data.. 277

CHAPTER 3 - ADDITIONAL MATERIAL.. 279

PART 5 - SOFTWARE MEASUREMENT CASE STUDIES 283

WEAPONS SYSTEM CASE STUDY... 289

Page xiv

TABLE OF CONTENTS - continued

CHAPTER 1 - PROGRAM OVERVIEW.. 293

1.1 Introduction ... 293

1.2 Program Technical Approach... 295

1.3 Program Management Approach... 300

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION ... 303

2.1 Software Program Planning... 303

2.2 Software Acquisition.. 306

CHAPTER 3 - DEVELOPMENT PHASE.. 315

3.1 Tracking Development Performance.. 315

3.2 Revising The Development Plan.. 325

3.3 Software Delivery.. 327

3.4 Epilogue.. 328

AUTOMATED INFORMATION SYSTEM CASE STUDY.. 331

CHAPTER 1 - PROGRAM OVERVIEW.. 335

1.1 Introduction ... 335

1.2 Air Force Business Process Modernization Initiative.. 337

1.3 Program Description.. 339

1.4 System Architecture and Functionality.. 340

CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL... 345

2.1 Evaluating the Software Development Plan .. 345

2.2 Revising the Software Development Plan... 348

2.3 Tracking Performance Against the Revised Plan.. 352

CHAPTER 3 - EVALUATING READINESS FOR TEST .. 359

3.1 Increment 1 .. 359

3.2 Increment 2 .. 363

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT... 367

4.1 Increment 1 Installation.. 367

4.2 Software Support... 368

4.3 Epilogue.. 371

Page xv

TABLE OF CONTENTS - continued

 PART 6 - SUPPLEMENTAL INFORMATION.. 373

SUPPLEMENTAL INFORMATION.. 375

GLOSSARY... 379

LIST OF ACRONYMS.. 387

BIBLIOGRAPHY.. 389

Software Measurement References ... 389

Government Agency Software Measurement References ... 394

PSM RELATIONSHIP TO SPECIFIC DOD POLICIES.. 397

PROJECT INFORMATION SUMMARY... 401

Use of Practical Software Measurement .. 402

Project Contact Information ... 402

VERSION DESCRIPTION SUMMARY.. 405

INDEX.. 407

COMMENT FORM.. 413

Page xvi

Issues

Measures

Indicators

Analysis

Information

A Guide to Objective Program Insight

Action

PRACTICAL

MEASUREMENT

SOFTWARE

THE SOFTWARE

MEASUREMENT

PROCESS

PART 1

Part 1 - The Software Measurement Process

Page 2

Part 1 - The Software Measurement Process

Page 3

THE SOFTWARE MEASUREMENT PROCESS

Measurement is a key element of successful management in every
well established engineering discipline. Practical Software
Measurement: A Guide to Objective Program Insight presents a
proven approach for tailoring, applying, and implementing an
effective measurement process for DoD software intensive
Weapons System and Automated Information System (AIS)
programs. The objective is to provide the DoD Program Manager
with the software information required to make informed decisions
which impact program cost, schedule, and technical objectives.

PSM describes software measurement as a systematic, but flexible
process which is an integral part of the overall program
management structure. The PSM measurement process is issue
driven. It is uniquely adapted to meet each program’s specific
information needs. The process is defined around a set of proven
characteristics derived from actual experience on DoD and
industry programs. These characteristics, called software
measurement principles, help to make the PSM measurement
process an effective management tool, and not just another
program management “requirement”.

Part 1 of Practical Software Measurement describes the principles
and techniques for tailoring, applying, and implementing an
effective software measurement process. It presents a
comprehensive view of the complete measurement approach in
terms of “what” should be done. Other parts of the Guide contain
detailed “how to” guidance for the key measurement activities
described in Part 1.

This part of the Guide is organized into four chapters:

• Chapter 1, Program Management and the
Measurement Process - explains the relationship
between measurement and management, and introduces
the PSM software measurement principles.

• Chapter 2, Tailoring Software Measures - describes a
sequential approach for tailoring measurement to

Part 1 - The Software Measurement Process

Page 4

directly address program specific software issues and
objectives.

• Chapter 3, Applying Software Measure - describes a
structured approach for converting software
measurement data into actionable program
management information.

• Chapter 4, Implementing a Measurement Process -
describes the activities required to get measurement
into practice within an organization.

The PSM measurement process provides the foundation for making
informed “software” program management decisions. It describes
how to define and integrate program measurement requirements,
how to collect and analyze measurement data, and how to
implement the overall process into your organization.

Part 1 - The Software Measurement Process

Page 5

TABLE OF CONTENTS

CHAPTER 1 - PROGRAM MANAGEMENT AND THE MEASUREMENT PROCESS............7

1.1 Managing a Software Intensive Program .. 7

1.2 Overview of the Software Measurement Process .. 10

1.3 Software Measurement Principles.. 11

1.3.1 Program Issues and Objectives ... 13

1.3.2 Developer’s Software Process ..15

1.3.3 Low Level Data ... 15

1.3.4 Independent Analysis Capability ..16

1.3.5 Structured Analysis Process..16

1.3.6 Program Context ... 17

1.3.7 Life Cycle Integration ... 18

1.3.8 Objective Communications ... 18

1.3.9 Single Program Analysis ... 20

1.4 Measurement Implementation Considerations ... 20

CHAPTER 2 - TAILORING SOFTWARE MEASURES .. 23

2.1 Measurement Tailoring Overview.. 23

2.2 Identify and Prioritize Program Issues .. 24

2.2.1 Program-Specific Issues..25

2.2.2 Common Software Issues..26

2.2.3 Identifying Program Issues..27

2.2.4 Prioritizing Program Issues ... 28

2.3 Select and Specify Program Measures ... 30

2.3.1 Measurement Category Selection..31

2.3.2 Measurement Selection Criteria..31

2.3.3 Specifying Data and Implementation Requirements... 33

2.4 Integrate Measures into the Developer's Process.. 36

2.4.1 Characterizing the Software Environment ..37

2.4.2 Identifying Measurement Opportunities ... 39

2.4.3 Developing a Software Measurement Plan ... 40

CHAPTER 3 - APPLYING SOFTWARE MEASURES ...43

3.1 Measurement Application Overview.. 43

3.2 Collect and Process Data ... 43

Part 1 - The Software Measurement Process

Page 6

TABLE OF CONTENTS - continued

3.2.1 Data Sources..44

3.2.2 Reporting and Processing..45

3.2.3 Normalization and Aggregation..46

3.2.4 Data Verification ... 46

3.3 Define and Generate Indicators .. 47

3.3.1 Basic Indicator Concepts ..49

3.3.2 Types of Indicators..51

3.4 Analyze Issues... 54

3.4.1 Basic Analysis Process..55

3.4.2 Feasibility Analysis ... 59

3.4.3 Performance Analysis ... 60

3.5 Report Results... 63

3.6 Take Action... 64

3.7 Life Cycle Application.. 66

3.7.1 Program Planning..66

3.7.2 Development ... 67

3.7.3 Software Support... 69

CHAPTER 4 - IMPLEMENTING A MEASUREMENT PROCESS..................................... 71

4.1 Measurement Implementation Overview... 71

4.2 Measurement Implementation Activities ... 72

4.2.1 Obtain Organizational Support..73

4.2.2 Define Measurement Responsibilities ..74

4.2.3 Provide Measurement Resources ..76

4.2.4 Initiate the Measurement Process..81

4.3 Using the Measurement Results.. 82

4.3.1 Program Development Viewpoint ..83

4.3.2 DoD Executive Management Viewpoint ..84

4.3.3 Process Improvement Viewpoint ..85

4.3.4 Lessons Learned..85

Part 1 - The Software Measurement Process

Page 7

CHAPTER 1 - PROGRAM MANAGEMENT AND

THE MEASUREMENT PROCESS

Measurement is a key element of successful management in every
well established engineering discipline. This chapter introduces a
flexible approach for applying software measurement to improve
program management effectiveness for Department of Defense
(DoD) Weapons and Automated Information Systems (AIS)
systems. Practical Software Measurement presents a systematic
process that helps a program use software measurement to address
specific program issues and objectives. This chapter introduces
nine basic software measurement principles that guide the
implementation of the measurement process.

1.1 Managing a Software Intensive Program

Much of the capability in today’s DoD Weapons and Automated
Information Systems is implemented with software. In the current
acquisition environment, the ability of the Program Manager to
effectively manage the critical software issues has become an
important factor in a program’s success. With the reductions in
available resources and the use of new software technologies, the
ability to successfully deliver a large and complex software system
is increasingly challenging. New methods are required to help the
DoD Program Manager plan, monitor and control the software
processes and products which are now a large part of every
program.

In both the DoD and in industry, software measurement has proven
to be an effective tool in helping to manage software intensive
programs. Software measurement, when integrated into the overall
program management process, provides the information necessary
to identify and manage the software issues which are inherent in
every program. It helps the Program Manager identify specific
problems; assess the impacts of these problems on program cost,
schedule, and performance objectives; develop alternative
solutions; and select the best approach for correcting the problems.
Software measurement provides the insight a Program Manager
needs to make the software decisions critical to program success.

Part 1 - The Software Measurement Process

Page 8

Why should a Program Manager measure software? Recent
changes in the DoD acquisition process have emphasized the need
for better software management tools and techniques. Emphasis
on the use of Commercial Off the Shelf (COTS) and reusable
software components, and the implementation of Open System
Architectures (OSA), is changing the way software is acquired and
how systems are developed. New technologies and development
processes require that the Program Manager have better, and more
objective software information to help make the day to day
decisions which guide the program. The Integrated Product Team
(IPT) approach is an effective technique for managing large DoD
systems. The IPT approach requires continuous and effective
communications within the program team to determine the best
solutions to identified problems. Software measurement provides
the objective information which is essential for such
communications.

Software measurement helps the DoD Program Manager do a
better job. It helps to define and implement more realistic software
plans, and then to accurately monitor progress against those plans.
It provides the information required to make key program
decisions and take appropriate action. Specifically, software
measurement provides objective software information to help the
Program Manager:

• Communicate Effectively Throughout The Program
Organization - This is one of the key benefits of
software measurement. Objective software information
reduces the ambiguity which generally surrounds the
software issues on a DoD program. Measurement
allows the software issues to be explicitly identified,
prioritized, and shared at all levels of the organization,
particularly between the Program Manager and the
developer.

• Identify And Correct Problems Early - Rather than
waiting for something bad to happen, measurement
implements a pro-active software management strategy.
As part of the day to day program management process,
measurement focuses on the early discovery and
correction of software technical and management
problems which are more difficult to address later in the
program. Measurement helps the Program Manager

Part 1 - The Software Measurement Process

Page 9

focus on the key software issues throughout the
program life cycle.

• Make the Key Tradeoffs - Every program is
constrained to some degree. Development schedules,
resources, and system capability requirements all have
to be managed together to make the program a success.
With software intensive programs, decisions in one area
always have an impact on the others. Measurement
allows the Program Manager to objectively assess these
impacts, and make the proper tradeoff decisions to best
meet program objectives. Even in a highly constrained
software environment, measurement helps to identify
and manage to an optimized set of objectives.

• Track to Specific Program Objectives -
Measurement, better than any other software
management tool, accurately describes the status of the
software processes and products. It objectively
represents the progress of the software activities and the
quality of the software products. It helps to answer key
questions such as, Is the development on schedule? and
Is the software ready to deliver?

• Defend and Justify Decisions - The current DoD
acquisition environment emphasizes successful
program performance. A decreasing tolerance for
failing programs, coupled with the need to accurately
evaluate the performance of all government initiatives,
requires that the Program Manger be able to effectively
defend and justify his decisions. Measurement helps to
do this. It provides the data required to explain how the
issues were prioritized and managed.

Like any program management tool, software measurement cannot
guarantee that a program will be successful. It does, however, help
the Program Manager take a pro-active approach in dealing with
the inevitable issues that are part of any software intensive
program. Even more importantly, measurement establishes a basis
for objective communications within the program team. This is
essential when decisions which materially impact the outcome of a
program have to be made quickly, and correctly. Software
measurement helps the Program Manager to succeed.

Part 1 - The Software Measurement Process

Page 10

1.2 Overview of the Software Measurement Process

How does an organization that wants to take advantage of the
benefits of software measurement proceed? A number of specific
measurement prescriptions have been offered to government and
industry organizations with limited success. Rather than propose
another fixed measurement scheme, this Guide presents a flexible
measurement approach. PSM views measurement as a process that
must be adapted to the technical and management characteristics of
each program. This measurement process is issue-driven. That is,
it provides information about the specific issues and objectives
important to program success.

PSM defines a flexible measurement process - not a
fixed set of measures.

As shown in Figure 1-1, the PSM approach defines three basic
measurement activities necessary to get measurement into practice.
The first two activities, tailoring measures to address program
needs and applying measures to obtain insight into program issues,
are the basic subprocesses of the measurement process. The third
activity, implementing measurement, includes the tasks necessary
to establish this measurement process within an organization.

The tailoring activity addresses the selection of an effective and
economical set of measures for the program (see Chapter 2). The
application activity involves collecting, analyzing and acting upon
the data defined in the tailoring activity (see Chapter 3). PSM
recommends that these two activities be performed by a
measurement analyst who is independent of the software
developer.

The implementation activity addresses the cultural and
organizational changes necessary to establish a measurement
process (see Chapter 4). Implementing a measurement process
requires the support of program and organizational managers.

Part 1 - The Software Measurement Process

Page 11

Tailor
Measures

Apply
Measures

Software Program
Team

Corrective
ActionData

Implement
Process

Issues, Process
Characteristics

Measurement
Specifications

External
Constraints

Measurement
Needs

Software Measurement Process

Figure 1-1. Software Measurement Activities

The measurement process must be integrated into the developer's
software process. The nature of the developer's process determines
the opportunities for measurement. Because the software process,
itself, is dynamic - the measurement process also must change and
adapt as the program evolves. This makes the activities of
measurement tailoring and application iterative throughout the
program life cycle. The issues, measures, and analysis techniques
change over time to best meet the program’s information needs.

1.3 Software Measurement Principles

Each program is described by different management and technical
characteristics, and by a specific set of software issues. To address
the unique measurement requirements of each program, PSM
explains how to tailor and apply a generally defined software
measurement process to meet specific program information needs.
To help do this, PSM provides nine principles that define the
characteristics of an effective measurement process. These
principles are based upon actual measurement experience on
successful programs.

Part 1 - The Software Measurement Process

Page 12

The PSM Software Measurement Principles
incorporate the best practices from DoD

 and Industry measurement programs.

As shown in Figure 1-2, the software measurement principles are
the foundation for the application of software measurement for:

• Program Management - Ensuring that products are
delivered on time, within budget, and are of acceptable
quality.

• Product Engineering - Ensuring that products satisfy
customer needs.

• Process Improvement - Ensuring that the process
becomes more capable over time.

The same measurement process is used to provide the information
needed for all three applications, employing different measures to
address different requirements. However, the Guide only
addresses program management practices, techniques, and tools.

PSM
SOFTWARE

MEASUREMENT
PRINCIPLES

Measurement Practices

Measurement Tools

Program
Management

Process
Improvement

Product
Engineering

M
ea

su
re

m
en

t T
oo

ls

M
ea

su
re

m
en

t P
ra

ct
ic

es

M
easurem

ent Practices

M
easurem

ent Tools

Figure 1-2. Software Measurement Applications

Part 1 - The Software Measurement Process

Page 13

The nine software measurement principles which define the PSM
software measurement process are:

• Program issues and objectives drive the measurement
requirements.

• The developer's process defines how the software is
actually measured.

• Collect and analyze low level data.

• Implement an independent analysis capability.

• Use a structured analysis process to trace the measures to
the decisions.

• Interpret the measurement results in the context of other
program information.

• Integrate software measurement into the program
management process throughout the software life cycle.

• Use the measurement process as a basis for objective
communications.

• Focus initially on single program analysis.

The following subsections introduce each of the nine principles.
Experience has shown that a measurement process that adheres to
these principles is more likely to succeed.

1.3.1 Program Issues and Objectives

Program issues and objectives drive the measurement
requirements. The purpose of software measurement is to help
management achieve program objectives, identify and track risks,
satisfy constraints, and recognize problems early. These
management concerns are referred to, collectively, as issues.

Note that issues are not necessarily problems, but rather they
define areas where problems may occur. An initial set of issues
are identified at the outset of the program. This issue set evolves
and changes as the program progresses.

Part 1 - The Software Measurement Process

Page 14

PSM emphasizes identifying program issues at the start of a
program and then using the measurement process to provide
insight to those issues. While some issues are common to most or
all programs, each program typically has some unique issues.
Moreover, the priority of issues usually varies from program to
program.

The six common software issues addressed in this document are as
follows:

• Schedule and Progress

• Resources and Cost

• Growth and Stability

• Product Quality

• Development Performance

• Technical Adequacy

At the start of a program or when major changes are implemented,
each of these issues is analyzed in terms of the feasibility of the
plan. For example, the Program Manager may ask questions such
as: Is this a reasonable size estimate? or, Can the software be
completed with the proposed amount of effort and schedule? Once
the program is underway, the manager’s concern turns to
performance. The key questions then become ones such as: Is the
program on schedule? or, Is the quality good enough?

It is important to note that software issues are not independent.
For example, requirements growth may result in schedule delays or
effort over-runs. Moreover, the impact of the addition of work to a
program (size growth) may be masked, in terms of level of effort,
by stretching out the schedule. Thus, it is important that issues be
considered together, rather than individually, to get a true
understanding of program status.

Focusing measurement attention on items that provide information
about the program's issues also minimizes the effort required for
the measurement process. Resources are not expended collecting
data that may not get used.

Part 1 - The Software Measurement Process

Page 15

1.3.2 Developer’s Software Process

The developer’s software process defines how the software is
actually measured. The definition of a measurement process
cannot be based solely on the objectives of the Program Manager.
To collect measurement data in the most cost effective and useful
manner, the measurement analyst must consider the software
process of the developer. Program issues identify the information
that the measurement process must derive from the data. The
developer’s software process determines what specific data items
are to be collected and how that is to be accomplished.

One purpose of the measurement process is to provide insight into
the performance of the developer. Thus, the measures collected
must objectively represent the activities and products of the
developer’s software process. The Program Manager should select
measures that are normally collected by the software developer.
This decision should also consider the software processes
employed by any subcontractors.

1.3.3 Low Level Data

Collect and analyze low level data. The measurement process
defined in PSM depends on the periodic collection, processing, and
analysis of measurement data rather than the review of pre-
packaged reports. This data includes plans, changes to plans, and
counts of actual software activities, products, and expenditures.
The program office should receive data from the developer at a
low enough level of detail to allow for the isolation of problems
(errors, delays, over-runs) by activity and component. This detail
is commonly at the unit and software activity level as defined by
the software architecture and work breakdown structure.

Indicators that address program issues are computed from
measurement data collected by the developer. Most good software
developers can provide a wide range of data items. The specific
data items needed for program management depend on the
program issues. When a proposed measure proves difficult to
collect or doesn’t provide the required information, an effective
substitute may often be found by looking at related measures.
Collecting low level data allows the measurement analyst to
perform a variety of different analyses with the same data. It is a
key requirement for defining a flexible measurement process.

Part 1 - The Software Measurement Process

Page 16

1.3.4 Independent Analysis Capability

Implement an independent analysis capability. The Program
Manager must have a measurement capability that is independent
of the software developer’s. This requirement is motivated by the
recognition that communication can only occur when both parties
have achieved an understanding of the data under discussion. The
ideal situation involves a government measurement analyst in the
program office who regularly receives low level raw data from the
developer, analyzes it, and presents the results to the Program
Manager. Alternatively, the independent analysis function may be
provided by an Independent Verification and Validation (IV&V)
contractor, matrix function, Systems Engineering and Technical
Assistance contractor, or another organization independent of the
developer.

Note that without an independent analysis capability, the delivery
of low level data to the program office (Section 1.3.3) has no
value. Similarly, without low level data, the ability of the
measurement analyst to conduct an independent analysis will be
seriously limited.

1.3.5 Structured Analysis Process

Use a structured analysis process to trace the measures to the
decisions. Measurement based conclusions and recommendations
must be generated in a systematic manner to be accepted as a basis
for management decision-making and action. Key concerns of
management about such information is its traceability and
repeatability. Traceability means that the conclusions and
recommendations are generated from measurement data in a
defined sequence of steps. Repeatability means that analysts
following the same sequence of steps are likely to arrive at the
same conclusions and recommendations. An ad-hoc analysis
approach does not provide management with the confidence
necessary to act on measurement information. For measurement to
succeed, management must become an active participant in the
measurement process and a regular consumer of measurement
results.

This Guide describes a systematic method for using software data
to gain insight into high level issues. For example, a high level
software issue is schedule and progress. A realistic question

Part 1 - The Software Measurement Process

Page 17

concerning this issue is whether the program is progressing on
schedule. A complicating factor in assessing this issue is that a
major program contains many different individual activities, where
thousands of software units may be developed. Some of these
units may be ahead of schedule and some behind. Hence, the
overall status of the program is very difficult to determine without
some systematic method for combining quantitative data from all
these software units into information about progress.

A measure is a method of counting or otherwise quantifying some
attribute of a software process or product. Measures alone do not
provide much insight into issues. For example, two major
deliverables of the typical program are software and
documentation. Measuring the amount of software and
documentation completed gives a sense that work is progressing;
however, without comparing the work performed with the plan, we
cannot tell whether the work is on schedule. Measures are used as
indicators of software development and support status. These
indicators provide insight into key program issues.

1.3.6 Program Context

Interpret the measurement results in the context of other
program information. Measurement provides an indication or
warning that a problem may exist. No measurement result by itself
is good or bad. For example, assume that the number of unit
designs completed to date is lower than planned. This situation
might occur because the program is not fully staffed, but while
there is still time to add staff and recover. It might occur while the
program is fully staffed because the developers’ productivity is
much lower than planned. The variance between planned and
actual values on a progress indicator does not necessarily mean
that the program has a problem. However, it does signal that the
Program Manager should pay attention to this issue now. He must
collect additional information to evaluate the cause and severity of
the situation to assess its probable impact on program success.
Measurement results must be examined in the context of other
information about the program to determine whether action is
warranted, and what action to take.

Some aspects of, or contributors to, a software issue may not easily
be quantified. For example, getting the requirements right may
depend on adequate interaction with the system’s intended user.

Part 1 - The Software Measurement Process

Page 18

Even if production of the requirements document is on schedule, it
may not have the right content. Thus, qualitative data about the
level of user interaction must be considered when assessing
progress for this example.

1.3.7 Life Cycle Integration

Integrate software measurement into the program management
process throughout the life cycle. The issue-driven software
measurement approach described in Practical Software
Measurement applies throughout the software life cycle. For
purposes of this document, we define three major life cycle phases:
program planning, development, and software support. Four
principal software activities occur within the development and
software support phases. These are requirements analysis, design,
implementation, and integration and test. Measurement results
must be provided at appropriate decision points throughout the life
cycle.

Decisions made in one phase or activity affect the results of other
phases and activities. Measurement provides insight into the
current phase, as well as helping to project the consequences of
current actions into later phases. For example, the selection of a
specific software developer during program planning affects the
level of performance realized by the program during development
and software support. Consequently, it is important to adopt a life
cycle perspective when developing a measurement program. Over
the course of the software life cycle, the issues of concern to
Program Managers may change. However, the basic measurement
principles still apply.

1.3.8 Objective Communications

Use the measurement process as a basis for objective
communications. Measurement activities cannot be conducted by
the measurement analyst in isolation. At each step of defining the
measurement requirements and analyzing the measurement data,
the Program Manager and measurement analyst must communicate
with the developer team. Most decisions that are based on the data
will affect more than one party. A corrective action that is
identified and planned in cooperation with the developer is more
likely to succeed than one that is arbitrarily imposed by the

Part 1 - The Software Measurement Process

Page 19

Program Manager. Figure 1-3 shows the roles of measurement
with respect to program communication.

Q
u

es
ti

o
n

s
R

ec
o

m
m

en
d

at
io

n
s

A
n

al
ys

is
 R

es
u

lt
s

Issues
Corrective Actions

Status

Government
Program Manager

Developer
Manager

Government
Measurement Analyst

Developer
Measurement

Analyst

Requirements
Context Information

Data

Q
u

es
ti

o
n

s
R

ec
o

m
m

en
d

at
io

n
s

A
n

al
ys

is
 R

es
u

lt
s

Figure 1-3. Role of Measurement in Communication

The communication described in Figure 1-3 depends on
measurement data that objectively represents the developer’s
software products and processes. The figure highlights the role of
measurement in communication between the program and
developer managers. Both the government and developer
measurement analysts should be analyzing the same data. While
there may be some differences between the issues of concern to the
software Program Manager and the software developer, there
should also be a high degree of commonality.

The concept of Integrated Product Design and Development
(IPDD) and the functioning of an Integrated Product Team (IPT)
depend on frequent and objective communication about technical
and management issues among all team members. Measurement
provides an effective vehicle for this.

Part 1 - The Software Measurement Process

Page 20

It is important to ensure that all parties use the same data and have
a common understanding of the data definitions. Most data comes
from the developer, so the burden is primarily on the Program
Manager to understand the developer’s software process and
measures.

1.3.9 Single Program Analysis

Focus initially on single program analysis. Program success
means meeting specific program objectives. While the larger
organization (of which the program is a part) may have concerns
and objectives that span multiple programs, this Guide stresses the
need to measure and understand individual programs before
attempting to make cross-program comparisons. The variety of
measurement techniques and definitions used in current practice
make valid cross-program comparisons difficult and time-
consuming. The problems are compounded when programs from
multiple organizations are involved, or when only a few programs
are compared. Nevertheless, at several points in the measurement
process, the analyst will need to refer to normative data and simple
models based on the results derived from a large number of
programs.

1.4 Measurement Implementation Considerations

Because the software measurement process is an integral part of
the software development, support, and acquisition process, many
members of the organization play a role. As such, appropriate
resources must be allocated in order for the measurement process
to work effectively.

The most important roles in the software measurement process are
the following:

• Program Manager - Identifies issues, and interprets
and acts on measurement information. (The acquirer
and developer may both have Program Managers.)

• Measurement Analyst - Specifies measurement
requirements, analyzes data and reports results. (The
acquirer and developer may both have measurement
analysts.)

Part 1 - The Software Measurement Process

Page 21

• Developer Team - May be a contractor or government
developer. Collects and packages data for the program.
(The Guide uses the term “developer” to refer to both
developers and maintainers.)

• Executive Manager - Has several Program Managers
reporting, defines overall program management
requirements, and periodically reviews program status.
(The acquirer and developer may both have executive
managers.)

Figure 1-3 shows the relationships among measurement analysts
and Program Managers. Making sure that all participants in the
measurement process understand and commit to their roles helps
ensure that accurate data is provided that results in constructive
communication among all parties.

Experience from a wide variety of commercial and government
organizations shows that the cost of implementing and operating a
measurement process as described in this Guide ranges from one to
five percent of the program's software budget. This is a relatively
small amount when compared to the cost of conventional review
and documentation based program monitoring techniques.

Part 1 - The Software Measurement Process

Page 22

Part 1 - The Software Measurement Process

Page 23

CHAPTER 2 - TAILORING SOFTWARE

MEASURES

The first activity of the software measurement process is to
identify measurement requirements that address specific program
issues. This activity includes identifying the program issues,
selecting and specifying measures, and integrating the measures
into the software process. In many situations, the measurement
requirements must be specified as contractual requirements
through negotiation with the software developer. This Guide
recommends an experience-based process for converting program
issues into data requirements. This process and its component
activities are discussed in this chapter.

2.1 Measurement Tailoring Overview

This section of the Guide explains how to determine measurement
requirements and develop a program measurement plan. The
objective of the measurement tailoring process is to define the set
of measures that provides the greatest insight at the lowest cost.
The tailoring process focuses effort and resources on getting the
most important program information first. When implementing
measurement on an existing program, give special consideration to
existing data sources and measurement activities.

Program issues drive the entire measurement process. The issues
have a direct bearing on which measures are selected, how the
measurement results are analyzed, and how manager’s make their
decisions.

Figure 2-1 illustrates the measurement tailoring process. As
depicted, identification and prioritization of the specific program
issues is the first step. These are derived by combining a set of
common software issues with program-specific issue criteria. The
basic concern in this step is identifying the issues into which
measurement can provide insight.

Part 1 - The Software Measurement Process

Page 24

Identify and
Prioritize

Program Issues

Select and
Specify Program

Measures

Integrate into
the Software

Process

Program
Measurement

Plan

Common
Software
Issues

PSM
Measures

Software
Process

Proposed
Changes

Program
Events

New Issues

Categories

Figure 2-1. Measurement Tailoring Process

The next step is to define program-specific measures. The
measures are selected by applying measurement selection criteria
to measurement sets that map back to the software issues. The
basic concern in this step is finding measures appropriate to the
issues.

The final tailoring step is integrating the measures into the
developer's process. The software environment, development
approach, and existing measurement mechanisms, if any, should be
considered for their applicability to program needs. The results of
this step are documented in a program measurement plan. The
plan may be formal or informal, depending on the nature of the
program.

The following sections explain each of these steps in more detail.

2.2 Identify and Prioritize Program Issues

An effective measurement process helps the Program Manager to
be successful. It provides information the Program Manager can
act on. This means that measurement must provide information
pertinent to the achievement of program objectives. An objective
is a statement about the cost, schedule, functionality, quality, or
performance that a program must achieve. Objectives may be
directed downward by executive management or defined by the

Part 1 - The Software Measurement Process

Page 25

project manager in consultation with the prospective system user.
Issues are current or potential problem areas that might impact the
achievement of program objectives. Objectives and issues vary
from program to program.

2.2.1 Program-Specific Issues

The basic concept underlying the Practical Software Measurement
approach is that measures should be selected and organized to
track program-specific issues. An issue is anything that might
affect the achievement of program objectives. Issues include risks,
constraints, and any other concerns. Some examples of issues are
growth and stability, schedule and progress, and product quality.
Over-runs or short-falls in these areas usually affect program
success. Aggressive or unrealistic organizational goals might also
be treated as program issues.

Program issues and objectives drive the measurement
requirements.

Specific issues can be defined at the outset of the program. These
may be identified by considering the common software issues
described in this Guide, as the result of a risk analysis, by relying
on past experience, or by examination of executive management
objectives.

Issues may also arise during the program. New or evolving
requirements, changes in technology, and other factors may result
in the identification of derived issues as the program progresses.

Identifying something as an issue does not mean that it is a
problem. An issue is something that might become a problem.
Issues are identified in anticipation of problems, not just after a
problem has occurred. The PSM approach emphasizes prevention
and early detection of problems rather than waiting for problems
to become critical.

Part 1 - The Software Measurement Process

Page 26

2.2.2 Common Software Issues

Experience shows that some issues are basic or common to almost
all programs. If you are not tracking these common issues, then
you probably are not managing all of your program risks. The six
common software issues are as follows:

• Schedule and Progress - This issue relates to the
completion of major milestones and individual work
units. A program that falls behind schedule can usually
only make it up by eliminating functionality or
sacrificing quality.

• Resources and Cost - This issue relates to the balance
between the work to be performed and personnel
resources assigned to the program. A program that
exceeds the budgeted effort usually can recover only by
reducing software functionality or sacrificing quality.

• Growth and Stability -This issue relates to the stability
of the functionality or capability required of the
software. It also relates to the volume of software
delivered to provide the required capability. Stability
includes changes in scope or quantity. An increase in
software size usually requires increasing the applied
resources or extending the program schedule.

• Product Quality - This issue relates to the ability of the
delivered product to support the user’s needs without
failure. Once a poor quality product is delivered, the
burden of making it work usually falls on the software
support organization.

• Development Performance - This issue relates to the
capability of the developer relative to program needs.
A developer with a poor software development process
or low productivity may have difficulty meeting
aggressive schedule and cost plans.

• Technical Adequacy - This issue relates to the viability
of the proposed technical approach. It includes features
such as software reuse, use of COTS software and
components, and reliance on advanced software
development processes. Cost increases and schedule

Part 1 - The Software Measurement Process

Page 27

delays may result if key elements of the proposed
technical approach are not achieved.

Almost all software concerns can be allocated to one
of six Common Software Issues.

PSM recommends using the six common issues in two ways. First,
reviewing the common issues helps the Program Manager and
measurement analyst to recognize related issues specific to their
program. Second, the common issues are used to classify
program-specific issues so that they can be mapped into the
measurement selection structure discussed in Section 2.3.

2.2.3 Identifying Program Issues

The common software issues are a good starting point for
identifying program-specific issues. While the common issues
apply to all programs, their priority and exact wording are likely to
be specific to each program. For example, a program that plans to
make extensive use of COTS software may be more concerned
with the schedule and progress of COTS software integration than
with the quality of the COTS software (presuming that the COTS
software was selected based on an evaluation that showed that it
met user requirements.) On the other hand, a safety-critical system
might have quality at the top of its priority list.

In addition to reviewing the six common software issues, the
measurement analyst and Program Manager should consider other
sources of information about potential program problem areas.
Useful sources of information to consider when identifying
software issues include the following:

• Risk Analysis - The results of technical and management
risk analyses should be considered in identifying program-
specific issues. Risk analyses may point to potential
requirements, technology, process, cost, and schedule
issues.

• Program Constraints and Assumptions - The program
plan is based on assumptions about the performance of the

Part 1 - The Software Measurement Process

Page 28

software developer, availability of facilities, etc.
Moreover, schedules and budgets may have inflexible
constraints. If deviations from these assumptions and
constraints could threaten program success, then these areas
should be identified as issues.

• Leveraged Software Technologies - The program plan
may depend on obtaining the benefits of a leveraging
software technology such as reuse, COTS, or advanced
programming languages. If program success depends on
obtaining these benefits, then the effectiveness of this
technology should be identified as an issue.

• Product Acceptance Criteria - The user may impose
stringent milestone or final acceptance criteria on the
system to be delivered. If there is significant doubt about
the system's capability to meet acceptance criteria,
advertised objectives, or other external criteria, then
satisfaction of these criteria should be identified as an issue.

• External Requirements - Many software issues are related
to requirements and concerns which are external to the
program. The need to address oversight, operational test
readiness, or Milestone Decision information requirements,
for example, may require that certain issues be identified
and tracked within a program.

• Experience - The manager's experience with similar past
projects may suggest potential problem areas that should be
identified as issues.

These sources of information, together with the common issues,
help to identify program-specific software issues. Each program
issue should be stated in terms that are appropriate for that specific
program. Focus on those aspects of the issue that are most
important to the program. In the earlier example in this section,
the schedule and progress issue was stated in terms of COTS
software integration progress instead of design progress.

2.2.4 Prioritizing Program Issues

Programs may have many issues. Not all issues are equally
important. Issues must be prioritized to determine where to focus

Part 1 - The Software Measurement Process

Page 29

the measurement effort. In general, more data should be collected
and analyzed for important issues than for less important ones.

One useful way to prioritize issues is to classify them according to
the following: 1) how likely that issue is to result in a problem, and
2) how much impact a problem in this area is likely to have on
program success. Three categories of issues, in decreasing order of
importance, are as follows:

• Primary Issues - Likely to be problem areas, and the
related problems are likely to have major impacts.

• Secondary Issues - Likely to be problem areas, or the
related problems are likely to have major impacts, but
not both.

• Peripheral Issues - Not likely to be problem areas, and
the related problems are not likely to have major
impacts.

Most programs cannot afford to track peripheral issues. Of course,
this rating is subjective, so there may be a temptation to reduce
measurement requirements by down-grading the priority of an
issue. This must be guarded against.

As an example, if the software budget is known to be a constraint
from the outset of a program (the probability of a problem is high),
and reducing functionality to fit available resources is not an
option (the problem is likely to have serious consequences) then
resources and cost are almost certain to be a primary issue.

Software issues and relative priorities evolve as the
program progresses. The measurement process must

change to keep pace.

Issues (and their priorities) are dynamic. Additional issues may be
identified once the program is underway. Also, things that were
originally thought to be issues may be recognized as unimportant.
Issues evolve as program concerns evolve. Thus, the measurement
process has to change to keep pace. When defining a new or
derived issue, remember to consider the probability of a problem

Part 1 - The Software Measurement Process

Page 30

arising and its likely impact before deciding to collect any
additional data or regularly tracking the issue.

2.3 Select and Specify Program Measures

Once the program-specific issues have been identified and
prioritized, appropriate measures must be selected to track them. A
measure is a quantification of an attribute of a software process or
product. Many different measures may apply to an issue.
However, in most cases it is not practical to collect all or even
most of the possible measures for an issue. Generally, more
measures should be collected to track primary (high-priority)
issues. Identification of the "best" set of measures for a program
depends on a systematic evaluation of the potential measures with
respect to the issues and relevant program characteristics.

For example, if growth and stability is selected as an issue, then
requirements and software size measures will be needed to track it.
The appropriate measure will depend on the nature of the program.
Language type and application domain influence the choice of a
size measure. Automated Information Systems may use function
points to measure size. Weapons Systems are likely to find lines
of code to be more useful.

Once the program issues have been identified and prioritized, PSM
provides a three-part measurement selection and specification
mechanism.

• First, the issues are reviewed to identify and select the
applicable measurement category which provides the
type of information required.

• Second, the measures within each selected category are
reviewed for applicability.

• Finally, the data items and implementation
requirements are specified for each selected measure.

The result is a set of measures which directly address the program
software issues, and serve as a basis for integration into the
developer’s process.

Part 1 - The Software Measurement Process

Page 31

2.3.1 Measurement Category Selection

A measurement category is a set of related measures. The
measures within a category are derived similarly or address related
software attributes. They provide similar information and answer
similar questions. Figure 2-2 shows the types of questions to
which each measurement category responds.

Use this table (or the corresponding detailed tables in Part 2) to
find the measurement category or categories that most closely
align with the formulation of the program-specific issue. For
example, if the program-specific issue is "Progress of COTS
Software Integration", then the Work Unit Progress category is
suggested because the issue involves a question about the progress
of a specific activity (i.e., integration). If the program-specific
issue was “Availability of Qualified Staff”, then the Staff Profile
category is suggested because the issue concerns not just the
amount of effort applied, but the skill level of the staff.

2.3.2 Measurement Selection Criteria

Once a measurement category has been selected, then the
measurement selection criteria discussed below can be applied to
identify the best measures for the program from among those in the
indicated measurement category.

Some of the key criteria to consider when selecting measures
include the following:

• Measurement Effectiveness - How effective is the
measure in providing the desired insight? Does the
measure provide insight that relates to more than one
issue? How difficult and effective have these measures
been on past projects?

• Domain Characteristics - Are certain measures more
likely to be used in a given domain? For example,
response time is widely used to measure target
computer resource utilization in AIS systems, while
memory utilization is more widely used in weapons
systems.

Part 1 - The Software Measurement Process

Page 32

Issue Measurement Category Question Addressed

Schedule and Progress Milestone Performance Is the program meeting scheduled
milestones?

Work Unit Progress How are specific activities and products
progressing?

Schedule Performance Is program spending meeting schedule
goals?

Incremental Capability Is capability being delivered as
scheduled?

Resources and Cost Effort Profile Is effort being expended according to
plan?

Staff Profile Are qualified staff assigned according
to plan?

Cost Performance Is program spending meeting budget
objectives?

Environment Availability Are necessary facilities and equipment
available as planned?

Growth and Stability Product Size and Stability Are the product size and content
changing?

Functional Size and Stability Are the functionality and requirements
changing?

Target Computer Resource
Utilization

Is the target computer system
adequate?

Product Quality Defect Profile Is the software good enough for
delivery to the user?

Complexity Is the software testable and
maintainable?

Development Performance Process Maturity Will the developer be able to meet
budgets and schedules?

Productivity Is the developer efficient enough to
meet current commitments?

Rework How much breakage due to changes
and errors has to be handled?

Technical Adequacy Technology Impacts Is the planned impact of the leveraged
technology being realized?

Figure 2-2. Questions Addressed by the PSM Measurement Categories

Part 1 - The Software Measurement Process

Page 33

• Program Management Practices - Can existing
management practices be leveraged to support the
measurement requirements? For example, is a
scheduling system in use that provides one or more of
the desired measures?

• Cost and Availability - What data should be readily
available in this program context? How much effort
will be required to extract and package the data for
analysis? Extracting data from electronic sources
usually costs less than manual collection.

• Life Cycle Coverage - Does the measure apply to the
life cycle phase under consideration? Does it apply to
multiple life cycle phases?

• External Requirements - Has the overall organization
or oversight authority imposed any related
measurement requirements?

• Size/Origin of Software - Does the size or scope of the
software justify a larger investment in measurement?
Does this measure make sense for this type of software
(e.g., COTS)?

The tables in Part 2 provide a summary of 45 different measures
with respect to these criteria. This assessment is based on actual
experience in applying measurement to DoD and Industry
programs.

2.3.3 Specifying Data and Implementation Requirements

Once the measures have been selected, the appropriate level of
detail for data collection for those measures must be defined. The
frequency and format of data deliveries must also be specified.
Data may be reported less often than it is collected by the
developer. Monthly reporting is common. The tables in Part 2
provide typical implementation requirements for common program
management measures.

Potential candidates for measurement include all of the products to
be delivered by the program and all of the processes used by the
developer. These products and processes can be defined and

Part 1 - The Software Measurement Process

Page 34

measured at many different levels of detail. However, unless these
definitions and measures are coordinated appropriately, the
measurement program may not produce meaningful results.

Collect and analyze low level data.

Measurement data is generally aggregated by either the hierarchy
of software process activities or by the software design structure.
Figure 2-3 shows a typical aggregation structure for software
activities and components.

Software
Component View

Software
Activity View

Design

Requirements
Analysis

Implementation

Integration &
Test

System

Program

Unit/Object

CSCI

Build

Figure 2-3. Activity and Component Aggregation

The program’s work breakdown structure (WBS) provides a
simple mechanism for defining and integrating the software
activities and components to be measured. The WBS identifies all
the hardware, software, data, and other products and services that
must be delivered to complete the system. (See Part 4 for sample
WBSs for AIS and weapons systems.) The WBS is used to break a
project down into small tasks. Each of the small tasks is called a
work package. Typically, each work package has a schedule,
effort allocation, and quantity of work associated with it. Errors
and rework may be by-products of implementing a work package.

A work package could correspond to something as large as
developing an entire Computer Software Configuration Item

Part 1 - The Software Measurement Process

Page 35

(CSCI) over a period of years or as small as testing a single unit
within one week.

Most programs define work packages for each major activity (i.e.,
requirements analysis, design, implementation, integration and test,
and rework) for each CSCI. However, to adequately address
specific program issues it may be necessary to collect one or more
types of data at a more detailed level.

Some of the factors that help define the appropriate level of data
collection are as follows:

• Requirements and size data are normally tracked at
least at the CSCI level. Consider tracking size at a
lower level if the CSCIs are large.

• Progress is normally reported at the level of major
activity (e.g., design). Consider tracking at the level of
subactivities if the schedule is a long one.

• Keep data from subcontractors separate, especially if
the subcontractors have significant software
development responsibility, or a different development
process.

• Maintain separate counts of size for each language type,
including 4GLs and application generators, unless the
languages are very comparable (for example, Fortran
and Algol).

• Maintain separate counts of size, effort, and problem
reports for each category of new development, reuse,
and COTS software, especially if program success
depends on realizing some specific benefit from these
approaches.

• Keep separate counts for each priority category of
problem report, especially if the program maintains a
large backlog of problems.

All data collected must be consistent with the WBS. Different
types of data may be collected at different levels of detail, but each
must roll up into the same product elements. For example, it is
hard to analyze productivity when effort data is collected using

Part 1 - The Software Measurement Process

Page 36

categories that do not map into the work packages against which
size is measured. When selecting and specifying program
measures, the ability of the developer’s cost accounting system to
flexibly support detailed effort and cost reporting are important
considerations.

In determining the proper level of detail for the measurement data
to be collected and reported, the measurement analyst must balance
the cost of data collection, data processing, and analysis against the
need for detailed insight into program issues. More detailed data
allows greater flexibility for analysis in terms of defining new
indicators and localizing the source of potential problems detected
with the data. However, a greater level of detail also implies a
greater volume of data and a greater cost to the measurement
program. Nevertheless, more detailed data should be sought to
track those issues defined to be most important. All of these
recommendations for selection of measures and level of detail
must be tempered with an understanding of the developer’s
process.

2.4 Integrate Measures into the Developer's Process

Up to this point, the measurement selection process has largely
been driven by "what" the Program Manager needs to know as
defined by the issues. Now we need to look at "how" the
measurement process will actually function with the program
structure. The data readily available from the developer may not
map exactly into the ideal measurement requirements as defined
thus far.

The measures and implementation requirements selected in the
preceding step form the basis for negotiations between the
Program Manager and the developer about the specific data
elements to be provided for analysis. This negotiation may be
accomplished via a formal contracting process, or via a less formal
agreement in the case of government development agencies. The
result of this step is a definitive statement of the measurement
approach to be followed, often documented in an informal
measurement plan, or incorporated into the program management
or software development plans.

Part 1 - The Software Measurement Process

Page 37

Integrating the Program Manager’s measurement requirements to
the developer's process involves three tasks:

• Characterizing the software environment

• Identifying measurement opportunities

• Developing a software measurement plan

During the course of performing these tasks, the developer may
propose changes to the program measurement requirements to
better integrate the measures into the software process. The final
plan is based on both the initial requirements and agreed-upon
changes.

Part 4 of the Guide provides sample contract wording that helps
implement these steps. A “contract” may be a formal contract, a
Memorandum of Agreement (MOA), an Inter-Service Support
Agreement (ISSA), or some other written agreement. The
technical concepts discussed in this Guide are applicable to
whichever type of contract is used.

The tasks required to integrate the measurement requirements into
the software process are discussed below.

2.4.1 Characterizing the Software Environment

The developer’s process has a major impact on the cost and
effectiveness of a software measurement program. One basic
purpose of the measurement program is to provide insight into the
developer’s process. Thus, it is important that the measures
accurately represent the software process being used and the
products being built. Some key factors to consider are as follows:

• The life cycle model or activity structure used to define
the developer’s process

• Product structure, including builds and releases defined
by the developer

• Current measurement activities employed by the
developer

Part 1 - The Software Measurement Process

Page 38

• Software technology, including programming language,
design language, etc.

• Planned source of software (COTS, GOTS, reuse, etc.)

• Management, review, testing, and inspection practices
employed by the developer

• Engineering and management standards to be applied

Whenever possible, take advantage of the developer’s current
practices and existing data collection mechanisms. Avoid
imposing new measurement requirements. Use the program's
WBS, including product structure and activities, as the basis for
measurement.

The developer's process defines how the software is
actually measured.

To the extent that the activities of the developer’s process are well-
defined, measuring them will provide useful information. An ad-
hoc or ill-defined process makes it difficult to tell exactly what is
being measured.

For many issues, the data available changes across life cycle
activities. For example, during the software implementation stage,
progress may be measured in terms of units designed and coded.
During testing, progress may be measured in terms of tests
attempted and tests passed. The measurement analyst must ensure
that relevant measures and indicators are provided throughout the
program’s life cycle, making substitutions as appropriate.

Before measurement requirements are finally negotiated, the
measurement analyst should use his or her understanding of the
developer’s process, as well as direct feedback from the developer,
to modify the program measurement set. The measurement
process should not be used to force process changes on the
developer. Giving appropriate consideration to the developer’s
process helps to ensure that useful data is provided with the lowest
impact and cost.

Part 1 - The Software Measurement Process

Page 39

2.4.2 Identifying Measurement Opportunities

During measurement planning a high priority should be given to
finding and taking advantage of any measurement mechanisms
already operating within the development organization. This is
especially important when installing measurement on an existing
program. Give special attention to databases and tools supporting
the following functions:

• management/scheduling

• financial/earned value/timecard

• planning/estimating

• configuration management

• problem tracking

• action item tracking

• inspection results

• development tools (e.g. CASE)

• measurement database

Extracting and delivering data from electronic sources such as
these is usually more cost effective than manual or paper forms-
based collection methods.

Most actual software data will come from the developer.
However, initial planning data often is produced by the program
management office. The source of the data will affect choices
about the frequency and form of delivery.

Start with the software data which is already available
from the software process.

As a result of characterizing the program environment and
identifying measurement opportunities, changes to the
measurement requirements previously defined may be proposed.

Part 1 - The Software Measurement Process

Page 40

Moreover, new issues may be identified that result in changes at
the issue level as well. Thus, the measurement selection process is
iterative. This iteration may be managed via a formal contracting
process, a less formal agreement mechanism, or internal policy.

2.4.3 Developing a Software Measurement Plan

The final task in measurement selection is to develop a software
measurement plan. The software measurement plan may be formal
or informal. A formal plan may be produced as a separate
document, but is commonly incorporated into the program's
software management, development, or support plan. Some
elements of the plan may be specified in the Computer Life Cycle
Management Plan. Part 4 provides additional detail on preparing a
formal plan as part of a contracting process, and includes a sample
measurement plan outline.

The plan is the result of adjusting the Program Manager’s
requirements to fit the developer’s process. Regardless of the
formality of the measurement plan, it should incorporate the
following information:

• Issues and measures selected.

• Identification of data elements - Consolidate the data
elements required for all measures into a single list.
Measures frequently share data elements.

• Data definitions - Provide a complete and
unambiguous definition of each data item. The
checklists contained in the SEI Core measures (see
Bibliography) may be helpful in this regard.

• Data sources - Identify the specific sources (e.g.,
person, tool, report, activity) for all data items.

• Level of measurement - Determine the level of detail
at which data items are to be collected and delivered for
analysis.

• Aggregation structure - Define the hierarchy by which
the low level data items will be combined to provide

Part 1 - The Software Measurement Process

Page 41

system, build, and program-level views. This structure
should parallel the WBS.

• Frequency of collection - Specify how frequently data
items are to be collected and delivered for analysis.
Include plans and replans as well as actual data. This is
typically monthly.

• Method of delivery - Define the method for providing
access to the data (e.g., common database, electronic
media).

• Communication and interfaces - Identify the points of
contact for all data sources, reports, and requests for
clarification.

• Frequency of analysis and reporting - Determine the
reviews and reports via which measurement results will
be provided to the program. These should occur on a
monthly or quarterly basis.

Most large programs will require the development of a unique
software measurement plan. However, some organizations may be
able to define a software measurement plan that covers many
projects. This implies that a common measurement set can be
defined for the organization. A common measurement set only
makes sense for programs that share the following characteristics:

• similar software issues

• common software process (standards, practices)

• stable technology (languages, tools, platforms)

• similar application domains

Imposing a standard measurement set in situations where these
conditions are not satisfied may burden the program with
unnecessary measurement requirements while missing important
issues that should be tracked.

Part 1 - The Software Measurement Process

Page 42

A standard set of software measures only works for
programs with common software processes

and similar characteristics.

A common data set or normalization scheme may be necessary for
other types of analysis to support process improvement and
business purposes. However, this Guide focuses on single
program analysis. Recording the characteristics which drive
decisions in the measurement selection process is important for
figuring out how to normalize data for these purposes later.

In addition to the program-specific measurement needs discussed
in this Guide, other users may have other valid needs that the
program's measurement process must address. These other users
include executive managers performing an oversight function and
software engineering process groups working on process
improvement issues. Most of the data needed by these other users
originates at the program level. Getting good data for executive
review and process improvement depends on establishing an
effective program-level measurement process.

Consider measurement requirements from all sources together
when developing a program's measurement plan. This will enable
the measurement analyst to minimize the redundancy and
inefficiency that can result from multiple data collection efforts.
Focusing on measures and analyses that benefit multiple users
helps to maximize the value of the implemented measurement
process.

Part 1 - The Software Measurement Process

Page 43

CHAPTER 3 - APPLYING SOFTWARE

MEASURES

This chapter explains how the measurement plan that results from
the tailoring process described in Chapter 2 is applied during the
program planning, development, and software support phases of
the program life cycle. This chapter discusses the collection of the
data, generation of indicators and reports, analysis of results, and
the use of measurement information to support program
management decisions and actions. Management support and
participation throughout these activities are essential to the success
of a measurement program. This chapter also describes how the
focus of analysis changes across the program life cycle.

3.1 Measurement Application Overview

Figure 3-1 shows the major steps by which data is collected and
converted into information which provides a basis for action by the
Program Manager. This figure expands upon the measurement
application subprocess defined in Figure 1-1. During measurement
application the specified measures are collected and analyzed to
provide feedback on the issues. During this activity, questions
may be raised and new issues may be identified, causing the
process to iterate.

3.2 Collect and Process Data

Collecting and understanding the data is the first step towards
analyzing program issues. Getting good data is the foundation of
any measurement program. Almost all data originates with the
software developer, including planned, actual, and historical data.
Some of the concerns associated with data collection are the
sources of data, reporting frequency and format, normalization and
aggregation, and verification.

Part 1 - The Software Measurement Process

Page 44

Collect and
Process Data

Define and

Indicators

Analyze
Issues

Take
Action

Other Program
Information

Derived
Issues

Report
Results

Software
Questions

Software
Issues

Generate

Figure 3-1. Measurement Application Process

The developer's process defines how the software is
actually measured.

As explained in Chapter 2, the data collected should reflect the
nature of the software product and the developer's process. Be
sure to include all contractors and subcontractors in the data
collection effort. More mature developers are likely to be able to
provide more types of data at greater levels of detail than less
mature developers.

3.2.1 Data Sources

Software data comes from many sources. The program’s software
development plan is a primary source. This plan typically contains
the budgets and schedules against which progress and expenditures
will be compared. Data must be collected from both initial plans
and later replans (including incremental changes to plans). As the
program evolves, the corresponding actual data on problems,
progress, size, and effort will become available.

Many sources of data lie within the developer’s process. Software
problem counts and severities can be obtained from configuration
management databases, if properly structured. Counts of hours

Part 1 - The Software Measurement Process

Page 45

expended by activity can be obtained from financial management
records. Progress data usually comes from the detailed work plans
maintained by technical managers and team leaders. Use of a
project management tool facilitates data collection.

Counts of software units, lines of code, and changes to software
and documents usually can be obtained from configuration
management records and reports. Alternatively, a source code
analyzer may be used. Product information, such as counts of lines
of code or pages, can also easily be captured by recording them
during inspections. Note that in all these cases, the most efficient
method of collecting the desired data depends on the nature of the
software developer’s process.

3.2.2 Reporting and Processing

Data may be collected by the developer more frequently than it is
reported to the Program Manager. The most common reporting
intervals are monthly for requirements analysis, design, and
implementation, and weekly for integration and test activities.
Integration and test data typically is reported more frequently
because the analysis period is relatively shorter. In any case, the
reporting interval should not be longer than quarterly. Data
reported less frequently is stale, and the opportunity for action has
often passed by. Generally, analysis should occur as soon as
possible after each delivery.

The developer should supply low level data directly to the
government Program Manager. Data should be provided in both
hard copy and electronic form. When developing the schedule by
which the developer provides data to the Program Manager,
remember to allow adequate time for analysis between data
delivery and the date the analysis results are required. The lag
between data collection and reporting should be kept to a month or
less.

Collect and analyze low level data.

Part 1 - The Software Measurement Process

Page 46

One approach that helps assure timely provision of low-level data
is to provide the measurement analyst with on-line access to the
developer's software engineering database, if that database
contains the necessary information. For most programs, data will
be reported using a combination of methods.

3.2.3 Normalization and Aggregation

During data analysis, it may be helpful to combine or compare
measures from different activities or CSCIs implemented in
different languages. Normalizing data requires the definition of
conversion rules or models. For example, to compare the
productivity of different developers, it may be necessary to use a
model that takes into account the effect of program schedule and
size on productivity. Normalization has to be performed carefully.
Any rules or models used must be validated with historical data.

The measurement analyst does not want to report all data to the
Program Manager at the detailed level at which it is received.
Consequently, it is often necessary to combine raw data from low
level components into higher levels. Aggregating data requires the
definition of the relationships among the measured objects, such as
is provided by a WBS. For effective communication to occur, both
the developer and Program Manager must understand and use the
same aggregation and normalization rules.

3.2.4 Data Verification

Getting useful measurement results depends on feeding good data
into the analysis and reporting process. Data verification must
consider both the accuracy of the data as it is recorded, as well as
the fidelity with which it is transmitted. All data should be
identified with its date of collection and source. Such
identification helps to line up data with program events. Apply
configuration management procedures, such as versions and dates,
to electronic deliveries of datasets. This audit trail should be tested
periodically to assess the integrity of the data collection process.

Once the data has been processed into a database or other storage
medium, additional checks should be made. Compare a sample of
values from the input data with the database contents. Previous
values that are not expected to change should also be compared

Part 1 - The Software Measurement Process

Page 47

with current values. Additional checks may be automated. These
include type checks, range checks, and completeness checks.

Developing and disseminating clear definitions of the desired data
items helps to ensure consistent data. Even seemingly obvious
terms, like lines of code and staff-months of effort, need to be
defined. For example, lines of code may be interpreted to mean all
physical lines, only non-comment lines, executable statements, or
one of a dozen of other variations. Even staff-months is
ambiguous. The average number of hours worked per month
varies from organization to organization. The categories of
“software” labor reported may also differ.

Knowing how the measurement data is defined is the
basis for accurate analysis.

Data verification is complicated by the fact that some of the
assumptions underlying the measurement program can change
during the program. Aggregation structures, product components,
processes, and even definitions of measures may be updated as the
program evolves. Sometimes, estimates and actuals are measured
differently. Consider these possibilities during the data
verification step.

You should be aware that even valid software engineering data is
likely to be "noisy". Software engineering is a human-intensive
activity; things seldom go exactly as planned. Because
performance varies from week to week, you should be wary of
“actual” data that exactly matches the “plan”.

Any concerns about or inconsistencies in the data should be
resolved via communication with the developer. Missing data,
large changes in values, or changes in the data structure should
always be discussed to ensure that the measurement analyst
understands what the data represents.

3.3 Define and Generate Indicators

The next step after collecting and verifying the data is to define
and generate the indicators that are the basis for analysis, reporting,

Part 1 - The Software Measurement Process

Page 48

and action. An indicator is a measure or combination of measures
that provides insight into a software issue or concept. Most of the
indicators discussed in PSM compare two measures, usually
planned values versus actual values. The relationship between the
two measures often can best be communicated graphically.

The measurement approach advocated in PSM stresses the
collection of low level data from which many different indicators
can be constructed. Such an approach allows for greater flexibility
in analyzing issues and adapting to new issues as they arise. A
measurement process that is based on the periodic delivery of only
pre-defined graphs and tables does not have this flexibility.

Note that while some measures are closely associated with specific
indicators, the PSM concept of an indicator helps the analyst to
combine measures in many different ways.

Three sets of indicators typically are produced for each analysis
cycle:

• Established indicators that are produced for every
analysis cycle.

• Variations of the established indicators that provide
additional detail to help localize problems.

• New indicators that respond to questions raised by the
Program Manager or software measurement analyst
during the current analysis cycle.

Most data necessary for producing these indicators should be
supplied by the software developer. Most database and
spreadsheet tools have the capability necessary to produce graphs
like those discussed in this Guide. Usually, only summary reports
are provided to the Program Manager on a regular basis, but
detailed analyses must be studied by the measurement analyst and
be available for discussion with the Program Manager if needed.

Measurement indicators, graphs, and reports are
dynamic - they change to answer different

questions about the issues.

Part 1 - The Software Measurement Process

Page 49

Good graphic displays of indicators facilitate communication of
measurement results. Hence, graphs must not be too complex.
Each graph should convey a clear message. It is better to have
many graphs than many messages on one graph, especially when
getting started. Part 3 of the Guide provides guidelines for
developing effective graphs.

3.3.1 Basic Indicator Concepts

Issues usually cannot be measured directly. It is difficult to find a
single measure that captures everything important about an issue.
Thus, we must rely on the use of measurement indicators. The
indicators discussed in PSM are analysis tools, often represented as
a graph or a table, that give insight to a particular issue. Indicators
give warnings of problems associated with issues. An important
issue may be tracked with several indicators, and in many cases
they are based on different measures.

In most cases, insight into an issue cannot be obtained simply by
collecting current data. That data must be compared with some
notion or expectation of what the current data should be. That
expectation may not be explicitly stated prior to the start of the
measurement process. It may be a rule of thumb such as, "error
rates usually go down as testing progresses". Since in the real
world we seldom get exactly what we expect, we also need criteria
to decide whether or not the difference between actual data and our
expectation is sufficiently different to cause concern. The
measurement indicators used in PSM generally consist of three
parts:

• Actual value of a measure or combination of
measures - Actual current data such as hours of effort
expended or lines of code produced to date.

• Expected value of a measure or combination of
measures - Planned value, quantitative objective,
baseline, or historical value such as planned milestone
dates, target level of reliability or required productivity.

• Significance criteria - Rules of thumb and statistical
techniques used to assess the difference (often called
variance) between planned (expected) and actual
(measured) values.

Part 1 - The Software Measurement Process

Page 50

Data provided by the developer will include planned and historical
values, as well as corresponding measured actual values. During
program execution, new indicators can often be defined by
organizing collected measures in different ways.

Indicators can be used for predictive as well as for assessment
purposes. Thus, a given indicator may be regarded from two
points of view, based on how it is used:

• Leading Indicators - Predict the future situation with
respect to an issue. For example, requirement changes
may be a leading indicator for developer effort.
Changes in requirements usually result in a need for
increased effort.

• Current Indicators - Describe the current situation
with respect to an issue. For example, effort profiles
describe the developer software effort currently being
expended by the program.

Note that the use of an indicator as leading or current is with
respect to a specific issue. A given indicator may be current with
respect to one issue and leading with respect to another issue. In
order to define a leading indicator, the relationship between the
activities or products measured by the leading indicator and those
measured by current indicators must be understood.

Implement an independent analysis capability.

Figure 3-2 illustrates the cascading relationship of typical software
problems. Requirements changes drive increases in size. The
increased size requires additional effort. The additional effort
leads to schedule delays. Schedule pressure can cause a product to
be delivered that is not fully tested and has documented problems
that have not been corrected. These problems represent rework
that requires additional effort in future releases or during
maintenance.

These problems correspond to issues for which indicators can be
defined. The earlier the situation described in Figure 3-2 is

Part 1 - The Software Measurement Process

Page 51

recognized and addressed, the greater the chances of program
success. Thus, a program for which schedule was identified as a
primary issue might also benefit from collecting effort and size
measures as potential leading indicators of schedule.

Requirements
Changes

Software Size
Growth

Effort
Over-Runs

Schedule
Slip

Rework
Quality

Shortfalls

Figure 3-2. Typical Pattern of Software Development Problems

During analysis, each issue should be considered from two
perspectives, feasibility and performance. Feasibility deals with
the accuracy and realism of plans, estimates, or assumptions
associated with an issue. For example, an assessment of the
feasibility of resources and cost for a program must consider
whether the proposed work can be accomplished with the proposed
resources. Performance deals with adherence to plans, estimates,
and assumptions associated with an issue. For example, an
assessment of the resources and cost performance of a program
must consider whether expenditures, such as personnel effort,
conform to plan.

3.3.2 Types of Indicators

Indicators may also be classified into two general types, trend-
based and limit-based, in terms of how they are graphed and
analyzed. The primary distinction between the two is whether the
expectation (target or plan) is relatively constant or changes over
time. Both types of indicators should be constructed using raw
data rather than percentages. Percentages are easily manipulated.
The following subsections explain these indicator types in more
detail.

Part 1 - The Software Measurement Process

Page 52

3.3.2.1 Trend-Based Indicators

Trend-based indicators are used when the expected or planned
value changes regularly over time. Feasibility analysis of a trend-
based indicator involves determining whether the rate of work or
other performance implied in the trend is actually achievable.
Performance analysis consists of determining whether the actual
program trend corresponds to the planned trend. Figure 3-3 shows
an example of a trend-based indicator. In this example, a different
goal or target for software work units completed has been set for
each week. This is the program’s implementation plan. Actuals
are plotted on the same figure. The example of Figure 3-3 also
shows an update to the plan due to size growth, an increase in the
number of work units.

Work Unit Progress

0

20

40

60

80

100

120

140

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Date

W
o

rk
 U

n
it

s
C

o
m

p
le

te
d

Plan 1
Plan 2
Actual

Program: PSM Data as of 31 Jul 95

SDR

Figure 3-3. Trend Based Indicator Example

In addition to planned versus actual indicators, trends are used to
represent work backlogs like problem reports. The amount of
work to be completed (problem reports to be fixed) is not known in
advance, so the plan (or target) is developed week by week as
problems are discovered.

3.3.2.2 Limit-Based Indicators

Limit-based indicators are used when the expected or planned
value remains relatively constant. A change in the limits or targets
associated with these indicators usually involves a major replan or

Part 1 - The Software Measurement Process

Page 53

a change in expectations for the program. Feasibility analysis of a
limit-based indicator requires determining whether the proposed
limits are reasonable and soundly-based in fact. Performance
analysis consists of determining whether the actual program
performance trespasses its established bounds.

Limit-based indicators include measures for error rates, computer
utilization targets, and productivity goals. Figure 3-4 shows an
example of a limit-based indicator for software size. As long as
the actual size remains within the planned limit (initial estimate
plus acceptable error), performance is acceptable. Whenever
actual values exceed the limit(s), the cause should be investigated.
Limits can represent norms, expected values, or constraints. In
many cases they represent a threshold value established by the
Program Manager.

Software Size

200

250

300

350

400

450

Jan 93 Mar May Jul Sep Nov Jan 94 Mar
Date

S
o

u
rc

e
L

in
es

 o
f

C
o

d
e

(I
n

 T
h

o
u

sa
n

d
s)

Current
Estimate

SSR SRR SDR TRR SCT

Program: PSM Data as of 28 Feb 94

Initial Esitimate

Esitimate Plus Error

Figure 3-4. Limit-Based Indicator Example (Software Size)

Figure 3-3 in the preceding section also provides an example of a
potential relationship between a limit-based and a trend-based
indicator. The change in total work units is a change to a limit (the
amount of work to be performed) which must be reflected in an
update to the trend plan.

Part 1 - The Software Measurement Process

Page 54

3.4 Analyze Issues

During this step, the indicators generated in the preceding step go
through a systematic analysis process. This process results in an
assessment of the status of the program relative to the known
issues. As shown in Figure 3-1, this analysis is based on both
measurement and other program information. Only the integration
of quantitative and qualitative data produces true program insight.
The results of the analysis are the basis for identifying new issues
and taking corrective action on known issues.

The measurement process must be able to respond quickly to the
information needs of Program Managers. Typical questions asked
by Program Managers include the following:

• Can I trust the data?

• Is there really a problem?

• How big is the problem?

• What is the scope of the problem?

• What is causing the problem?

• Are there related problems?

• What should I expect to happen?

• What are my alternatives?

• What is the recommended course of action?

• When can I expect to see the results?

The measurement process must generate the answers to these
questions.

During each analysis cycle, two types of analyses should be
performed. Feasibility analysis is conducted to determine whether
the software developer's plans and targets are achievable.
Performance analysis is conducted to determine whether the
developer is meeting the plans, assumptions, and targets. Sections
3.3.2 and 3.3.3 respectively discuss feasibility analysis and

Part 1 - The Software Measurement Process

Page 55

performance analysis in more detail. The next section describes
the general process in which either type of analysis can occur.

3.4.1 Basic Analysis Process

Analysis of measurement data tends to be a highly individualistic
activity. However, the credibility and completeness of the analysis
are enhanced when the analyst follows a repeatable process.
Analysis results are more likely to be useful and the Program
Manager will have a higher degree of confidence in them. This
Guide will present the analysis activity from three perspectives: 1)
tasks or steps that answer the Program Manager’s questions, 2)
analysis concerns (i.e. feasibility and performance) during these
tasks, and 3) changes in emphasis due to life cycle phase. Figure
3-5 illustrates these perspectives.

Use a structured analysis process to trace the
measures to the decisions.

The figure shows the iterative nature of the analysis process. This
complicates the achievement of a thorough and repeatable analysis.
The analyst may revisit earlier steps or jump ahead temporarily.
However, following a basic sequence of tasks helps to ensure the
effectiveness of both feasibility and performance analysis. These
tasks are as follows (see also Figure 3-5):

• Identification of Problems

• Assessment of Problem Impact

• Projection of Outcomes

• Evaluation of Alternatives

Several of these steps will involve the collection of additional non-
measurement data. Decisions cannot be based solely on
quantitative data. Context information may be collected via
developer feedback, audits, joint technical and management
reviews, document reviews, and risk analyses. Gathering and
integrating appropriate non-quantitative data is essential to the
successful application of measurement.

Part 1 - The Software Measurement Process

Page 56

Identify

Assess

Project

Evaluate

Feasibility
Analysis

Performance
Analysis

Indicators

Results

Management
Questions

Analyze Results

New
Issues

Other
Program

Information

Software Support

Software Development

Program Planning

Figure 3-5. Issue Analysis Activities

Throughout the analysis process, the analyst is concerned with
understanding the feasibility of the program plan as well as
performance relative to the plan. Figure 3-5 also shows that
changing life cycle concerns affect the scope of the analysis.

3.4.1.1 Identification of Problems

Problems are recognized by detecting a difference between plans
and actuals or between plans and other baselines. If the difference
between these values exceeds the threshold of risk acceptable to
management, then the situation should be investigated. Consider
not just the absolute magnitude of the difference but also the trend.
If a variance has been growing steadily larger month by month, it
should be investigated even if it has not yet exceeded the threshold.

Both feasibility and performance analyses may be performed using
a single indicator technique, one indicator at a time. However,
because software issues are not independent, we must also apply
an integrated analysis technique using multiple indicators
simultaneously. For example, a problem that should show up in
one issue area (e.g., effort increases) may be disguised by an
accommodation made in another issue area (e.g., schedules slip so
that the increased effort does not result in a detectable increase in
staff level).

Part 1 - The Software Measurement Process

Page 57

These interactions among issues also suggest that a measurement
program should never adopt a single issue focus. Single indicator
analysis usually is performed first during the analysis cycle,
followed by an integrated analysis using multiple indicators.

Use multiple indicators to analyze a software issue.

Sometimes inconsistent, incorrect, or inaccurate data may cause an
indicator to suggest a problem when none really exists. Discuss all
data anomalies and other potential inconsistencies with the
software developer. However, when multiple indicators point to a
problem, it's usually not just a data problem.

3.4.1.2 Assessment of Problem Impact

The first step in assessing the impact of a problem is to localize the
source of the anomaly detected and evaluate its scope. This may
require additional focused data collection efforts, but most
measurement requirements should be satisfied with the existing
low level data.

Sometimes a substantial difference between planned and actual
values may be caused by outliers, which are values that don’t
appear to be consistent with the other data collected. For example,
the average cyclomatic complexity of a component may be
significantly higher than that of the rest of system due to one or
two unusually complex units. Be careful to not make judgments
about the whole system based on these outliers.

Once the source and scope of the problem has been identified the
magnitude of its potential impact on program success can be
assessed. The magnitude of the impact is not always proportional
to the size of the difference between planned and actual values.
Sometimes, a small problem that arises in one issue area (e.g., size
growth) may have a ripple effect on another issue (causing, for
example, effort over-runs). Rippling multiplies the effect of a
problem.

Also consider the impact of any identified problems on program
risk. A problem that does not by itself pose an obstacle to program

Part 1 - The Software Measurement Process

Page 58

success, but which increases the program's risk level should be
managed carefully. A significant impact to an item on the critical
path should always be of concern.

3.4.1.3 Projection of Outcome

Assessing the current impact of a problem helps to understand the
probable impact to the program. However, to get a complete
picture of the significance of the problem, its impact must be
projected into the future. Eventual program outcomes can be
predicted by projecting current trends as straight lines or by
employing more sophisticated parametric estimation models for
effort, size, schedule, problem reports, and other measures.

Use these projection techniques to investigate the effects of
changes in assumptions on program outcomes. Exploring these
"what if" scenarios helps the measurement analyst to understand
which factors most strongly influence program outcomes.
Throughout these studies, keep in mind the imprecision inherent in
such projections. Small differences in predicted outcomes are
probably meaningless.

3.4.1.4 Evaluation of Alternatives

The information assembled using the preceding steps should
enable the measurement analyst to evaluate alternative actions and
make a recommendation to the Program Manager. The underlying
problem and potential actions should be reviewed with the
developer and modified as appropriate based on the developer’s
feedback. Consider the raw data, indicators, and context
information about the program and recent events in reaching
conclusions. Don't reach conclusions based on a single item of
evidence, whether quantitative or subjective.

In deciding on a specific recommendation, consider the nature and
effectiveness, or impact, of previously taken corrective actions.
Avoid recommending a corrective action that will conflict with
previous actions or a corrective action that has already failed to
work in a similar situation.

One result of the analysis process may be to identify a new issue
and recommend the collection of additional data to track it. This

Part 1 - The Software Measurement Process

Page 59

may require the program to revisit the measurement tailoring
process described in Chapter 2.

3.4.2 Feasibility Analysis

The four analysis steps just described can be performed to assess
the feasibility of program plans. A feasibility analysis should be
conducted with respect to an issue during the initial planning
activity and at all subsequent replans. A program’s failure may be
due to an overly ambitious plan as much as to poor performance.

The feasibility of a plan depends on the accuracy of assumptions
and data as well as the effectiveness of the planning process.
Some of the key considerations in determining the feasibility of a
plan are as follows:

• Basis for estimate - How completely was the problem
analyzed? How good is the historical data (e.g., past
productivity)? Are the measures well-defined?

• Realism of adjustments - Do any adjustments for
unique product or process factors (e.g., software
development environment) reflect likely impacts rather
than optimistic hopes?

• Confidence in process - Has the process that
determines the plans or targets been used before? Did it
give good results?

• Changes in assumptions or environment - Have any
significant changes occurred in the underlying
assumptions or program environment which might
affect the validity of the plan?

• Comparison of program parameters - Are the
performance levels or targets (e.g., productivity,
quality) in the same range as those that have been
achieved on similar programs?

Each part of the plan (such as size, schedule, staffing profile) may
pass the tests above, but the plan may prove to be infeasible when
considered as a whole. Figure 3-6 shows an overlay of a milestone
(Gantt) chart on a staffing profile. Note that the highly parallel
design and implementation activities are scheduled during an

Part 1 - The Software Measurement Process

Page 60

interval of decreasing staffing. Thus, while the overall schedule
may be adequate and the overall staffing sufficient, the allocation
of staffing over time does not match the schedule. Following this
plan, the program is sure to experience some periods where the
staff exceeds the scheduled work and other periods where the staff
is insufficient for the scheduled work.

Schedule Versus Staffing

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Requirements

Design - 1

Design - 2

Design - 3

Implementation - 1

Implementation - 2

Implementation - 3

Integration and Test

Date

0

20

40

60

80

100

120

140

160

N
u

m
n

b
er

 o
f

S
ta

ff

Actual Plan

Program: PSM Data as of 30 Apr 95

Figure 3-6. Software Development Personnel and Gantt Chart
Analysis

3.4.3 Performance Analysis

Regardless of its feasibility or goodness, once a program has
committed to a plan, performance can be measured against the
plan. The Program Manager must pay close attention to how well
the software development or support effort keeps to the plan.

Unfortunately, by the time a size, effort, or schedule performance
problem is recognizable in a single indicator analysis, the problem
has likely become one of major proportions. Thus, in evaluating
performance the analyst must rely more on integrated analyses
using multiple indicators. Some of the things to look for in such an
analysis are as follows:

• Leading indicators - Some indicators help to identify
problems before they translate into a measurable
schedule slip or cost over-run. For example,
requirements changes usually precede size and effort

Part 1 - The Software Measurement Process

Page 61

increases. Even if resources are not currently a problem
on a program, a large number of requirements changes
indicates that resources will become a problem if action
is not taken.

• Critical path items - Even if high level indicators
suggest the program is moving ahead smoothly, delays
and quality problems in a critical path item can have a
ripple effect late in the program if not recognized and
countered early.

• Inconsistent trends - Sometimes two related indicators
will suggest that different situations exist. Neither
variance taken alone may be large enough to suggest a
problem, but taken together they indicate that some
element of the process is not working as planned.

Figure 3-7 shows an example of a problem made visible by
detecting inconsistent trends. The figure overlays a design
progress indicator with a problem report indicator. While the
measure of actual design progress appears to be only slightly
behind the plan, the number of open problem reports is not going
down. These open problem reports represent rework that must be
completed before the design activity can be completed. Thus, the
trends in these two indicators are inconsistent.

Once the existence of a problem has been suggested by an analysis,
the problem should be localized by examining indicators based on
more detailed data. In the example of Figure 3-7, the problem
report indicator should be generated for each of the CSCIs within
the program. Identifying the specific source of the problem helps
to determine the cause and select an appropriate corrective action.

In many cases, the measurement results can be compared and
evaluated within the boundaries of the program to identify
problems. This is especially true for large programs with many
software activities and components. For example, for a program
with a large number of CSCIs, the defect densities of the CSCIs
with similar designs and functions can be compared to identify
outliers (those components with an unusually high number of
defects).

Part 1 - The Software Measurement Process

Page 62

Design Progress Versus
Problem Report Status

0

100

200

300

400

500

600

Jan
95

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
96

Date

N
u

m
b

er
 o

f
U

n
it

s
C

o
m

p
le

ti
n

g
 D

es
ig

n

0

25

50

75

100

125

150

175

200

N
u

m
b

er
 o

f
P

ro
b

le
m

 R
ep

o
rt

s

Planned Units Actual Units Open
Problem Reports

Program: PSM Data as of 31 Aug 95

SDR

Figure 3-7. Development Progress and Problem Report Profile
Correlation Example

This type of internal comparative analysis generally yields valid
results, since the development process and associated measurement
data are usually consistent for the development of all of the CSCIs.
In some instances, a matrix of the measurement results from all
measures can be constructed to compare software activities and
components on a periodic basis. This helps to identify and localize
problem areas using more than one measure.

Interpret the measurement results in the context of
other program information.

Additional context information is usually needed to make valid
interpretations as to the cause of a problem. For example, noting a
discrepancy between the originally estimated software size and the
current estimate (or actual) size does not provide enough
information for management action. The size difference may
result from: 1) the size of the system was poorly estimated in the
beginning, 2) significant requirements changes have occurred, or
3) changes were made in the way size is counted. Depending on
the cause of the variance, different actions may be indicated.

Part 1 - The Software Measurement Process

Page 63

3.5 Report Results

The measurement analyst must regularly communicate the results
of his or her analysis to the Program Manager. This
communication is normally done via a briefing or report. The
software measurement analyst should report the following:

• Overall evaluation of program - Status relative to the
known program issues and projections of performance
to completion.

• Identification of specific problems - Location, cause,
and impact of any problems identified in the analysis.

• Formulation of recommendations - Alternative
actions proposed for addressing the underlying
problems identified in the analysis (with advantages
and disadvantages of each).

• Identification of potential new issues - Nature of the
problem or proposed actions may result in the
identification of new issues that need to be tracked in
the future.

Reporting and reviewing measurement results must be integrated
into the management process. Two regular opportunities for
management action are as follows:

• Periodic status reviews - Concentrate on analyzing
performance relative to plans and assumptions. Present
system level graphs first. Only introduce more detailed
levels of analysis if a problem is identified. Do not
expect to report a problem every time.

• Major milestone reviews - Consider feasibility and
performance. Re-estimates should be prepared for
effort, size, schedule, and other measures related to key
program issues. The measurement analyst’s assessment
of these estimates should be presented at this review.

The reporting system should promote regular interaction and
objective communication among the elements of the development
team (see Figure 1-3). An effective vehicle for this is an online
database and analysis capability accessible to both the developer

Part 1 - The Software Measurement Process

Page 64

and the government program management team. Recognize that
the measurement analysis report or briefing may contain
proprietary or sensitive information. The measurement analyst
must take appropriate steps to protect this information.

Use the measurement process as a basis for objective
communications.

If possible, measurement results should be discussed with the
appropriate software developer personnel prior to the formal
review. This interaction provides an opportunity to discover
events and qualitative information that helps explain what is
happening in the data. It is easy to arrive at incorrect conclusions
without communication. Measurement should be used for
communication and understanding, not for punishment.

The measurement analyst should record and be prepared to explain
how the analysis results and recommendations were arrived at.
This may be need to justify decisions and trace recommendations
back to the underlying data.

3.6 Take Action

The use of software measurement on a program does not require
any special, additional management control functions. However, it
does require that basic program management structures be in place.
Measurement complements the existing planning and control
activities. When management action is deemed appropriate based
on measurement information, it should be implemented via the
existing management structure and contractual mechanisms.

Integrate software measurement into the program
management process throughout the life cycle.

Measurement helps to recognize that a problem exists and to
localize its cause. The identification of the underlying cause and
selection of appropriate corrective action requires the application

Part 1 - The Software Measurement Process

Page 65

of good management and engineering judgment. Action must be
taken to realize any benefit from measurement.

Sometimes the developer will recognize the problem and take
action independently. At other times, the Program Manager will
have to intervene. Examples of actions that might be taken by the
Program Manager include the following:

• Extending the program schedule to maintain quality.

• Adding development resources to stay on schedule.

• Deleting functional capabilities to control costs.

• Changing the process to improve performance.

• Reallocating resources to support key activities.

Some of the actions listed above are significant and may not be
possible. Others attempt to optimize performance within the
program’s established constraints. Measurement can help the
Program Manager to recognize and select the “best” course of
action available.

Measurement assists in making predictions about likely program
outcomes given different scenarios and actions. Current trends can
be projected into the future. Historical data and qualitative
experience from similar programs can also be very helpful in
evaluating alternatives. All of these types of information help the
Program Manager to arrive at the optimum decision within the
bounds of program constraints.

Once a corrective action is initiated, additional indicators may be
defined to assess the effectiveness of the action taken. Naturally,
there is a delay between the start of a corrective action and the
detection of its effects. Nevertheless, it is important to follow
through to ensure that the desired outcome is realized. In most
cases new indicators to track actions can be defined using the data
already collected.

Part 1 - The Software Measurement Process

Page 66

3.7 Life Cycle Application

While the issue-driven measurement approach and flexible
analysis process advocated in this Guide applies throughout the life
cycle, the issues, measures, and focus of analysis may change as
the program progresses. This Guide adopts a three-phase software
life cycle model consisting of Program Planning, Development,
and Software Support. This section discusses some of the unique
measurement concerns in each life cycle phase.

3.7.1 Program Planning

During the Program Planning Phase, the Program Manager’s
primary concerns are assessing the feasibility of the program plans
and selecting the most capable software developer for the job.
Feasibility of plans should be assessed as described in Section
3.3.2 above. Two sets of plans must be analyzed as follows:

• Program plan - Assess the required functionality,
resources, and schedule defined for the program. Since
it may be difficult to adjust the level of resources and
schedule, the result of this assessment may be a
quantification of risk rather than revised budgets and
milestones.

• Developer plan - Assess the developer’s approach to
satisfying the program plan in terms of required
functionality, resources, and schedule. Also assess the
technical approach, quality, and capability of each
potential developer.

Since the overall functionality, resource, and schedule envelope is
established by the program, the technical approach, quality, and
capability will be major criteria in the selection of the developer.

Measurement related information used to select the developer
should include the following:

• Past performance data - The developer should be able
to provide productivity and quality data from past
projects. When comparing potential developers' past
performance, be sure to compensate for differences in

Part 1 - The Software Measurement Process

Page 67

how measures such as lines of code, errors, and effort
are defined.

• Overall process maturity - The measurement maturity
of an organization is one dimension of its overall
process maturity. Organizations with an ad-hoc process
may have difficulty providing the basic measurement
data described in this Guide.

• Maturity of the measurement program - Sometimes
organizations that rate well in terms of overall process
maturity have weak measurement programs. The
ability of the developer to provide accurate and
meaningful measurement data appropriate to the
program issues must be considered.

Of course, the choice of a developer can not be based solely on
measurement related factors. The measurement capability of
potential developers is just one more factor that needs to be
considered along with the other technical, management, and
experience factors on which a source selection is based.

3.7.2 Development

During the development phase, the Program Manager continues to
be concerned with all six basic issues. Even developer capability
needs to be tracked because it can change. For example, a high
level of personnel turn-over could result in lower productivity.
During this phase, the focus of analysis turns to performance
relative to the plans, rather than the feasibility of the plans
themselves. However, replans continue to be assessed for
feasibility.

Development tasks often are categorized into four activities:
Requirements Analysis, Design, Implementation, and Integration
and Test. Depending on the software development model adopted
for the program, these activities may be organized in different
ways. Each new activity introduces new opportunities for
measurement.

During the requirements analysis activity, the primary issues are
growth and stability, schedule and progress, and product quality.
The overall magnitude and stability of requirements can be tracked

Part 1 - The Software Measurement Process

Page 68

by counting requirements and changes to them. However, progress
and quality are more difficult to measure during this phase. In
part, this difficulty is caused by the ad-hoc nature of the
requirements process in many organizations. Measurement can
only reflect the developer’s process and product. It does not add
structure.

The requirements process must be well defined to obtain
meaningful measures. One effective requirements technique is to
plan and conduct a series of reviews of parts of the requirements.
This technique offers several opportunities for measurement.
Completion of reviews can be tracked to assess progress. Action
items and problems from the reviews can be tracked to assess
quality.

During design and implementation, the focus is on schedule and
progress, product quality, and technical adequacy. The Program
Manager must continue to keep an eye on growth and stability to
avoid surprises. Again, the opportunity to gain insight into
program status depends on the structure of the developer’s process.
To the extent that the development process defines discrete design
and implementation activities, progress is easier to measure.
Sometimes progress comes at the expense of quality. The Program
Manager needs to recognize and address this situation if it arises.
During design and implementation, the adequacy of the
developer’s technical approach will be challenged. Any
deficiencies must be recognized as soon as possible so that
alternative solutions can be identified and implemented.

During integration and test, the program focus is on getting the
product ready to be deployed. This means evaluating product
quality. The testing activity is often one of the shortest and most
intense. Consequently, the measurement analyst must focus on
providing rapid collection, analysis, and feedback to the Program
Manager (especially on problem report status) so that effective
decisions can be made. A weekly reporting interval often is used
during this activity. In some cases, daily test progress and problem
report status are provided. The determination of the reporting
interval depends on many factors, but the measurement analyst
should be prepared for this burst of activity during testing.

Part 1 - The Software Measurement Process

Page 69

3.7.3 Software Support

Software support continues the transition in the focus of the
program issues focus towards product quality and away from size
and growth. Note that after deployment, when a system is
normally in software support, large enhancements may take place
that are really new developments. These do not follow the usual
“change and fix” process for software support.

The developer's process defines how the software is
actually measured.

The software support process may be implemented in many
different ways. An organization different from the software
developer often handles software support. That organization is
likely to use a different management structure, personnel, and
process than the developer. Even though the basic principles still
apply in software support, the measurement program for a software
support organization usually needs to be planned separately from
that of the software developer. For example, during development,
work unit progress measures may be collected to track the design,
coding, and integration and test of software components.
However, during software support, the unit of work tracked
becomes the change request rather than the component.

During software support, problem reports and change requests may
be handled individually or bundled together to define a new
version of the software product. It is easier to measure and control
the version-based process. However, the nature of the system
being supported often dictates the version release strategy and
other aspects of the software engineering process.

Part 1 - The Software Measurement Process

Page 70

Part 1 - The Software Measurement Process

Page 71

CHAPTER 4 - IMPLEMENTING A

MEASUREMENT PROCESS

The previous chapters describe the software measurement process.
This process includes the tailoring and application of software
measures to address specific program issues. A well defined
measurement process is of little value if it is not properly
implemented within the organization. This chapter addresses how
to do this, and describes four key measurement implementation
activities. This chapter also addresses how measurement
information can be used to support overall organizational
requirements. Although this chapter approaches measurement
implementation from the perspective of a DoD acquisition
organization, much of the guidance is applicable to any type of
organization implementing a measurement process.

4.1 Measurement Implementation Overview

Implementing a measurement process within an organization is
similar to implementing any new initiative or function.
Measurement represents a significant change in how an
organization does business, and the issues and concerns related to
this change must be directly addressed.

There are four key activities which must take place to effectively
introduce software measurement into an organization. These
activities are depicted in Figure 4-1 and are described as follows:

• Obtain Organizational Support - This activity is
concerned with generating support for software
measurement at all levels throughout the organization.
Management mandated measurement without
organizational buy-in and support will seldom succeed. All
members of the organization, at all levels, need to
understand how measurement will directly benefit their
programs and their own work processes.

• Define Measurement Responsibilities - This activity
involves establishing and assigning measurement related
responsibility within the organization. The key positions

Part 1 - The Software Measurement Process

Page 72

generally responsible for software measurement include the
organizational and Program Managers, the measurement
analyst, and other members of the technical and
management staff who are involved with software
acquisition and development activities. Clear definitions of
who is responsible for what parts of the measurement
process are important to successful implementation.

• Provide Measurement Resources - This activity
establishes the measurement resources required to
implement the measurement process within the
organization. These resources include tools and funding of
the measurement effort.

• Initiate the Measurement Process - This activity involves
transitioning the focus from establishing the measurement
process to actually applying it within the context of a
software program.

Obtain
Organizational

Support

Provide
Measurement

Resources

Define
Measurement

Responsibilities

Initiate
Measurement

Process

Figure 4-1. Measurement Implementation Activities

4.2 Measurement Implementation Activities

Software measurement is a useful tool which can help most DoD
organizations improve the management of their programs and help
them meet organizational objectives. Like any tool, measurement
must be implemented correctly for it to be of any help. The
following sections address the activities and issues related to
implementing a measurement process.

Part 1 - The Software Measurement Process

Page 73

4.2.1 Obtain Organizational Support

Implementing measurement in an organization represents a major
cultural change. Fear always exists that the measurement results
will be used improperly, to evaluate individual performance or to
arbitrarily rank development organizations. There may be concern
that measurement will highlight problems in a program or in an
organization, problems which were not visible before the
measurement process was implemented. For example, maybe the
measurement analysis will show that the software development
plan was unrealistic, or that only a portion of the software
functionality will actually be delivered. These concerns are real,
and to overcome them requires the support of all levels within the
organization.

To successfully implement a measurement process, management
support is critical. This goes beyond the senior managers saying
that software measurement is “a good idea”. Management must
take an active and public interest in the measurement process.
They must be seen as supporting the process by providing adequate
resources, asking for data and analyses, and acting on that analysis.
The entire organization will then understand that measurement is
important, and begin to actively support it as well. A measurement
process requires enthusiastic leadership at the highest levels of the
organization to make it work.

Measurement must be used to support organizational
objectives, not to evaluate individual performance.

Many managers first learn about software measurement when
some significant software “event” brings into question the way a
program or organization is being managed. Others learn about it as
a result of a policy directive or initiative. Few managers are first
introduced to software measurement as an effective program
management tool that can help to achieve defined program and
organizational objectives. In many cases, management views
measurement as “another thing to do” and as something that will
require resources that are already committed.

The key benefits of measurement to the organization should be
clearly identified.

Part 1 - The Software Measurement Process

Page 74

These include:

• Objective insight into organizational issues and
processes.

• Early detection and resolution of software problems.

• The availability of objective information to identify and
manage risk.

• Objective program team and organizational
communications.

• The ability to assess organizational performance.

• The ability to objectively defend and justify program
and organizational decisions.

In addition to management support, measurement has to be
adopted and supported at lower levels in the organization. Most
people want to do a good job, and measurement can help them.
Evaluating acquisition alternatives, assessing the feasibility of
proposed software plans, and identifying the key areas of technical
concern are all activities which involve the use of measurement.
One of the important aspects of obtaining support for measurement
throughout the organization is to ensure that everyone understands
that the measurement results will be used to support organizational
objectives, and not used to evaluate individual performance.

4.2.2 Define Measurement Responsibilities

The size and structure of each specific organization is directly
related to how measurement responsibility is assigned. How many
people are involved, and how the measurement tasks are actually
allocated, vary considerably from organization to organization. In
general, responsibility for implementing the measurement process
is focused at different levels.

The primary responsibility for the measurement process is at the
management level. In many DoD organizations, two different
types of managers are involved in the acquisition and support of
software intensive systems:

Part 1 - The Software Measurement Process

Page 75

• Executive Manager - The executive manager, who in
many cases is the Program Executive Officer (PEO),
generally has responsibility for an organization that
controls more than one program. The organizational
manager’s decisions materially affect all of the
programs within the organization. Measurement helps
the organization manager to determine the status of
individual programs, and to make decisions which
apply across the organization.

• Program Manager - The Program Manager has direct
responsibility for a software intensive program. In
most cases, the Program Manager is the primary user of
the measurement results. He is responsible for
identifying and managing the software issues, and
communicating with the program team, including the
developer and senior levels of DoD management. The
Program Manager uses measurement to make program
decisions.

In some DoD organizations, the Program Manager is also the
organizational manager. It is the Program Manager’s
responsibility to ensure that measurement is integrated into the
program. Integration includes all of the activities which make
measurement part of the overall program management and
technical processes, including the identification of resources to
support the measurement effort.

While management is responsible for integrating and using
measurement within the organization, the program technical staff
is usually assigned the day to day tasks related to tailoring and
applying the measures. One of the key responsibilities is that of
the measurement analyst. The measurement analyst has the
primary responsibility for tailoring the measures, collecting and
processing the measurement data, analyzing the measurement
results, and reporting the results to management. The
measurement analyst is the primary measurement point of contact
with the developer. The measurement analyst ensures that the
measurement process is implemented properly, and that the
Program Manager is getting the software information required to
properly manage the program.

Part 1 - The Software Measurement Process

Page 76

Depending on the size and scope of the program, the program
office’s measurement team can consist of a part-time measurement
analyst or a multi-person team. The important thing is to have the
primary measurement responsibility for the program assigned to a
specific individual, and to allow that individual to interface directly
with the development team. If established, the measurement
analyst should be a member of the software engineering Integrated
Product Team (IPT). Above all, the measurement analyst must be
able to independently arrive at objective answers, and be able to
convey those answers directly to the Program Manager.

Other members of the program office technical staff also have
responsibility within the measurement process. They should each
understand how the process works and what information it can
provide to them. They should also support measurement analysis
efforts by helping to identify program events which may have an
impact on interpreting the measurement data.

Although the development organization is not part of the program
office staff, it plays an important role in the measurement process.
Most of the software data used by both the developer and the
program office comes from the developer. All users must
understand how each measure is defined and what the data
represents. What software WBS elements, for example, are
included in the reported software effort data? The developer
should also designate a key measurement point of contact to
interface with the program office’s measurement analyst on a
regular basis. The developer’s measurement point of contact
should also be part of the program software engineering IPT.

4.2.3 Provide Measurement Resources

Experience suggests that the measurement process will require
from one to five percent of the total software program cost.
Measurement costs include personnel and tools, as well as the cost
for the developer to assemble and report the data. Most developers
use software data internally to manage their programs. As such,
the program office should not incur a considerable amount of
additional cost for the data to be collected. If the developer does
not collect software data, there should be some concern about the
maturity of the underlying software process.

Part 1 - The Software Measurement Process

Page 77

As with any initiative, there are some non-recurring startup costs
associated with implementing a measurement process. These
costs, which include both training and tools, diminish as
measurement becomes a day to day activity within the
organization. It is important to view the measurement process as a
long-term resource within the organization. It should be self
supporting, saving as much as it costs, within a relatively short
period of time after it is established.

In some DoD organizations, the measurement costs for individual
programs can be reduced by establishing the measurement team as
an organizational resource. As long as there is a primary analyst
assigned to work independently on each program, the measurement
team can share resources, tools, and expertise.

4.2.3.1 Measurement Tools

Once the specific measurement requirements and practices have
been established, the tools used to collect, process, and analyze the
data should be identified. On many smaller programs, the
measurement process can be adequately supported using a personal
computer with a common suite of integrated office software. On
larger programs, or on programs which need to implement more
advanced analysis techniques, additional measurement tools are
usually required. When deciding what resources are required, the
wrong thing to do is to purchase a specific tool before determining
if it supports the information needs of the program. The types of
software issues that need to be addressed and the characteristics of
the measurement process drive the support tool requirements. The
process should never be implemented around a pre-defined set of
measurement tools.

Several different classes of tools are commonly applied in the
measurement process. Many are used by the developer but
may be accessed by the program office.

• Database, Graphing, and Reporting Tools - These
tools manage and store the measurement data and
produce graphical and text based reports. Commercial
personal computer database applications are generally
adequate for most programs. For larger programs with
extensive data management and storage requirements,

Part 1 - The Software Measurement Process

Page 78

consideration should be given to using more powerful
applications.

• Software Analysis and Modeling Tools - These tools
provide enhanced graphics and software analysis
capabilities generally unavailable from databases or
spreadsheets. The category includes software cost
estimation models, software reliability models,
statistical analysis tools, and similar applications.
These tools can be extremely valuable when
implemented as part of the overall measurement
process.

• Measurement “Workstation” Tools - These
applications support user interaction at all levels of the
organization by providing real-time access to both
measurement data and analysis results. They are very
useful for summarizing and providing measurement
information at the management level.

• Schedule and Project Management Tools - These
tools assist in program scheduling, progress tracking,
and critical path analysis. Some tools in this category
can also track resource allocations and expenditures for
identified activities.

• Financial Management Tools - These tools help to
collect and store data related to labor and funds
expenditures. Some tools in this category include cost
accounting and earned value functions. In some cases
existing financial management systems may not provide
software specific data at an adequate level of detail.
These systems may be difficult to modify.

• Software Product Analysis Tools - These tools
generate software product related data through
automatic analysis of specific software products.
Examples include software complexity analyzers,
software size counting utilities, and software test
coverage analyzers.

• Software Data Collection Tools - These tools help to
automatically extract software measurement data from
systems which support the developer’s software

Part 1 - The Software Measurement Process

Page 79

process. They can be commercial or locally developed
utilities which access the developer’s CASE tools,
configuration management tools, and other software
related systems. They are useful for providing the
program office with direct access to the developer’s
measurement data.

• Office Automation Tools - These tools provide
standard office automation applications such as word
processors, spreadsheets, and presentation graphics.
They can effectively support basic measurement
analysis activities and help to produce measurement
related graphs and reports.

General guidelines for selecting tools to support the measurement
process include the following:

• Select tools that support the measurement process as
tailored to meet specific program needs. Do not build a
process around the tools.

• Evaluate tools that may already be available within the
organization.

• Select tools that automate as much of the measurement
process as possible. Automated data collection, data
processing, analysis, and reporting tools can
considerably improve the efficiency of the
measurement process.

• Work closely with the developer to coordinate
measurement tool selection and implementation,
especially with respect to electronic data transfer.

• Select tools that simplify importing and exporting data
between different formats.

• Select tools that run on a common platform.

On most programs, some manual data entry will usually be
required. This should be kept to a minimum. It is usually more
cost effective to implement commercially available tools and
applications instead of developing them in-house. Data transfer
utilities which provide direct access to the developer’s

Part 1 - The Software Measurement Process

Page 80

measurement data, in many cases, are unique to each program. It
is more cost effective to implement these utilities rather than to
rely on manual data transfer and entry.

4.2.3.2 Measurement Training

Personnel at all levels of the organization require appropriate
software measurement training. Figure 4-2 summarizes the
general training requirements for different personnel in the
program organization.

Program Managers require a good foundation in the basic concepts
of software engineering and software measurement. They need to
understand the capabilities and limitations of the measurement
process measurement and how it can help them to meet their
objectives.

Figure 4-2. Measurement Training Requirements for Program Personnel

Program office technical managers and engineers require training
in the basic concepts of software engineering and measurement.
They must understand how the data will be used within the
program organization and how measurement will impact their own
work.

Measurement analysts need appropriate training and experience in
software engineering, the measurement process, and in specific
software measurement disciplines. Software engineering expertise
is critical to the success of the measurement analyst. It provides
the basis for interpreting and analyzing the data. Every
measurement analyst should understand the activities and products
inherent to the software process, and be able to relate program
software issues to specific measures and analysis activities.
Software estimation and modeling skills, and statistical analysis
experience is required for more advanced analysis.

Job Function
Program
Manager

Technical
Managers &
Engineers

Measurement
Analyst

Measurement Training
Requirement

• • • Software Engineering

• • • Measurement Overview

• Data Collection and Management

• Measurement Analysis

Part 1 - The Software Measurement Process

Page 81

4.2.4 Initiate the Measurement Process

On most programs, some data collection and analysis occurs
immediately after the decision is made to implement a
measurement process. It is not unusual for all of the
implementation activities to be taking place concurrently. A key
requirement is to show how the measurement process can help
address even the basic software issues and start to answer the
Program Manager’s questions. Even if the program is large,
initially implementing a few key measures will provide important
information that was not previously available.

One of the most important things to do is to establish an interface
between the program office and the developer with respect to
software measurement. Once established, this interface will
become one of the most important tools in the measurement
process. Direct access to the developer allows the measurement
analyst to freely address data issues, and allows for analysis
feedback to be provided to the developer on a working level. In
many instances, the program office - developer interface can be
established as part of an IPT.

Just establishing a measurement process will not have an
immediate impact on the program. As the measurement process is
implemented, use of the measurement results will need to be
“marketed” within the organization. At this point in time it is
especially important to use the measurement results correctly. The
data should be well defined, the analysis should be accurate, and
the developer should have an opportunity to address the results.

The measurement results should be made available to
all members of the program team.

After review by the Program Manager, the measurement
information should be made available to the entire program team.
This should include the developer. Discussion of the measurement
results with the developer should focus on how the measurement
results reflect what is actually happening on the program, and if
new issues identified by the analysis are valid. The developer is
important to the measurement process. If the developer is
punished for poor measurement results, then the flow of data may

Part 1 - The Software Measurement Process

Page 82

be impeded or manipulated, resulting in the loss of program insight
and communication.

The measurement process tends to impose a discipline on program
software management activities. If the measurement process is
implemented properly, the results will be used throughout the
organization. It will provide insight into the program issues and
help management to make informed software decisions.

4.3 Using the Measurement Results

The primary user of software measurement information is the
individual program team. The team includes the DoD program
office and technical support organizations, as well as the software
developer and associated development organizations. Other
organizations, particularly those with responsibility within the
DoD acquisition structure, have a valid need for information which
is available from the measurement process. Each of these
information needs is somewhat unique. This is due to the fact that
each organization has a different role with respect to the program,
and must address different issues and questions. Figure 4-3
illustrates the “types” of measurement information users within the
DoD structure. There are three primary viewpoints, the Program
Development Team, DoD Executive Management, and Software
Process Improvement groups.

DoD Management

• Enterprise
 Managers

• Sponsors

• Oversight
 Organizations

• DT&E - OT&E
 Organizations

• Joint
 Programs

Development
Manager

DOD Program
Manager

Program Development

Development Team

Process Improvement

Developer
SEPG

Government
SEPG

Figure 4-3. DoD Software Measurement Information Requirements

Not only is the program team the primary user of the software
measurement information, it is the primary source for the software
data and analysis results used throughout the structure. The

Part 1 - The Software Measurement Process

Page 83

Program Manager has considerable influence over how the data is
used within his own program organization. In many instances, the
Program Manager is required to provide data outside of the
program development team. This can be of some concern,
especially if there is some question as to how the information will
be interpreted. Before using the measurement results, all
organizations should have a clear understanding of how to interpret
the information with respect to the specific program in question.
This requires all users to understand what the data represents, how
the analysis was conducted, and how the measurement information
relates in the context of the program. All users should understand
the measurement process, especially its capabilities and
limitations. The objective of the program measurement process,
even at higher levels of the organization, remains the identification
and management of software issues, not to grade or punish the
program organizations or individual developers.

Focus initially on single program analysis.

Measurement can be a powerful tool, but it can also be misused.
Using measurement results to compare and rank different programs
with respect to performance is a primary example of misuse.
Software measurement is different for every program. The
measures that are used and how they are defined are different, as
are the overall technical and management processes that the
measures represent. Even though there is a need to quantify
program performance in a standard manner, in most cases a
comparison of a number of small programs using the software
measurement results will be invalid.

4.3.1 Program Development Viewpoint

The program development organization has two primary decision-
makers that need measurement information: the DoD Program
Manager, and the Development Manager.

They use the measurement information in three ways:

• To analyze options and trade-offs

Part 1 - The Software Measurement Process

Page 84

• To make program decisions

• To communicate program status

Integrated Product and Process Development (IPPD), implemented
through Integrated Product Teams (IPTs), provides a natural
mechanism for the use of measurement information. The purpose
of the IPT is to make team decisions based on timely and objective
data from the entire team, and software measurement information
specifically supports this objective. Measurement information
provides a basis for continuous feedback and discussion between
the government and the developer team.

One of the most important uses of measurement at the program
level is to help define feasible software plans. The measurement
process will quickly identify if a program is not tracking to plan.
In many cases this is due to the plan being unrealistic. Using the
measurement information to trade off and manage software cost,
schedule, and capability objectives and constraints helps to
establish achievable goals for the program team. At the very least,
the measurement information can be used to objectively address
the constraints when they cannot be materially changed.

4.3.2 DoD Executive Management Viewpoint

There are many uses of the measurement information outside of
the program organization. One of the most important is to satisfy
DoD executive management reporting requirements. Software
measurement can help in reporting the overall status of the
program. Objective data gives external organizations confidence
that the status of the program is accurately represented.
Measurement information also assists the DoD Program Manager
in coordinating with other joint or inter-related programs,
particularly on issues such as schedule. It also helps him to show
how the critical software portion of the program is being managed,
and how he is determining the status of the software with respect to
readiness for operational test and delivery. Justifying decisions is
easier when based on a repeatable process that uses measurement
data. When DoD Management asks “Why did you decide to take
this course of action?” the DoD Program Manager can pro-actively
and objectively support his decision.

Part 1 - The Software Measurement Process

Page 85

Objective data gives external organizations
confidence that the program is well managed.

Oversight organizations have special information needs. Using
measurement to support oversight requirements is challenging,
because the measurement results must be conveyed within the
technical and management context of the software effort.
Measurement can help by providing objective data that clearly
relates the program’s status. Insightful analyses can help in
understanding the type and criticality of the issues a program faces.
More importantly, the measurement information can lead oversight
organizations to ask the right questions.

Comments and direction from all DoD management organizations
should be fed back to the program measurement process. If there
are upper level concerns about a particular software issue,
measurement can be used at the program level to address it.

Program level software data is the primary source of information
used to make enterprise and organizational level decisions. It
directly supports DoD performance and business measurement
requirements.

4.3.3 Process Improvement Viewpoint

Software measurement is also used outside of the program
organization to support software process improvement. Software
Engineering Process Groups (SEPG), in both the government
acquisition and developer organizations, use the measurement data
to help identify candidate areas for process improvement activities.
Measurement also helps to evaluate the effects of process changes
across an organization. Without measurement, an organization can
have little confidence that it is improving.

4.3.4 Lessons Learned

Figure 4-4 summarizes some of the important lessons learned in
getting a measurement process started, and using the measurement
results.

Part 1 - The Software Measurement Process

Page 86

Lessons Learned

Getting Started Using Measurement Results

Ensure that everyone in the organization
understands both the capabilities and limitations
of the measurement process.

Do not allow anyone in the organization to use
measurement to evaluate individual or workgroup
performance.

Start small. Implement only a few measures to
address key issues and show how the
measurement results support both individual and
management objectives

Make the measurement data and information
available to everyone in the organization. This is
a key approach in helping people to actually use
the results. If the information is valid, people will
find a way to use it

Ensure that only the required measures are
implemented, based on the issues and objectives
of the organization. If you don’t need the data,
don’t collect it. The measurement process must
be cost effective to succeed.

Do something early. A considerable amount of
meaningful analysis can be performed with a
minimal amount of data. Don’t wait until all of the
data is available to apply it.

Assign a key individual to implement the
measurement process. This “measurement
analyst” should be an integral part of the program
team and should act as the primary interface with
the developer with respect to software
measurement.

Different levels within the same organization have
different information needs. Organization
managers may make investment decisions with
respect to software process technology and tools
while Program Managers make decisions about
specific technologies used to best satisfy program
objectives. Organizational issues and objectives
do not always equate to those of a specific
program.

The Program Manager should not incur significant
costs for the developer to collect software data.
The unavailability of data may indicate a low level
of maturity in the developer’s software process.

Measurement should be made an integral part of
the program or organization. Measurement
should support the existing management and
technical processes. Measurement should not be
treated as an “add on” within the organization.

The measurement process can initially be
implemented with basic, commercially available
database, spreadsheet, word processing, and
presentation graphics applications. More
advanced tools can be added as required.

The Program Manager must be at least willing to
listen to “bad news” resulting from the
measurement analysis. Not every analysis result
requires action. In some cases the recommended
action is not feasible. Measurement is intended to
help the Program Manager make a decision, not
make it for him

All users at all levels must understand what the
measurement data represents. This
understanding is vital to the proper interpretation
of the measurement analysis results.

Management should not try to “influence” the
measurement results before they are reported.
They should, however, understand how the
reported results were arrived at and what they
mean with respect to the associated software
issues.

Pro-actively use the measurement information to
report program status.

Figure 4-4. Measurement Implementation Lessons Learned

Issues

Measures

Indicators

Analysis

Information

A Guide to Objective Program Insight

Action

PRACTICAL

MEASUREMENT

SOFTWARE

SELECTING AND

SPECIFYING PROGRAM

MEASURES

PART 2

Part 2 - Selecting and Specifying Program Measures

Page 88

Part 2 - Selecting and Specifying Program Measures

Page 89

SELECTING AND SPECIFYING PROGRAM

MEASURES

Part 1 of Practical Software Measurement: A Guide to Objective
Program Insight describes the overall measurement tailoring
process, and explains each of the three associated tailoring
activities. This part of the Guide, Part 2, addresses the second step
of the tailoring process in more detail. It shows how to actually use
the PSM guidance to select the appropriate measures and to specify
the related data and implementation requirements.

This part of the Guide is organized into three chapters:

• Chapter 1, How to Select and Specify Program Measures -
describes how to select from a set of proven measures
based upon a prioritized list of program issues and
questions. It explains how to use the detailed PSM
measurement selection and specification information found
in Chapter 2.

• Chapter 2, Detailed Measurement Selection and
Specification Tables - packages measurement selection and
specification experience derived from DoD and Industry
programs into a series of tables which helps you to choose
which measurement categories and individual measures are
correct for your program. The tables also provide
specification guidance for each measure which helps you to
define associated data and implementation requirements.

• Chapter 3, Measurement Selection and Specification
Example - shows how the guidance in Chapters 2 and 3 are
used to select and define the measures within a typical DoD
program scenario.

The PSM measurement selection and specification guidance is
based upon actual implementation experience. It is a compilation of
the best and most commonly used measurement practices which
have helped DoD Program Managers achieve success on past
programs.

Part 2 - Selecting and Specifying Program Measures

Page 90

Part 2 - Selecting and Specifying Program Measures

Page 91

TABLE OF CONTENTS

CHAPTER 1 - HOW TO SELECT AND SPECIFY PROGRAM MEASURES....................................93

1.1 Introduction .. 93

1.2 Mapping Program Issues to Common Issues.. 95

1.3 Selecting the Appropriate Measurement Categories.. 96

1.4 Selecting the Applicable Measures ... 99

1.5 Specifying Measurement Data and Implementation Requirements............... 101

1.6 Selecting and Specifying Measures for Existing Programs 104

CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND SPECIFICATION TABLES............. 107

2.1 Introduction .. 107

2.2 How To Use the Measurement Tables... 107

2.2.1 Measurement Category Tables .. 108

2.2.2 Measurement Description Tables... 110

2.2.3 General Measurement Specification Table.. 113

2.2.4 Additional Guidance ... 113

2.2.5 Measurement Table Structure.. 114

CHAPTER 3 - MEASUREMENT SELECTION AND SPECIFICATION EXAMPLE.......................... 195

3.1 Program Scenario .. 195

3.2 Measurement Selection Summary.. 196

Part 2 - Selecting and Specifying Program Measures

Page 92

Part 2 - Selecting and Specifying Program Measures

Page 93

CHAPTER 1 - HOW TO SELECT AND SPECIFY

PROGRAM MEASURES

One of the most important aspects of implementing the
measurement process is tailoring it to meet the specific needs of the
program. There are three activities associated with tailoring the
process. First, the issues which characterize the program must be
identified and prioritized. Second, the software measures which
best address these issues must be selected and the associated data
and implementation requirements specified. Third, the selected
measures, data requirements, and implementation requirements
must be integrated into the software process. During integration,
the measures and the requirements are revised to better reflect the
characteristics of the software development environment. The
result of the tailoring effort is a well defined measurement plan
which directly addresses the program’s unique information needs,
and which can be implemented without materially impacting the
developer’s software process.

Part 1 of Practical Software Measurement explains how to identify
and prioritize program specific issues. Once these issues are
identified, the guidance provided in this chapter shows how to
actually select the appropriate measures and how to specify the
related data and implementation requirements.

The software measures presented in the Part 2 tables of the Guide
are widely used for program management purposes. However, they
are not meant to imply an exhaustive or required set of measures.
Users should augment the list of measures based on their own
experience and requirements. PSM provides guidance for
tailoring any measure, whether or not it is included in the Part 2
tables.

1.1 Introduction

To be effective, the measures that are selected must directly
address the specific software management and technical issues
which characterize the program. Since every program is described
by a unique set of issues, the measurement sets are also unique.
Each measurement set must be tailored to meet the specific

Part 2 - Selecting and Specifying Program Measures

Page 94

information requirements and characteristics of each individual
program.

The PSM approach used for selecting and specifying program
measures is based upon the direct relationship between program
issues, information needs, and the specific measures which provide
the required information.

Three PSM mechanisms support the measurement selection and
specification approach. These include: 1) a set of common
software issues, which allows you to group closely related
program issues into a manageable structure, 2) the definition of
different measurement categories for each common issue, each of
which groups the measures which provide similar types of
information related to that issue, and 3) detailed measurement
descriptions, which define each individual measure with respect to
when it is best used, what data it provides, and how it should be
implemented.

Figure 1-1 shows how the mechanisms are related.

Common Software
Issues

Measurement
Categories

Measurement
Descriptions

Figure 1-1. PSM Measurement Selection Mechanisms

The three PSM mechanisms help to map the issues to the
measures, and subsequently to define the data and implementation
requirements for each selected measure. To select the appropriate
measures, the specific program issues are prioritized and allocated
to the PSM Common Issues as described in Part 1 of the Guide.
The Measurement Categories which provide the types of
information necessary to adequately address each of the defined
Common Issues are then selected, using the measurement category
tables contained in Chapter 2, Detailed Measurement Selection and

Part 2 - Selecting and Specifying Program Measures

Page 95

Specification Tables. The individual measures which comprise each
Measurement Category are then reviewed for specific applicability,
and after the appropriate measures are selected, associated data and
implementation requirements are defined for each. This is
accomplished using the detailed measurement description tables
contained in Chapter 2.

The PSM measurement selection and specification guidance is
designed to simplify the mapping of the program issues to the
applicable measures. As such, measures which in reality support
multiple software issues are listed under a single primary issue. As
you use the guidance to select your measures, keep in mind that
many of the measures do provide insight into more than one
common issue.

The measures which are the foundation for the PSM measurement
selection and specification approach are described in Chapter 2,
Detailed Measurement Selection and Specification Tables. These
measures are not intended to represent an exhaustive list of
program management measures. They are, however, measures
which have repeatedly proven to be effective over a wide range of
programs, and represent the best practices for addressing the issues
faced by most DoD Program Managers responsible for software
intensive systems.

No program should implement all of the measures listed in Chapter
2. Although the measures that are implemented are driven
primarily by the issues which must be addressed, the overall
characteristics of the program and the software process also need
to be taken into consideration during the selection process. The
types of indicators and graphs also have a bearing on the measures
which are selected. Although the PSM measurement process
addresses measurement application (e.g. tailoring and analysis)
separately, anticipation of the types of graphs and reports which
may be needed helps to define which measures are required.

1.2 Mapping Program Issues to Common Issues

The first step in selecting and specifying the measures for any
program is to identify and prioritize the specific program software
issues which the measurement process has to address. As
discussed in Part 1, there are many sources of information which
help the Program Manager define these software issues. The issue

Part 2 - Selecting and Specifying Program Measures

Page 96

or risk identification process which helps to do this is usually
implemented, either formally or informally, on most DoD
programs. The information which helps to identify and prioritize
the program specific software issues is derived from risk analysis
results, definition and recognition of program constraints and
assumptions, identification of leveraged software processes and
technologies which have a direct bearing on program success, and
the overall experience of the Program Manager and the program
team. External oversight and reporting requirements also influence
the issues and questions that need to be addressed by
measurement.

As the above information is gathered and reviewed by the program
team, an overall software issue profile which characterizes the
program is developed. This issue profile generally includes the
prioritized list of program management and technical risks, issues,
and questions, and helps to focus the information and analysis
needs within the program.

The prioritized list of program software issues is the starting point
for selecting and specifying the required software measures. Rather
than provide an exhaustive list of all potential software issues
which map to all applicable measures, PSM allocates the identified
program specific issues to a set of six Common Software Issues.
These Common Software Issues are basic to all programs and
represent the key software areas which must be managed on a day
to day basis by DoD Program Managers. They help to simplify
the mapping of program issues to the measures. This is
accomplished by allocating each program specific issue to one of
the six Common Issues, then mapping the set of Common Issues to
pre-defined measurement categories, and to the measures listed
within each category.

1.3 Selecting the Appropriate Measurement Categories

Once the program specific software issues are identified,
prioritized, and allocated to one of the six Common Software
Issues, the program team will have a good understanding of the
software questions they will be called upon to answer, and the
types of information that they require. The second step in selecting
and specifying the measures for the program is to select the

Part 2 - Selecting and Specifying Program Measures

Page 97

measurement categories which include the measures that provide
the needed information.

Figure 1-2 shows the complete mapping of the Common Issues to
the PSM measurement categories and associated measures. Some
common issues are comprised of only a single measurement
category, and some measurement categories contain only a single
measure. Since the PSM guidance is based upon actual
measurement experience, the overall measurement selection
structure is intended to be augmented and modified to meet
individual program needs.

As shown in Figure 1-2 each measurement category is mapped to a
single common issue. Within each common issue, the measurement
categories are differentiated by the distinct types of information
and questions that their respective measures can address. Under
the common issue of Schedule and Progress, for example, there are
four different measurement categories, Milestone Performance,
Work Unit Progress, Schedule Performance, and Incremental
Capability. The measures in all of these categories address
schedule and progress related issues, but they do so with different
types of information at different levels of detail.

Milestone performance measures provide basic start and end dates
for defined software activities and events. This is adequate for
developing and reviewing Gantt-like schedules, but the measures do
not address the degree of completion of the individual software
activities and products at any point in time. More detailed
schedule and progress information is provided by the measures in
the Work Unit Progress measurement category. Earned value-
based schedule information, with schedule variances expressed in
dollars, is provided by the measures allocated to Schedule
Performance. Lastly, the measures which comprise the Incremental
Capability category show whether or not planned software
components or functions are being completed as planned in an
incremental type of software development approach.

The Measurement Category tables in Chapter 2 describe each PSM
Measurement Category in detail. The tables define each category
in terms of what information is provided by the included measures,

Part 2 - Selecting and Specifying Program Measures

Page 98

Figure 1-2. Mapping Common Issues to Measurement Categories and Measures

and the applicability of the measures within the category to
different types of programs and software processes. The tables
also identify the limitations of the types of measures in the
category. The tables help you to determine which of the

Software Issues - Categories - Measures Mapping

Issue Category Measure
Schedule and Progress Milestone Performance Milestone Dates

Work Unit Progress Components Designed
Components Implemented
Components Integrated and Tested
Requirements Allocated
Requirements Tested
Test Cases Completed
Paths Tested
Problem Reports Resolved
Reviews Completed
Changes Implemented

Schedule Performance Schedule Variance
Incremental Capability Build Content - Component

Build Content - Function

Resources and Cost Effort Profile Effort
Staff Profile Staff Level

Staff Experience
Staff Turnover

Cost Performance Cost Variance
Cost Profile

Environment Availability Resource Availability Dates
Resource Utilization

Growth and Stability Product Size and Stability Lines of Code
Number of Components
Words of Memory
Database Size

Functional Size and Stability Requirements
Function Points

Target Computer Resource
Utilization

CPU Utilization
CPU Throughout
I/O Utilization
I/O Throughput
Memory Utilization
Storage Utilization
Response Time

Product Quality Defect Profile Problem Report Trends
Problem Report Aging
Defect Density
Failure Interval

Complexity Cyclomatic Complexity

Development Performance Process Maturity Capability Maturity Model Level
Productivity Product Size/Effort Ratio

Functional Size/Effort Ratio
Rework Rework Size

Rework Effort

Technical Adequacy Technology Impacts Program Defined Measures

Part 2 - Selecting and Specifying Program Measures

Page 99

measurement categories best satisfy the projected information
requirements for the issues which have been defined.

The Measurement Category tables in Chapter 2 are grouped with
similar tables which describe each individual measure within that
category. It is recommended that you review both the category and
associated measurement tables together to help determine if the
information provided by a particular measurement category will
meet your needs. Always try to choose the measurement category
which provides you with the best type of information needed to
address your prioritized list of issues. For critical or high priority
issues, consider selecting more than one measurement category.
This will provide different types of measures and measurement
information, allowing for more in-depth analysis.

1.4 Selecting the Applicable Measures

The third step in selecting and specifying program measures is to
actually choose the measures which best address the specific
program issues. In most cases, selection of the applicable software
measures will be accomplished in conjunction with the selection of
the appropriate measurement categories. The overall objective is to
define measures which not only adequately address the identified
issues, but are practical to implement given the management and
technical characteristics of the program.

As discussed in Part 1 of PSM, there are a number of criteria which
have a direct bearing on which measures are selected. The most
important is how effective the measure is in addressing the specific
issue in question. Other factors include:

• the effectiveness of the measure in addressing multiple
issues

• the applicability of the measure within the program
domain

• how well the measure is supported by existing program
management practices

• the availability of the associated measurement data and the
cost to collect it

Part 2 - Selecting and Specifying Program Measures

Page 100

• the applicability of the measure to the life cycle phase of
the program

• the usefulness of the measure in addressing external
reporting requirements

• the overall size and scope of the program, including the
derivation and source of the software

The Measurement Description tables in Chapter 2 explain each of
the PSM measures in detail. Each table includes criteria for
determining whether or not to select the measure. This information
is found in the Measurement Definition and Selection Guidance
portions of the tables.

In most cases the selection process will require that tradeoffs be
made among the measurement selection criteria. A given measure,
for example, may directly address a high priority program issue,
but be too costly to implement in terms of time and resources.
Similarly, on a large program you may have to limit the number of
measures that are applied in order to adequately address the high
priority issues for all of the software. Some measures, when used
in conjunction with other specific measures, support key analysis
techniques. Milestone Dates, Labor Hours, and Lines of Code, for
example, are the measures used to calculate and analyze software
development performance in terms of productivity.

In general, measures from different measurement categories within
the same common issues can be substituted with some degree of
effectiveness. Also, measures which are categorized under different
common issues can provide additional insight into the issue in
question. Obviously, it is better to use a substitute measure than
to select a measure that cannot be implemented.

After the initial set of measures is selected, it should be reviewed to
ensure that the high priority issues are addressed, and that there is
adequate coverage across all of the identified issues. For some
unique issues, none of the PSM measures may provide adequate
information. In these cases, more advanced or different measures
than those provided in the PSM guidance should be defined and
specified. The bibliography contained in Part 6 provides potential
sources for other measures.

Part 2 - Selecting and Specifying Program Measures

Page 101

1.5 Specifying Measurement Data and Implementation
Requirements

The last step in the measurement selection and specification
process is to define the data and implementation requirements for
each of the selected measures. The PSM guidance that supports
this activity is also included in the Chapter 2 Measurement
Description tables in the Specification Guidance section.

The tables include a list of the data items which are typically
collected for each measure, the typical levels at which the data is
collected and reported, the software activities to which the measure
applies, and other pertinent information. The purpose of this
information is to help identify those data and implementation
requirements which should be considered in specifying the
measure.

The specification information provided in the Measurement
Description tables is focused on the single measure being described.
A set of general implementation requirements, applicable to all
measures, is listed in a separate table in Chapter 2, titled General
Measurement Specification. After reviewing the individual
measurement specification guidance on the individual tables for the
selected measures, the specification guidance in the General
Measurement Specification table should be addressed.

The general specification guidance outlines the requirements related
to defining and collecting measurement data. These requirements
help to define the overall measurement implementation approach
on the program and help to convey to the developer how the
measurement plan should be implemented. The general
requirements include the following:

• Data Types - Measurement data representing plans,
changes to plans, and actuals for each measure should be
collected and reported. Plans and estimates should be
updated regularly by the developer. Effective insight can be
derived early in the program by analyzing how the planning
data is changing. Extremely stable plans may indicate that
the developer is not adjusting to actual program events. For
many programs some plans and estimates are difficult to
collect due to limitations in the software process. Not
everyone, for example, can adequately project the number

Part 2 - Selecting and Specifying Program Measures

Page 102

of expected problem reports to be found. In these cases,
trends based on the periodic actual data may be adequate to
support the measurement analysis requirements.

• Measurement Definitions - During the integration
portion of measurement tailoring, the developer identifies
the actual measurement definitions and methodologies that
will be used for each specified measure. These definitions
sometimes vary over the course of the program, as software
processes are modified and updated. Changes to the
definition and interpretation of any measure should be
defined by the developer and relayed to the program office.
In many cases this information is included in the periodic
delivery of the measurement data. For many measures,
such as lines of code, the estimation methodologies and the
way the actuals are counted may be different. This can
sometimes result in variances between plans and actuals
which are measurement, not performance, related. Such
estimation inconsistencies should be identified. Many
measures require that both the estimation and actual
counting methodologies be defined, as well as the “exit”
criteria for measuring actuals. Definition of the measures is
extremely important, as it provides the basis for correct
interpretation of the associated data.

• Data Dates - For each measure, both the date that the
measurement data was collected and the date that it is
reported should be identified. This allows the timeliness of
the data to be assessed, and supports the correlation of
related measurement data during analysis. On a
productivity calculation, for example, the time period
during which the number of lines of code is produced
should correspond to the time period during which the labor
hours used to produce them are counted. The difference
between the date the data was collected and the date the
data was provided to the program office should be
minimized. This allows for timely analysis and feedback on
the issues.

• Collection Periodicity - Measurement data should be
collected on a periodic, not event driven basis. This is
generally monthly on most programs but can be adjusted as
necessary. Problem report data, for example, is collected

Part 2 - Selecting and Specifying Program Measures

Page 103

and reported on a weekly and sometimes daily basis during
integration and test.

• Measurement Scope - If more than one organization is
involved in developing the software for a program,
measurement data should be collected from each and
identified by source. This is usually the case when there
are one or more software subcontractors working under a
prime contractor. In many instances the individual
organizations have very different software processes which
result in different measurement definitions for the same
measure. This prevents the combination and aggregation of
some types of measurement data from the different
organizations. In these cases the data from a given
organization must be managed and analyzed separately.
For example, a system level productivity calculation may
be invalid if different subcontractors count labor hours and
software size differently. In some cases, different measures
will be used by different organizations to address similar
issues.

• Program Phase - The measures which are selected and
integrated into the program should generally be applied to
all life cycle phases, including program planning,
development, and software support. For most measures,
the planning data will be available initially, followed by
actual data as the program progresses and planned software
process activities are implemented. Even when actual data
is available, the related measurement plans and estimates
should be continuously updated.

• Data Reporting Mechanisms - The reporting mechanisms
for delivering data from the developer vary based upon the
actual measures which are selected and the internal software
and program management processes of both the developer
and the program office. The data for many measures, such
as problem reports, is usually available from an existing
configuration management database which can be accessed
on a real-time basis. In other cases, such as with effort,
size, and schedule measures, the data can easily be
formatted into electronic media and delivered accordingly.
Some data may need to be delivered in hard copy format.
During the integration portion of the tailoring process, the

Part 2 - Selecting and Specifying Program Measures

Page 104

developer identifies the mechanisms which are available.
Every effort should be given to establishing the interfaces
required to electronically transfer the data on a periodic
basis.

When the measures have been selected and the associated data and
implementation requirements are complete, this information is
conveyed to the development organization for integration into the
software process. During integration, the developer suggests
revisions to better align the program office’s measurement
requirements with the software process, and defines the actual
measurement methodologies and data reporting mechanisms for
each measure. This information essentially defines the program
measurement plan.

The actual software measurement selection and specification
process is dynamic. Although it is described as a step by step
approach, many of the activities take place concurrently. The PSM
guidance represents current practice, but is intended to be modified
and augmented as required to meet new or unique program needs.

1.6 Selecting and Specifying Measures for Existing Programs

The PSM measurement selection and specification guidance is
generally structured to support a sequential tailoring of the
measurement process. In some instances, the need to implement a
measurement process is driven by a significant program event or
issue which must be immediately supported by objective software
information. In other cases, new policy guidance or other external
requirements such as a major milestone review may make it
necessary to implement measurement on a program which has
already been initiated.

If the measurement process is to be implemented on an existing
program, the PSM selection and specification guidance can be used
to help identify the measures and associated data which can usually
be derived from the existing software process. The overall
approach still begins with the identification and prioritization of
the specific program issues. In all likelihood, key issues and
problems have already been identified, and the immediate objective
is to identify what information can be used to analyze the issues
and provide meaningful information to the Program Manager.

Part 2 - Selecting and Specifying Program Measures

Page 105

In general, most programs have some existing measures or data
available which correspond to the following PSM Common Issues
and associated Measurement Categories:

• Schedule and Progress

 - Milestone Performance

 - Schedule Performance

• Resources and Cost

 - Effort Allocation

 - Cost Performance

• Growth and Stability

 - Product Size and Stability

• Product Quality

- Defect Profile

The PSM measurement description tables can be used to identify
and define the measures and data available on an existing program.
The measures which are required to address key issues but are not
available can also be identified.

In general, the available measures on a program just implementing a
measurement process are available at higher levels of detail.
Software labor hours, for example, may only be available at a
system or organizational level, and may not be allocated to the
software component or activity levels. Similarly, software sizes
may be available in terms of the number of components, and not in
lines of code or function points. A significant amount of analysis
can usually be performed with the existing data. As the
measurement process is implemented, deficiencies with respect to
required measures and collecting and reporting mechanisms can be
identified and corrected.

The most important aspect of implementing the measurement
process on an existing program is to start with the measures and
data which are available while focusing on the application of a
consistent approach for data collection, analysis, and reporting.

Part 2 - Selecting and Specifying Program Measures

Page 106

Part 2 - Selecting and Specifying Program Measures

Page 107

CHAPTER 2 - DETAILED MEASUREMENT

SELECTION AND SPECIFICATION TABLES

Chapter 1 explains the PSM approach for selecting and specifying
program measures, and the use of Common Software Issues,
Measurement Categories, and Detailed Measurement Descriptions
in the selection process. This chapter provides the detailed
information needed to actually determine which measures to use,
and to define the data and implementation requirements for the
measures that are selected. This information is contained in a set of
comprehensive Measurement Category and Measurement
Description tables. Tables are grouped by each Common Software
Issue. The information which comprises the Measurement Tables
is derived from actual measurement experience on DoD and
Industry programs.

2.1 Introduction

The Measurement Category and Measurement Description Tables
provide the information required to select and specify the measures
for a program. The PSM selection and specification approach is
based upon the direct relationship between program issues,
information needs, and the specific measures which provide the
required information. To implement this approach, PSM defines a
simple mapping from the Common Software Issues to related
Measurement Categories, and then to individual measures in each
category. This mapping is depicted in Figure 1-1. The structure of
the Measurement Tables in this chapter follows this mapping, and
guides the user in selecting first the measurement categories, and
then the specific measures which address the identified program
issues. After the measures are selected, the tables further provide
the information that is required to specify the data and
implementation requirements for each selected measure.

2.2 How To Use the Measurement Tables

Two types of Measurement Tables are provided, Measurement
Category Tables and individual Measurement Description Tables.
Both are grouped together by Common Software Issue.

Part 2 - Selecting and Specifying Program Measures

Page 108

2.2.1 Measurement Category Tables

The Measurement Category Tables help you to determine if the
measures in a specific category provide the type of information
required to adequately address the issue in question. These tables
should be reviewed for each Common Software Issue which has
been identified as being relevant to the program. If the category
provides the type of information that is required, the Measurement
Description Tables within that category should then be reviewed to
select specific measures. In most cases the Measurement Category
Tables and the Measurement Description tables are reviewed
concurrently.

Figure 2-1 is a “roadmap” to the information contained in a
Measurement Category Table. The following is a description of
the type of information provided in each section of the table. The
information in each Measurement Category Table section applies
to all measures within the category.

• Measurement Category and Issue - This section
identifies the Measurement Category and the corresponding
Common Software Issue.

• Definition and Description - This section provides a
description of the types of measurement information
provided by the measures which comprise the
Measurement Category, and indicates how this
measurement information is used.

• Program Application - This section provides information
which helps to identify if the measures in the category are
applicable to specific types of programs. The information
addresses applicability with respect to functional domain,
size, and life cycle phase of the program.

• Measures Included in this Category - This section lists
the measures which are included in the Measurement
Category. In some cases this is a single measure.

• Limitations - This section addresses the general limitations
of the measures in the category. The information helps to
determine if the measures provide the type of measurement
information that is required.

Part 2 - Selecting and Specifying Program Measures

Page 109

Measurement Category - Product Size and Stability
Issue - Growth and Stability

Program Application

Product Size and Stability measures quantify the physical size of a software product. Product size

 is a critical factor for estimating development schedule and cost. These measures also provide

information about the amount and frequenty of change to software products which is especially
critical in the development.

Basic measurement category applicable to most programs.
Measures in this category are usually selected based on domain characteristics.
Applicable to all software process models.

Useful during program planning, development, and software support phases.

.

.

.

.

Measures Included in this Category

Lines of Code

Number of Components

Words of Memory
Database Size

.

.

.

.

Limitations

Product size measures do not always directly map to the amount of functionality in the system.
Measures in this category do not generally address software quality, complexity, or difficulty.
Accurate estimates are dependent on the availability of good historical data or engineering

experience.
Reported changes of software product size often occur too late to correct the underlying problems.
Measurement of requirements or design changes provides earlier warnings of related problems.

.

.

.

.

Related Measurement Categories

Productivity
Functional Size and Stability

Work Unit Progress

.

.

.

Additional Information
Components may be defined differently for each program. Components can be units, CSCI's,

objects, interfaces, screens, reports, packages, icons, primatives, or other measurable product
structures. Problem reports are sometimes considered to be components, especially with respect to
software maintenance activities during the software support phase. COTS/GOTS and other non-
developed or reusable software products can also be counted as components. Some components

can be aggregated to form higher level components (for example CSCIs to builds). These can be
referred to as sub-components.

.

Example Indicator(s)

Software Size (PSM Part 3, Section 3.9)
.

Related Measurement
Categories

lists other measurement
categories which contain
measures useful to analyze
with the measures listed in
this category

.

Measures Included in
this Category

lists measures
included in category

each measure has an
individual
Measurement
Description Table

.

.

Program Application

applicability of the
category measures to
specific types of
programs

.

Definition & Description

type of measurement
information category
measures provide

how the information
is used

.

.

Measurement Category
and Issue

identifies category
and related issue

.

Limitations

explains what
information the measures
in the category do not
provide

.

Additional Information

not included for all
categories

provides supplemental
definition and application
information for the
included measures.

.

.

Example Indicator
identifies the
measure(s) in the
category used for the
sample indicators in
PSM Part 3

.

Figure 2-1. Measurement Category Table “Roadmap”

• Related Measurement Categories - This section
references other PSM measurement categories which contain
measures which are useful if implemented in conjunction
with the measures in this category. These related categories
provide information which supports a more complete
analysis of the issue in question.

• Additional Information - This section provides
supplementary information which applies to the measures
included in the Measurement Category. This information
may define concepts or terms used in the measures or
provide amplifying selection guidance. This section is not
included for all Measurement Category tables.

• Example Indicator - Part 3 of PSM includes sample graphs
of measurement indicators derived from selected measures
in each of the 17 Measurement Categories. This section

Part 2 - Selecting and Specifying Program Measures

Page 110

indicates which measure or measures from the category
were selected for use in Part 3.

2.2.2 Measurement Description Tables

The Measurement Description Tables serve two purposes. As
such, they contain two types of information. The first type of
information is called Selection Guidance. This information helps to
determine if a measure will effectively address an identified issue,
and if the measure is applicable given the characteristics of the
program and the nature of the associated management and technical
processes. The tables also provide a second type of information
called Specification Guidance. This information is used to define
the specific data and implementation requirements for each selected
measure.

Some specification guidance is common to all measures. Rather
than repeat this information in every Measurement Description
Table, it is summarized in a single General Measurement
Specification Table. This table is a unique Measurement
Description Table which applies to all measures. It is intended to
be used in conjunction with each of the individual Measurement
Description Tables when specifying measurement data and
implementation requirements.

Figure 2-2 is a “roadmap” to the information contained in a
Measurement Description Table. The following is a summary of
the type of information provided in each section of the table.

• Measure, Measurement Category, and Issue - This
section identifies the specific Measure, the associated
Measurement Category, and the corresponding Common
Software Issue.

• Definition and Description - This section provides a
definition of the measure and a description of the
measurement information that it provides. It also explains
how the measure is used, and how effective the measure is
in addressing related issues.

Part 2 - Selecting and Specifying Program Measures

Page 111

2.2.2.1 Selection Guidance

The following portions of the Measurement Description Tables
help to determine if the measure should be used.

• Program Application - This section provides selection
guidance information which helps to identify if the measure
is applicable to specific types of programs. The
information addresses applicability with respect to
functional domain, software size, scope, type and origin,
and life cycle phase of the program. It specifically
addresses application of the measure to real-time, data
intensive, and other systems. It also identifies the life cycle
phases in which the measure is most useful. The overall
use of the measure within the DoD and industry is also
addressed.

Measure - Lines of Code
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Lines of Code measure counts the total amount of source code and the amount that has been added,
modified or deleted. The total number of lines of code is a well understood measure that allows estimation of

project cost, required effort, schedule and productivity. Changes in the number of lines of code indicates
development risk due to product size volatility and additional work that may be required.

Selection Guidance

Program Application

Selection Guidance

Data Items Typically Collected

Typical Collection Level

Typical Reporting Level

Count Actuals Based On

Applicable to all domains. Commonly used in
weapons applications.

Included in most DoD measurement policies and

some commercial measurement practices.
Used for programs of all size. Less important for

programs where little code is generated such as
those using automatic code generation and visual

programming environments.
Most effective for traditional high order languages

such as Ada, Fortran, and Cobol. Not generally
used for fourth-generation languages such as

Natural and ECOS.

Process Integration

Define Lines of Code for each language. Lines of
code from different languages are not equivalent.

You may want to calculate an effective or equivalent

SLOC count based on source. New and modified

lines would count 100% while reused code would
count at a lower percentage (to address the required

effort to integrate and test the reused code).

Sometimes difficult to generate accurate estimates
early in the program, especially for new types of

programs.

Usually Applied During

Requirements Analysis (Estimates)

Design (Estimates)
Implementation (Estimates and Actuals)
Integration and Test (Actuals)

Component Name

Source (new, modified, deleted, reused, NDI,

GOTS, or COTS)

Language
Delivery Status (deliverable, non-deliverable)

Category (operational, support)

Build/Release

Number of Lines of Code (LOC)
Number of LOC Added
Number of LOC Deleted

Number of LOC Modified

LOC Definition May Include

Logical Lines

Physical Lines
Blanks

Comments

Executables

Data Declarations

Unit or equivalent

CSCI or equivalent
Build/Release

Release to configuratrion

management
Passing unit test

Passing inspection

How accurate was the size estimate that the schedule and effort plans were based on?

How much has the software size changed? In what components have changes occurred?
Has the size allocated to each incremental build changed? Is functionality slipping to later builds?

Measure, Measurement
Category and Issue

identifies the measure,
and related
measurement category
and common issue

.

.Definition & Description
measure definition
type of
information
measure provides
how the measure
is used

.

.

Program Application

applicability of the
measure to
specific types of
programs

.

DoD and industry use

addresses availability
and cost of
measurement data

applicability of the
measure to specific
processes.

Process Integration

.

.

Usually Applied During
identifies applicable
software activities and
types of data which are
generally available

.

Data Items Typically
Collected

identifies typical data
which is collected for the
measure

.

Typical Collection Level

identifies typical
software design and
activity levels at which
the data elements are
measured

.

Data Items- Additional
Information (Optional)

provides information
which augments or
clarifies the data item
definition

.

Typical Reporting Level

identifies typical
software design and
activity levels at which
the measure is reported

.

Count Actuals Based On

identifies typical exit
criteria used to
determine when a
measure is counted as
an actual

.
.This Measure Answers Questions Such As

..

.

.

This Measure Answers
Questions Such As

identifies common
questions addressed by
the measure

.

applicability to
specific domains,
system
characteristics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.
.
.

.

.
.
.
.
.

.

.

.

.

.
.

Figure 2-2. Measurement Description Table “Roadmap”

Part 2 - Selecting and Specifying Program Measures

Page 112

• Process Integration - This section provides selection
guidance information which helps to determine if the
measure is applicable to specific program and technical
management processes. The information addresses
particular program management practices, data availability
and cost, and other process characteristics.

• Usually Applied During - This section provides selection
guidance information which identifies if the measure is
applicable to a particular software process activity. These
activities include requirements analysis, design,
implementation, and integration and test. These activities
can take place during any phase of the software life cycle,
and can occur concurrently during the same phase. They
should not be construed to be sequential in nature. The
information in this section also addresses the type of data
(estimates or actuals) which is generally available with
respect to the identified software activities.

2.2.2.2 Specification Guidance

The following portions of the Measurement Description Tables
help to specify the data and implementation requirements for
selected measures.

• Data Items Typically Collected - This section provides
specification guidance which identifies the attributes of the
measures which are typically measured and collected.

• Data Items - Additional Information (Optional) - This
section provides additional information to help specify the
data items for the measure.

• Typical Collection Level - This section provides
specification guidance which identifies the software activity
and design levels at which the developer typically collects
the data items for the measure.

• Typical Reporting Level - This section provides
specification guidance which identifies the software activity
and design levels at which the data elements are reported by
the developer. These are not necessarily the same as the
collection levels.

Part 2 - Selecting and Specifying Program Measures

Page 113

• Count Actuals Based On - This section provides
specification guidance which identifies typical activities or
exit criteria for the listed data elements. This information
helps to determine when a measure is counted as an actual,
or when an activity or event is complete. Normally only
one of these options is used.

• This Measure Answers Questions Such As - This
section lists the typical questions that are addressed by the
measure.

2.2.3 General Measurement Specification Table

The General Measurement Specification Table should be used in
conjunction with the individual Measurement Description tables
when specifying the data and implementation requirements for
measures which have been selected for implementation. The
included specification guidance applies to all measures in all
Measurement Categories under all Common Software Issues. It
summarizes the general specification requirements described in
Section 1.5 of this part of the Guide.

2.2.4 Additional Guidance

Most of the measures listed in the Measurement Description
Tables are basic measures that quantify a single software attribute.
Some of the measures, such as those which fall under the common
issues of Product Quality and Development Performance, are
actually composite measures which are derived using measures
which are listed elsewhere. Productivity, for example, is a
composite Development Performance measure which is calculated
using the Product Size measure under the Growth and Stability
issue and the Effort measure under the Resources and Cost issue.
The composite measures, which also include Defect Density, are
included on separate tables since they are widely used to address
different issues.

There are no specific measures listed in the Technical Impact
category under the common issue of Technical Adequacy.
Measures in this category should be defined on a program by
program basis to provide insight into the software technologies and
processes which are critical to the success of the program.
Measures in this category are generally defined to track those

Part 2 - Selecting and Specifying Program Measures

Page 114

software technologies which are highly leveraged. Many of the
Technical Adequacy measures are derivatives of measures
categorized under other common issues. For example, if a
program’s planned cost and schedule is based upon large increases
in development productivity due to the use of a substantial amount
of reused software, a measure may be defined which provides
information on the relative growth of the reused vs. the newly
developed code. Growth in the new code with concurrent
reductions in the planned amount of reused code may indicate that
the reused code may not satisfy the requirements as expected, and
that the actual productivity may be much less than anticipated.

2.2.5 Measurement Table Structure

The measurement tables that follow are grouped by Common
Software Issue. Each issue includes the applicable Measurement
Category Tables and associated Measurement Description Tables
per the mapping structure in Figure 1-1. The pertinent
Measurement Description Tables immediately follow the
appropriate Measurement Category Table. The General
Measurement Specification Table is included at the end of the
section.

Part 2 - Selecting and Specifying Program Measures

 Page 115

SCHEDULE AND PROGRESS

MEASUREMENT TABLES

• Milestone Performance

• Work Unit Progress

• Schedule Performance

• Incremental Capability

Part 2 - Selecting and Specifying Program Measures

Page 116

Part 2 - Selecting and Specifying Program Measures

 Page 117

Measurement Category - Milestone Performance
Issue - Schedule and Progress

The Milestone Performance measures provide basic schedule and progress information for key software
development activities and events. The measures also help to identify and assess dependencies among
software development activities and events. Monitoring changes in schedules allows the program manager to
assess the risk in achieving future milestones.

Program Application
• Basic measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Milestone Dates

Limitations
• The measures in this category do not address the degree of individual activity completion or the amount of

effort to complete a scheduled activity or task.
• These measures do not address the relative importance of key activities (except for the identification of

critical path activities).

Related Measurement Categories
• Work Unit Progress
• Productivity
• Schedule Performance

Example Indicator(s)
• Milestone Progress (PSM Part 3, Section 3.1)

Part 2 - Selecting and Specifying Program Measures

Page 118

Measure - Milestone Dates
Measurement Category - Milestone Performance
Issue - Schedule and Progress

The Milestone Dates measure consists of the start and end dates for software activities and events. The
measure provides an easy to understand view of the status of scheduled software activities and events.
Comparison of plan and actual milestone dates provides useful insight into both significant and repetitive
schedule slips at the activity level.

Selection Guidance

Program Application
• Basic measure applicable to all domains.
• Included in most DoD measurement policies and

commercial measurement practices.
• Generally applicable to all sizes and types of programs.
• Useful during program planning, development, and

software support phases. Some software support
programs may be considered level of effort tasks and
may not have associated milestones.

Process Integration
• Required data is generally easily obtained from program

scheduling systems and/or documentation. Data
should be focused on software activities and events,
particularly those affecting the critical path or risk items.

• If dependency data is collected, slips in related
activities can be more easily and accurately projected
and assessed.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Activity or Event Name
• Component Name
• Start Date
• End Date
• Build/Release
• Responsible Organization
• Dependent Activity or Event Name

Typical Collection Level
• CSCI or equivalent
• Key software activities and events

Typical Reporting Level
• CSCI or equivalent
• Key software activities and events
• Build/Release

Count Actuals Based On
• Customer sign-off
• Action items closed
• Documents baselined
• Milestone review held
• Successful completion of tasks

This Measure Answers Questions Such As
• Is the current schedule realistic?
• How many activities are concurrently scheduled?
• How often has the schedule changed?

Part 2 - Selecting and Specifying Program Measures

 Page 119

Measurement Category - Work Unit Progress
Issue - Schedule and Progress

Work Unit Progress measures address progress based on the completion of work units that combine
incrementally to form a complete software activity or product. If objective completion criteria are defined, Work
Unit Progress measures are extremely effective for assessing progress at any point in the program. They are
used for projecting completion dates for the activity or product.

Program Application
• Basic measurement category applicable to most programs.
• Applies to all software process models.
• Useful during development and software support phases.

Measures Included in this Category
• Components Designed
• Components Implemented
• Components Integrated and Tested
• Requirements Allocated
• Requirements Tested
• Test Cases Completed
• Paths Tested
• Problem Reports Resolved
• Reviews Completed
• Changes Implemented

Limitations
• These measures do not weight difficult or critical activities or products. All activities are usually assumed to

be of the same level of importance.

Related Measurement Categories
• Milestone Performance
• Effort Profile
• Product Size and Stability
• Functional Size and Stability

Additional Information
• Components may be defined differently for each program. Components can be units, CSCIs, objects,

interfaces, screens, reports, packages, icons, primitives, or other measurable product structures. Problem
reports are sometimes considered to be components, especially with respect to software maintenance
activities during the software support phase. COTS/GOTS and other non-developed or reusable software
products can also be counted as components. Some components can be aggregated to form higher level
components (for example, units to CSCIs to builds). These can be referred to as sub-components.

Example Indicator(s)
• Design Progress (PSM Part 3, Section 3.2)

Part 2 - Selecting and Specifying Program Measures

Page 120

Measure - Components Designed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Components Designed measure counts the number of software components that have completed
preliminary or detailed design. Early in design, planning changes should be expected as the design matures.
Later in the process, an increase in the planned number of components can be an indication of unplanned or
excessive growth. A comparison of planned and actual components is very effective for assessing design
progress.

Selection Guidance

Program Application
• Applicable to all domains.
• Used on medium to large programs.
• Useful during development and software support

phases. Not generally used on programs without a
design activity such as software support programs that
are focused on problem resolution or COTS integration
programs.

Process Integration
• Easier to collect if formal reviews, inspections, or

walkthroughs are included in the development process.
• Data sometimes available from configuration

management systems or design tools.
• Data is generally available if there is a mature and

disciplined design process.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Sub-Components

Completing Design
• Build/Release

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Completion of component design

reviews, inspections, or walkthroughs
• Release to configuration management
• Resolution of action items

This Measure Answers Questions Such As
• Are components completing design as scheduled?
• Is the planned rate of design completion realistic?
• What components are behind schedule?

Part 2 - Selecting and Specifying Program Measures

 Page 121

Measure - Components Implemented
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Components Implemented measure counts the number of software components that have been coded or
modified and have completed unit test. An increase in the number of planned components is an indication of
unplanned or excessive growth. A comparison of planned and actual components is one of the most effective
measures of implementation progress.

Selection Guidance

Program Application
• Applicable to all domains.
• Used on medium to large programs.
• Useful during development and software support

phases. Not generally used on programs without an
implementation phase such as COTS integration
programs or programs using automatic code generation.

Process Integration
• Data sometimes available from the configuration

management system.
• Easy to collect, data is generally available.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Sub-Components

Implemented
• Build/Release

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Passing inspection
• Passing unit test
• Release to configuration management

This Measure Answers Questions Such As
• Are components implemented as scheduled?
• Is the planned rate of implementation progress realistic?
• What components are behind schedule?

Part 2 - Selecting and Specifying Program Measures

Page 122

Measure - Components Integrated and Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Components Integrated and Tested measure counts the number of software components that have been
successfully integrated and tested. The measure is an indication of component integration and test progress.

Selection Guidance

Program Application
• Applicable to all domains.
• This measure is important when integrating COTS and

reusable software components.
• Useful during development and software support

phases.

Process Integration
• Requires a disciplined testing process with separate

tests per component(s) allocated to defined test
sequences.

• Can be applied for each unique test sequence (i.e.
CSCI test, integration test, system test), including "dry-
runs".

• Generally one of the more difficult work unit progress
measures to collect since most integration and test
activities are based on requirements or functions
instead of components.

Usually Applied During
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Sub-Components

Integrated and Tested
• Number of Sub-Components

Integrated and Successfully Tested
• Test Sequence Name
• Build/Release

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Test Sequence
• Build/Release

Count Actuals Based On
• Successfully passing all component

tests in the appropriate test sequence

This Measure Answers Questions Such As
• Are components completing integration and test as scheduled?
• Is the planned rate of integration and test completion realistic?
• What components are behind schedule?

Part 2 - Selecting and Specifying Program Measures

 Page 123

Measure - Requirements Allocated
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Requirements Allocated measure counts the number of defined requirements that have been allocated to
software design components and test cases. The measure is an indication of software design progress.

Selection Guidance

Program Application
• Applicable to all domains.
• Useful during development and software support

phases. Not generally used on programs without a
requirements or design activity such as software
support programs that are focused on problem
resolution.

Process Integration
• Not all requirements are directly testable. Some are

verified by inspection.
• There may not be a direct relationship between design

components and test cases. Requirements may need
to be allocated separately.

• Requires a good requirements traceability process. If
an automated design tool is used, the data is more
readily available.

• This is normally difficult to collect. It often requires
manual effort.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Requirements Identifier
• Design Component Name
• Test Case Identifier

Typical Collection Level
• Requirement

Typical Reporting Level
• CSCI or equivalent

Count Actuals Based On
• Completion of specification review
• Baselining of specifications
• Baselining of Requirements

Traceability Matrix

This Measure Answers Questions Such As
• Have all of the requirements been allocated to software design components?
• What requirements are validated by what tests?
• How many requirements are directly testable?

Part 2 - Selecting and Specifying Program Measures

Page 124

Measure - Requirements Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Requirements Tested measure counts the number of requirements that have been successfully tested. The
measure addresses the degree to which required functionality has been successfully demonstrated against the
specified requirements, as well as the amount of testing that has been performed. This measure provides an
excellent measure of test progress. This measure is also known as "Breadth of Testing".

Selection Guidance

Program Application
• Applicable to all domains.
• Generally applicable to all sizes and types of programs,

except those in which requirements cannot be traced to
test cases.

• Useful during development and software support
phases.

Process Integration
• Requires disciplined requirements traceability and

testing processes to implement successfully. Allocated
requirements should be testable and mapped to test
sequences.

• Can be applied for each unique test sequence (i.e.
CSCI test, integration test, system test), including "dry-
runs".

• One of the more difficult work unit progress measures to
collect since requirements often do not directly map to
test procedures. It is also sometimes difficult to
objectively determine if a requirement has been
successfully tested.

• Some requirements may not be testable until late in the
testing process. Others are not directly testable.

• Both stated and derived requirements may be counted.

Usually Applied During
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Number of Requirements
• Number of Requirements Tested
• Number of Requirements Tested

Successfully
• Test Sequence Name
• Build/Release

Typical Collection Level
• Requirement

Typical Reporting Level
• Test Sequence
• Build/Release

Count Actuals Based On
• Successful completion of all tests in

the appropriate test sequence

This Measure Answers Questions Such As
• Are the requirements being tested as scheduled?
• Has the testing been successful?
• What requirements (functions) are behind schedule?
• How much of the functionality has been tested?

Part 2 - Selecting and Specifying Program Measures

 Page 125

Measure - Test Cases Completed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Test Cases Completed measure counts the number of test cases that have been attempted and those that
that have been completed successfully. This measure can be used in conjunction with the Requirements Tested
measure to evaluate test progress. This measure allows assessment of software quality, based on the
proportion of attempted test cases that are successfully executed. This measure is one of the best measures
of test progress.

Selection Guidance

Program Application
• Applicable to all domains.
• Generally applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Need disciplined test planning and tracking processes to

implement successfully.
• Can be applied for each unique test sequence (i.e.

CSCI test, integration test, system test), including "dry-
runs".

• There should be a mapping between defined test cases
and requirements. This allows an analysis of what
functions are passing test and what ones are not.

• Easy to collect. Most programs define and allocate a
quantifiable number of test cases to each software test
sequence.

Usually Applied During
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Test Sequence Name
• Number of Test Cases
• Number of Test Cases Attempted
• Number of Test Cases Passed
• Build/Release

Alternates to Test Cases Include
• Test Procedures
• Test Steps

Typical Collection Level
• Test Case

Typical Reporting Level
• Test Sequence
• Build/Release

Count Actuals Based On
• Successful completion of each test

case in the appropriate test sequence

This Measure Answers Questions Such As
• Is test progress sufficient to meet the schedule?
• Is the planned rate of testing realistic?
• What functions are behind schedule?

Part 2 - Selecting and Specifying Program Measures

Page 126

Measure - Paths Tested
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Paths Tested measure counts the number of logical paths successfully tested. The measure reports the
degree to which the software has been successfully demonstrated and indicates the amount of testing that has
been performed. This measure is also called "Depth of Testing".

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to most types of programs. Especially

important for those with high reliability requirements,
security implications, or catastrophic failure potential.

• Not generally used for COTS or reused code.
• Useful during development and software support

phases.

Process Integration
• Usually applied on a cumulative basis across all test

sequences (i.e. CSCI test, integration test, system
test).

• Often used in conjunction with Cyclomatic Complexity.
• Difficult to collect - requires the use of test tools that

can verify test paths covered. These test tools often
require instrumentation of the code.

• Difficult to use on large programs due to the large
number of paths.

Usually Applied During
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Paths
• Number of Paths Tested
• Number of Paths Tested Successfully
• Test Sequence
• Build/Release

Alternative Measures - Tested
Successfully
• Executable Statements
• Decisions

Typical Collection Level
• CSCI or equivalent

Typical Reporting Level
• CSCI or equivalent
• Test Sequence
• Build/Release

Count Actuals Based On
• Successful completion of each test in

the appropriate test sequence

This Measure Answers Questions Such As
• Have all of the paths been successfully tested?
• What are the minimum number of test cases required to completely test the software?
• What percentage of the paths are represented in the testing approach?

Part 2 - Selecting and Specifying Program Measures

 Page 127

Measure - Problem Reports Resolved
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Problem Reports Resolved measure counts the number of software problems reported and resolved. This
measure provides an indication of product maturity and readiness for delivery. The rates at which problem
reports are written and closed can be used in a straight-line estimate of test completion. This measure can also
be used as an indication of the quality of the problem resolution process.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Many programs have acceptance criteria based on the

number of open problem reports, by priority. This
measure is useful in tracking to those requirements.

• The amount of test activity has a significant impact on
this measure. Test personnel generally alternate
between testing and fixing problems. You may want to
normalize this measure using some measure of Test
Progress.

• Data is generally available. Data is easier to collect
when an automated problem tracking system is used.

• On development programs, data is generally available
during integration and test. Problem report data is more
difficult to collect earlier (during requirements analysis,
design, and implementation), because the formal
problem reporting system is usually not in place and
rigidly enforced. When this data is available, it provides
very good progress information.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Priority
• Number of Software Problems

Reported
• Number of Software Problems

Resolved

Typical Collection Level
• CSCI or equivalent

Typical Reporting Level
• CSCI or equivalent

Count Actuals Based On
• Fix developed
• Fix implemented
• Fix integrated
• Fix tested

This Measure Answers Questions Such As
• Are known problem reports being closed at a sufficient rate to meet the test completion date?
• Is the product maturing (Is the problem report discovery rate going down)?
• When will testing be complete?
• What components have the most open problem reports?

Part 2 - Selecting and Specifying Program Measures

Page 128

Measure - Reviews Completed
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Reviews Completed measure counts the number of reviews successfully completed, including both internal
developer and program manager reviews. The measure provides an indication of progress in completing review
activities.

Selection Guidance

Program Application
• Applicable to all domains.
• Used on medium to large programs. Not generally used

on programs integrating COTS and reusable software
components.

• Useful during development and software support
phases.

Process Integration
• Easy to collect if formal reviews are a part of the

development process.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Reviews
• Number of Reviews Scheduled
• Number of Reviews Completed

Successfully
• Build/Release

Alternatives to Reviews Include
• Inspections
• Walkthroughs

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Completion of review
• Resolution of all associated action

items

This Measure Answers Questions Such As
• Are development review activities progressing as scheduled?
• Do the completed products meet the defined standards (Are components passing the reviews)?
• What components have failed their review?

Part 2 - Selecting and Specifying Program Measures

 Page 129

Measure - Changes Implemented
Measurement Category - Work Unit Progress
Issue - Schedule and Progress

The Changes Implemented measure counts the number of change requests affecting a product. The measure
provides an indication of the amount of rework required and performed. It only identifies the number of changes,
and does not report on the functional impact of changes or the amount of effort required to implement them.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to all sizes of programs.
• Useful during the development phase. Not generally

used for integration programs incorporating COTS and
reused code. Often used for programs in the software
support phase.

Process Integration
• Often used on iterative developments such as

prototyping.
• Data should be available from most programs.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Priority
• Number of Software Change Requests

Reported
• Number of Software Change Requests

Completed

Options to Change Requests
• Enhancements
• Corrective Action Reports

Typical Collection Level
• Change Request

Typical Reporting Level
• System

Count Actuals Based On
• Change implemented
• Change integrated
• Change tested

This Measure Answers Questions Such As
• How many change requests have impacted the software?
• Are change requests being implemented at a sufficient rate to meet schedule?
• Is the trend of new change requests decreasing as the program nears completion?

Part 2 - Selecting and Specifying Program Measures

Page 130

Measurement Category - Schedule Performance
Issue - Schedule and Progress

Schedule Performance measures address earned value by comparing the budgeted cost of work performed to
the budgeted cost of work scheduled. These measures can be used to identify critical path issues, schedule
conflicts, or potential cost overruns.

Program Application
• Measurement category applicable to most programs.
• Required for major DoD AIS and weapon system programs.
• Applies to all software process models.
• Used during development and software support phases.

Measures Included in this Category
• Schedule Variance

Limitations
• Schedule progress is a product of the validity of the schedule, the availability of funding and other

resources, and personnel resources. These factors are not identified by schedule performance measures.
Other measurement categories provide better information about software schedule and progress.

• Schedule performance systems can be difficult to establish for software. A detailed software Work
Breakdown Structure (WBS) must be developed that includes quantifiable exit criteria.

• Measurement of software performance is often difficult, due to insufficient detail in the software WBS and
associated problems with reporting of actual progress.

Related Measurement Categories
• Milestone Performance
• Cost Performance
• Effort Profile

Example Indicator(s)
• Schedule Variance (PSM Part 3, Section 3.3)

Part 2 - Selecting and Specifying Program Measures

 Page 131

Measure - Schedule Variance
Measurement Category - Schedule Performance
Issue - Schedule and Progress

The Schedule Variance measure is the difference between the budgeted cost of work performed and the
budgeted cost of work scheduled, for each WBS element. The measure reports schedule progress, in terms of
variance from original cost earned value estimates. Variance is quantified in terms of cost.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to any program that uses an earned value

cost accounting system. The DoD defined
Cost/Schedule Control System Criteria (C/SCSC) apply
to programs based on size and cost.

• Useful during development and software support
phases.

• Limited in applicability if costs are planned and
expended on a level of effort basis.

Process Integration
• C/SCSC data is required on most large DoD contracts,

so it is often readily available. This data should be
based on a validated cost accounting system.

• This can be difficult to track without an automated
system tied to the accounting function.

• This data tends to lag other measurement information
due to formal reporting requirements.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• WBS or Task Element
• Budgeted Cost of Work Scheduled

(BCWS)
• Budgeted Cost of Work Performed

(BCWP)

Typical Collection Level
• WBS or task element

Typical Reporting Level
• WBS or task element

Count Actuals Based On
• WBS element complete (to defined exit

criteria)
• WBS element percent complete

(based on engineering judgment)
• WBS element percent complete

(based on underlying objective
measures)

This Measure Answers Questions Such As
• Is the schedule being met?
• How far ahead/behind schedule is the program?
• What WBS elements or tasks are behind/ahead of schedule?

Part 2 - Selecting and Specifying Program Measures

Page 132

Measurement Category - Incremental Capability
Issue - Schedule and Progress

Incremental Capability measures count the functional or product content associated with each incremental
delivery. An incremental delivery may be a product shipped to a customer or it may be an internal build
delivered to the next phase of development. These measures are used to determine if capability is being
developed as scheduled or being delayed to future deliveries.

Program Application
• Measurement category applicable to programs that have multiple deliveries.
• Applies to software process models based on incremental development.
• Useful during development and software support phases.

Measures Included in this Category
• Build Content - Component
• Build Content - Function

Limitations
• Incremental software development often results in release of software with incomplete functions. It is

sometimes difficult to determine if all of the planned capability is completed in any given increment.
• Requires a straightforward mapping of function or component to the increment. Difficult to collect and

assess if measured components or functions are partitioned across increments.

Related Measurement Categories
• Product Size and Stability
• Functional Size and Stability
• Productivity

Example Indicator(s)
• Incremental Build Content (PSM Part 3, Section 3.4)

Part 2 - Selecting and Specifying Program Measures

 Page 133

Measure - Build Content - Component
Measurement Category - Incremental Capability
Issue - Schedule and Progress

The Build Content - Component measure identifies the components that are included in incremental builds. The
measure indicates progress in the incremental products. Build content will often be deferred or removed in order
to preserve the scheduled delivery date. It is easier to track incorporation of capability by component (rather
than by function), since it is relatively easy to specify whether or not a component has been integrated.
However, this provides less information, since the correlation between components and functionality is not
always well defined.

Selection Guidance

Program Application
• Applicable to all domains.
• Generally applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Requires a formal, detailed list of content by increment.

This content must be defined at the component level.
• Easy to collect, especially if the program has a detailed

tracking mechanism.
• To effectively measure the content of the software at

the build/release level, the lower level sub-components
that comprise the build/release must individually be
complete with respect to defined criteria.

Usually Applied During
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Build/Release
• Component Name
• Number of Sub-Components
• Number of Sub-Components

Integrated Successfully

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Successful integration
• Successful testing

This Measure Answers Questions Such As
• Are components being incorporated as scheduled?
• Will each increment contain the specified components?
• What components have to be deferred or eliminated?
• What components have been added?
• Is development risk being deferred?

Part 2 - Selecting and Specifying Program Measures

Page 134

Measure - Build Content - Function
Measurement Category - Incremental Capability
Issue - Schedule and Progress

The Build Content - Function measure identifies the content of incremental builds. The measure indicates the
progress in the incorporation of incremental functionality. Build content will often be deferred or removed in order
to preserve the scheduled delivery date.

Selection Guidance

Program Application
• Applicable to all domains.
• Generally applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Requires a formal, detailed list of functions by

increment.
• Feasible to collect if the program has a detailed tracking

mechanism.
• It is often difficult to identify whether a function is

incorporated in its entirety. A considerable amount of
testing and analysis must be done to determine if all
aspects of a function are incorporated.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Build/Release
• Function Name
• Number of Sub-Functions
• Number of Sub-Functions Integrated

Successfully

Typical Collection Level
• Function or equivalent

Typical Reporting Level
• Function or equivalent
• Build/Release

Count Actuals Based On
• Successful integration
• Successful testing

This Measure Answers Questions Such As
• Is functionality being incorporated as scheduled?
• Will each increment contain the specified functionality?
• What functionality has to be deferred?
• Is development risk being deferred?

Part 2 - Selecting and Specifying Program Measures

 Page 135

RESOURCES AND COST

MEASUREMENT TABLES

• Effort Profile

• Staff Profile

• Cost Performance

• Environment Availability

Part 2 - Selecting and Specifying Program Measures

Page 136

Part 2 - Selecting and Specifying Program Measures

 Page 137

Measurement Category - Effort Profile
Issue - Resources and Cost

Effort Profile measures identify the amount of effort expended on defined software activities or products over
time. These measures may be used to assess the adequacy of planned effort and analyze the actual allocation
of labor. They are essential to evaluating software development productivity. These measures are especially
critical since software is a very labor intensive process.

Program Application
• Basic measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Effort

Limitations
• The utility and timeliness of the measures are generally limited by the structure and capabilities of the

financial system, which may be difficult to change.
• Measures are not always available at lower levels of product and activity detail.
• Actual effort, especially uncompensated overtime, may not be reported.

Related Measurement Categories

Additional Information
• Software activities typically include system engineering, software engineering, system design, software

design, software documentation, coding, unit test, CSCI integration and test, build/release integration and
test, software integration and test, system integration and test, software program management,
configuration management, and quality assurance.

Example Indicator(s)
• Effort Allocation (PSM Part 3, Section 3.5)

Part 2 - Selecting and Specifying Program Measures

Page 138

Measure - Effort
Measurement Category - Effort Profile
Issue - Resources and Cost

The Effort measure counts the number of hours of effort applied to software tasks. This is a straightforward,
generally understood measure. It can be categorized by activity as well as by product. This measure usually
correlates directly with software cost, but can also be used to address other common issues including Schedule
and Progress and Development Performance.

Selection Guidance

Program Application
• Basic measure applicable to all domains.
• Included in most DoD measurement policies and

commercial measurement practices.
• Generally applicable to all sizes and types of programs.
• Useful during program planning, development, and

software support phases. Some software support
programs with fixed staffing levels may not track this
measure.

Process Integration
• Data usually derived from a financial accounting and

reporting system and/or separate time card system.
• All labor hours applied to the software tasks should be

collected, including overtime. The overtime data is
sometimes difficult to collect.

• Most effective when financial accounting and reporting
systems are directly tied to software products and
activities at a low level of detail.

• If labor hours are not explicitly provided, data may be
approximated from staffing and/or cost data. Labor
hours are sometimes considered proprietary data.

• The labor categories and activities that comprise the
software tasks must be explicitly defined for each
organization.

• Labor Hours may also be reported as Days, Weeks, or
Months with associated conversions.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Organization
• WBS or Task Element
• Labor Category
• Number of Labor Hours

Typical Collection Level
• WBS or Task element

Typical Reporting Level
• WBS or Task element
• Organization

Count Actuals Based On
• End of financial reporting period

This Measure Answers Questions Such As
• Are development resources being applied according to plan?
• Are certain tasks or activities taking more/less effort than expected?
• Is the effort profile realistic?

Part 2 - Selecting and Specifying Program Measures

 Page 139

Measurement Category - Staff Profile
Issue - Resources and Cost

Staff Profile measures characterize the number and experience of personnel assigned to a program. These
measures also can be used to evaluate the rate at which people are added to and removed from a program.

Program Application
• Measurement category applicable to most programs.
• Applies to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Staff Level
• Staff Experience
• Staff Turnover

Limitations
• Measures may not capture the total effort applied to a program because they do not distinguish between full

and part-time personnel. Effort provides a more precise indicator of total effort applied.

Related Measurement Categories
• Effort Profile
• Milestone Performance

Example Indicator(s)
• Staff Experience (PSM Part 3, Section 3.6)

Part 2 - Selecting and Specifying Program Measures

Page 140

Measure - Staff Level
Measurement Category - Staff Profile
Issue - Resources and Cost

The Staff Level measure counts the total number of personnel allocated to software related activities. The
measure is used to determine if sufficient personnel are available. It can also provide an early indication of
possible schedule slips and cost overruns or underruns.

Selection Guidance

Program Application
• Applicable to all domains.
• Generally applicable to all sizes and types of programs.
• Useful during program planning, development, and

software support phases. Some software support
programs with fixed staffing levels may not track this
measure.

Process Integration
• Data should be available from most programs. The

Effort measure provides more detailed information.
• Total staffing is generally available from most programs

at the system level. Counting software personnel may
be difficult because they may not be allocated to the
project on a full-time basis or they may not be assigned
to strictly software related tasks.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Organization
• Activity
• Labor Category
• Number of Personnel

Typical Collection Level
• Activity

Typical Reporting Level
• Organization

Count Actuals Based On
• End of financial reporting period

This Measure Answers Questions Such As
• Are sufficient development resources available and applied?
• Are certain activities or functions taking more staff than expected?

Part 2 - Selecting and Specifying Program Measures

 Page 141

Measure - Staff Experience
Measurement Category - Staff Profile
Issue - Resources and Cost

The Staff Experience measure counts the total number of software personnel with experience in defined areas.
The measure is used to determine whether sufficient experienced personnel are available and used. The
experience factors are based on the requirements of each individual program (such as domain or language).
Experience is usually measured in years, which does not always equate to capability.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to programs that require particular expertise

to complete.
• Useful during program planning, development, and

software support phases.

Process Integration
• Requires a personnel database that maintains

experience data.
• Difficult to collect and keep up-to-date as people are

added/removed from a project. Generally has to be
done manually.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Organization
• Experience Factor
• Number of Personnel
• Number of Years of Experience

Typical Experience Factors
• Language
• System Engineering
• Domain
• Hardware
• Application
• Platform

Typical Collection Level
• Organization

Typical Reporting Level
• Organization

Count Actuals Based On
• Prior to contract award
• During annual performance evaluation

This Measure Answers Questions Such As
• Are sufficient experienced personnel available?
• Will additional training be required?

Part 2 - Selecting and Specifying Program Measures

Page 142

Measure - Staff Turnover
Measurement Category - Staff Profile
Issue - Resources and Cost

The Staff Turnover measure counts staff losses and gains. A large amount of turnover impacts learning
curves, productivity, and the ability of the software developer to build the system with the resources provided
within cost and schedule. This measure is most effective when used in conjunction with the Staff Experience
measure. Losses of more experienced personnel are more critical.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to programs of all sizes and types.
• Useful during development and software support

phases.

Process Integration
• Very difficult to collect on contractual programs - most

developers consider this proprietary information. May
be more readily available on in-house programs.

• It is useful to categorize the number of personnel lost
into planned and unplanned losses.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Organization
• Number of Personnel
• Number of Personnel Gained (per

period)
• Number of Personnel Lost (per period)

Typical Collection Level
• Organization

Typical Reporting Level
• Organization

Count Actuals Based On
• End of financial reporting period
• Organization restructuring or new

organizational charts
• End of program activities or

milestones

This Measure Answers Questions Such As
• How many people have been added/have left the program?
• How are the experience levels being affected by the turnover rates?
• What areas are most affected by turnover?

Part 2 - Selecting and Specifying Program Measures

 Page 143

Measurement Category - Cost Performance
Issue - Resources and Cost

Cost Performance measures report the difference between budgeted and actual costs for a specific product or
activity. They are used to assess whether the program can be completed within cost constraints and to identify
potential cost overruns.

Program Application
• Measurement category applicable to most programs.
• Required for major DoD programs.
• Applicable to all software process models.
• Useful during program planning, development and software support phases.

Measures Included in this Category
• Cost Variance
• Cost Profile

Limitations
• Cost performance systems can be difficult to establish for software. A detailed software WBS must be

developed that includes quantifiable exit criteria.
• Cost is not generally the best measure of software performance due to insufficient detail in the software

WBS and associated problems with reporting of actual progress.

Related Measurement Categories
• Milestone Performance
• Effort Profile

Example Indicator(s)
• Cost Profile (PSM Part 3, Section 3.7)

Part 2 - Selecting and Specifying Program Measures

Page 144

Measure - Cost Variance
Measurement Category - Cost Performance
Issue - Resources and Cost

The Cost Variance measure is a comparison between the cost of work performed and the budget, based on
dollars budgeted per WBS element. The measure can be used to identify cost overruns and underruns.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to any program that uses an earned value

cost accounting system. The DoD defined
Cost/Schedule Control System Criteria (C/SCSC) apply
to programs based on size and cost.

• Useful during development and software support
phases.

Process Integration
• C/SCSC data is required on most large DoD contracts,

so it is often readily available. This data should be
based on a validated cost accounting system. If this
data is not required, then the cost profile measure can
be used instead.

• This can be difficult to track without an automated
system tied to the accounting system.

• This data tends to lag other measurement information
due to formal reporting requirements.

• Limited in applicability if costs are planned and
expended on a level of effort basis.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• WBS or Task Element
• Budgeted Cost of Work Performed

(BCWP)
• Actual Cost of Work Performed

(ACWP)

Typical Collection Level
• WBS or task element

Typical Reporting Level
• WBS or task element

Count Actuals Based On
• WBS element complete (to defined exit

criteria)
• WBS element percent complete

(based on engineering judgment)
• WBS element percent complete

(based on underlying objective
measures)

This Measure Answers Questions Such As
• Are program costs in accordance with budgets?
• What is the projected completion cost?
• What WBS elements or tasks have the greatest variance?

Part 2 - Selecting and Specifying Program Measures

 Page 145

Measure - Cost Profile
Measurement Category - Cost Performance
Issue - Resources and Cost

The Cost Profile measure counts budgeted and expended cost. The measure provides information about the
amount of money expended on a program, compared to budgets.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to programs of all sizes and types. Used to

evaluate costs for those programs that do not use
cost/schedule control system criteria (C/SCSC).

• Useful during program planning, development, and
software support phases.

Process Integration
• Data should come from an automated accounting

system. This data tends to lag other measurement
information due to formal reporting requirements.

• Should be relatively easy to collect at a high level. Not
all programs, however, will break out software WBS
elements to a sufficient level of detail.

• This measure does not address the amount of work
completed for the costs incurred.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• WBS or Task Element
• Cost (Dollars)

Typical Collection Level
• WBS or task element

Typical Reporting Level
• WBS or task element

Count Actuals Based On
• WBS element complete (to defined exit

criteria)
• WBS element percent complete

(based on engineering judgment)
• WBS element percent complete

(based on underlying objective
measures)

This Measure Answers Questions Such As
• Are program costs in accordance with budgets?
• Will the target budget be achieved or will there be an overrun or surplus?

Part 2 - Selecting and Specifying Program Measures

Page 146

Measurement Category - Environment Availability
Issue - Resources and Cost

Environment Availability measures address the availability and utilization of tool and facility resources.
Resources include those used for development, integration and test, file build, maintenance or operations.
Recommended for programs where key resources are shared with or provided by other programs or are
suspected from the outset to be inadequate. These measures are used to address the adequacy of resources.

Program Application
• Measurement category applicable to all programs with resource constraints.
• Applies to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Resource Availability Dates
• Resource Utilization

Limitations
• These measures do not address whether resources are used most effectively.

Related Measurement Categories
• Schedule Performance
• Productivity
• Process Maturity

Example Indicator(s)
• Resource Utilization Indicator (PSM Part 3, Section 3.8)

Part 2 - Selecting and Specifying Program Measures

 Page 147

Measure - Resource Availability Dates
Measurement Category - Environment Availability
Issue - Resources and Cost

The Resource Availability Dates measure lists the dates for the availability of key resources. The measure is
used to determine if key resources are available when needed to support development and testing. It can be
integrated in the milestone dates measure.

Selection Guidance

Program Application
• Applicable to all domains.
• More important for programs with constrained support

resources.
• Useful during development and software support

phases.

Process Integration
• Required data is generally easily obtained from program

scheduling systems or documentation.
• Resources may include software, hardware, integration

and test facilities, tools, other equipment, or office
space. Normally only key resources are tracked.
Personnel resources are not included in this measure -
they are tracked with Staff Profile.

• Be sure to consider both government-furnished and
developer-furnished resources.

Usually Applied During
• Requirements Analysis(Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Resource Name
• Availability Date

Typical Collection Level
• Resource

Typical Reporting Level
• Resource

Count Actuals Based On
• Demonstration of the intended service

This Measure Answers Questions Such As
• Are key resources available when needed?
• Is the availability of support resources impacting progress?

Part 2 - Selecting and Specifying Program Measures

Page 148

Measure - Resource Utilization
Measurement Category - Environment Availability
Issue - Resources and Cost

The Resource Utilization measure counts the number of hours of resource time scheduled, available, not
available due to maintenance downtime, and used. It is used on programs that have resource constraints, and
is usually focused only on key resources. This measure provides an indication of whether key resources are
sufficient and if they are used effectively.

Selection Guidance

Program Application
• Applicable to all domains.
• More important for programs with constrained support

resources. Especially important during integration and
test activities.

• Useful during development and software support
phases.

Process Integration
• Relatively easy to collect at a high level. Easier to

collect if a resource monitor or resource scheduling
system is in place.

• Resources may include software, hardware, integration
and test facilities, tools, and other equipment. Normally
only key resources are tracked.

• Include both government-furnished and developer-
furnished resources.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Resource Name
• Available Hours
• Scheduled Hours
• Used hours
• Typical Data Elements
• Hours Unavailable due to Maintenance

Typical Collection Level
• Resource

Typical Reporting Level
• Resource

Count Actuals Based On
• End of reporting period

This Measure Answers Questions Such As
• Are sufficient resources available?
• How efficiently are resources being used?

Part 2 - Selecting and Specifying Program Measures

 Page 149

GROWTH AND STABILITY

MEASUREMENT TABLES

• Product Size and Stability

• Functional Size and Stability

• Target Computer Resource Utilization

Part 2 - Selecting and Specifying Program Measures

Page 150

Part 2 - Selecting and Specifying Program Measures

 Page 151

Measurement Category - Product Size and Stability
Issue - Growth and Stability

Product Size and Stability measures quantify the physical size of a software product. Product size is a critical
factor for estimating development schedule and cost. These measures also provide information about the
amount and frequency of change to software products which is especially critical late in the development.

Program Application
• Basic measurement category applicable to most programs.
• Measures in this category are usually selected based on domain characteristics.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Lines of Code
• Number of Components
• Words of Memory
• Database Size

Limitations
• Product size measures do not always directly map to the amount of functionality in the system.
• Measures in this category do not generally address software quality, complexity, or difficulty.
• Accurate estimates are dependent on the availability of good historical data or engineering experience.
• Reported changes of software product size often occur too late to correct the underlying problems.

Measurement of requirements or design changes provides earlier warnings of related problems.

Related Measurement Categories
• Productivity
• Functional Size and Stability
• Work Unit Progress

Additional Information
• Components may be defined differently for each program. Components can be units, CSCIs, objects,

interfaces, screens, reports, packages, icons, primitives, or other measurable product structures. Problem
reports are sometimes considered to be components, especially with respect to software maintenance
activities during the software support phase. COTS/GOTS and other non-developed or reusable software
products can also be counted as components. Some components can be aggregated to form higher level
components (for example, units to CSCIs to builds). These can be referred to as sub-components.

Example Indicator(s)
• Software Size (PSM Part 3, Section 3.9)

Part 2 - Selecting and Specifying Program Measures

Page 152

Measure - Lines of Code
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Lines of Code measure counts the total amount of source code and the amount that has been added,
modified, or deleted. The total number of lines of code is a well understood measure that allows estimation of
project cost, required effort, schedule, and productivity. Changes in the number of lines of code indicate
development risk due to product size volatility and additional work that may be required.

Selection Guidance

Program Application
• Applicable to all domains. Commonly used in weapons

applications.
• Included in most DoD measurement policies and some

commercial measurement practices.
• Used for programs of all sizes. Less important for

programs where little code is generated such as those
using automatic code generation and visual
programming environments.

• Most effective for traditional high order languages such
as Ada, FORTRAN, and COBOL. Not generally used
for fourth-generation languages such as Natural and
ECOS.

• Not usually tracked for COTS software unless changes
are made to the source code.

• Useful during program planning, development, and
software support phases.

Process Integration
• Define Lines of Code for each language. Lines of code

from different languages are not equivalent.
• You may want to calculate an effective or equivalent

SLOC count based on source. New and modified lines
would count at 100% while reused code would count at a
lower percentage (to address the effort required to
integrate and test the reused code).

• Sometimes difficult to generate accurate estimates
early in the program, especially for new types of
programs.

• Estimates should be updated on a regular basis.
• Can be difficult estimating and tracking lines of code by

source (new, modified, retained, deleted, NDI, GOTS, or
COTS).

• Actuals can easily be counted using automated tools.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Source (new, modified, deleted,

reused, NDI, GOTS, or COTS)
• Language
• Delivery Status (deliverable, non-

deliverable)
• Category (operational, support)
• Build/Release
• Number of Lines of Code (LOC)
• Number of Lines of Code Added
• Number of Lines of Code Deleted
• Number of Lines of Code Modified

LOC Definition May Include
• Logical Lines
• Physical Lines
• Blanks
• Comments
• Executables
• Data Declarations

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How accurate was the size estimate that the schedule and effort plans were based on?
• How much has the software size changed? In what components have changes occurred?
• Has the size allocated to each incremental build changed? Is functionality slipping to later builds?

Part 2 - Selecting and Specifying Program Measures

 Page 153

Measure - Number of Components
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Components measure counts the number of elementary software components in a software product, and the
number that are added, modified, or deleted. The total number of components defines the size of the software
product. Changes in the number of estimated and actual components indicates risk due to product size volatility
and additional work that may be required. Reporting the number of design components provides product size
information earlier than other size measures, such as Lines of Code or Function Points.

Selection Guidance

Program Application
• Applicable to all application domains, generally with

different component definitions.
• Applicable to all sizes and type programs.
• Useful during development and software support

phases.

Process Integration
• Requires a well defined and consistent component

allocation structure (i.e. unit to CSCI to build).
• Required data is generally easy to obtain from software

design tools, configuration management tools, or
documentation.

• Deleted and added components are relatively easy to
collect - modified components are often not tracked.

• Volatility in the planned number of components may
represent instability in the requirements or in the design
of the software.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Source (new, modified, deleted,

reused, NDI, GOTS, or COTS)
• Language
• Delivery Status (deliverable, non-

deliverable)
• Category (operational, support)
• Build/Release
• Number of Components
• Number of Components Added
• Number of Components Deleted
• Number of Components Modified

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How many components need to be implemented and tested?
• How much has the approved software baseline changed?
• Have the components allocated to each incremental build changed? Is functionality slipping to later builds?

Part 2 - Selecting and Specifying Program Measures

Page 154

Measure - Words of Memory
Measurement Category - Product Size and Stability
Issue - Growth and Stability

This measure counts the number of words used in main memory, in relation to total memory capacity. This
measure provides a basis to estimate if sufficient memory will be available to execute the software in the
expected operational scenarios.

Selection Guidance

Program Application
• Most commonly used for weapons systems.
• Used on any program with severe memory constraints

such as avionics or on-board flight software.
• For many programs the amount of memory reserved is

part of the defined exit criteria.
• Useful during development and software support

phases.

Process Integration
• Requires an automated tool that measures usage based

on a defined operational profile. This is often difficult to
collect.

• Estimation may be based on modeling or by assuming a
translation factor between lines of code and words of
memory.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Processor Name
• Number of Words of Memory
• Number of Words of Memory Used

Typical Collection Level
• Processor

Typical Reporting Level
• Processor

Count Actuals Based On
• Completion of integration
• During Test Readiness Review (TRR)
• Prior to delivery

This Measure Answers Questions Such As
• How much spare memory capacity is there?
• Does the memory need to be upgraded?

Part 2 - Selecting and Specifying Program Measures

 Page 155

Measure - Database Size
Measurement Category - Product Size and Stability
Issue - Growth and Stability

The Database Size measure counts the number of words, records, or tables (elements) in each database. The
measure indicates how much data must be handled by the system.

Selection Guidance

Program Application
• Applicable to all domains. Often used for AIS

programs.
• Used for any program with a significant database.

Especially important for those with performance
constraints.

• Useful during development and software support
phases.

Process Integration
• In order to estimate the size of a database, you must

develop an operational profile. This is generally a
manual process that can be difficult. Actuals are
relatively easy to collect.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Database Name
• Number of Tables, Words, or Bytes
• Number of Records or Entries

Typical Collection Level
• Database

Typical Reporting Level
• Database

Count Actuals Based On
• Schema design released to

configuration management
• Schema implementation released to

configuration management

This Measure Answers Questions Such As
• How much data has to be handled by the system?
• How many different data types have to be addressed?

Part 2 - Selecting and Specifying Program Measures

Page 156

Measurement Category - Functional Size and Stability
Issue - Growth and Stability

Functional Size and Stability measures quantify the functionality of a software product. Functional size may be
used to estimate development schedule and cost. These measures also provide information about the amount
and frequency of change to software functionality which is especially critical late in the development. Functional
changes generally correlate to effort, cost, schedule, and product size changes.

Program Application
• Measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Requirements
• Function Points

Limitations
• Data collection requires a defined method or tool and is often labor intensive.
• Since data is usually collected manually, variations can be expected from different measurement sources.

Related Measurement Categories
• Target Computer Resource Utilization
• Complexity
• Product Size and Stability
• Work Unit Progress

Example Indicator(s)
• Requirements Stability (PSM Part 3, Section 3.10)

Part 2 - Selecting and Specifying Program Measures

 Page 157

Measure - Requirements
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Requirements measure counts the number of requirements in the software and interface specifications, and
the number of these requirements that are added, modified, or deleted. The measure provides information on
the total number of requirements, and the development risk due to volatility in requirements or functional growth.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to any program that tracks requirements.

Useful for any size and type of program.
• Useful during program planning, development, and

software support phases.
• Effective for both non-developed (COTS/GOTS/Reuse)

and newly developed software.

Process Integration
• Requires a good requirements traceability process. If

an automated design tool is used, the data is more
readily available.

• Count changes against a baseline that is under formal
configuration control. Both stated and derived
requirements may be included.

• To evaluate stability, a good definition of the impacts of
each change is required.

• It is sometime difficult to specifically define a
"requirement". A consistently applied definition makes
this measure more effective.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Build/Release
• Number of Requirements
• Number of Requirements Added
• Number of Requirements Deleted
• Number of Requirements Modified
• Source of Change (developer, program

manager)

Typical Collection Level
• Requirement

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Passing requirements inspection
• Release to configuration management

This Measure Answers Questions Such As
• Have the requirements allocated to each incremental build changed? Are requirements being deferred to

later builds?
• How much has software functionality changed? What components have been affected the most?

Part 2 - Selecting and Specifying Program Measures

Page 158

Measure - Function Points
Measurement Category - Functional Size and Stability
Issue - Growth and Stability

The Function Points measure provides a weighted count of the number of external inputs and outputs, logical
internal files and interfaces, and inquiries. This measure determines the functional size of software to support an
early estimate of the required level of effort. It can also be used to support productivity assessments.

Selection Guidance

Program Application
• Applicable to all domains. Commonly used in AIS

applications.
• Not usually tracked for COTS or reused software.
• Useful during development and software support

phases.

Process Integration
• Requires a design process compatible with function

points.
• Should be based on a defined method such as the

IFPUG function point counting practices manual.
• Usually requires formal training.
• Requires a well defined set of work products to describe

the requirements and design.
• Very labor intensive to estimate and count - automated

tools are scarce and have not been validated.

Usually Applied During
• Requirements Analysis (Estimates)
• Design (Estimates and Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Source (new, modified, deleted,

reused, NDI, GOTS, or COTS)
• Build/Release
• Number of Function Points

Typical Collection Level
• CSCI or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Completion of design documentation
• Release to configuration management
• Passing design documentation

inspections

This Measure Answers Questions Such As
• How big is the software product?
• How much work is there to be done?
• How much functionality is in the software?

Part 2 - Selecting and Specifying Program Measures

 Page 159

Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

Target Computer Resource Utilization measures are used to assess the adequacy of the target hardware. High
computer resource utilization can have serious impacts on software performance, cost, schedule, and
supportability. High utilization may require hardware changes or software redesign. During development, reserve
capacity is often defined to allow for future growth due to changes or additional requirements.

Program Application
• Measurement category applicable to programs with target hardware resource constraints.
• Applicable to all software process models.
• Useful during development and software support phases.

Measures Included in this Category
• CPU Utilization
• CPU Throughput
• I/O Utilization
• I/O Throughput
• Memory Utilization
• Storage Utilization
• Response Time

Limitations
• These measures are often difficult to define, estimate, and collect. Some computer systems do provide

automated status reporting of some of the measures in this category.

Related Measurement Categories
• Product Size and Stability
• Complexity
• Rework

Example Indicator(s)
• Response Time (PSM Part 3, Section 3.11)

Part 2 - Selecting and Specifying Program Measures

Page 160

Measure - CPU Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The CPU Utilization measure counts the estimated or actual proportion of time the CPU is busy during a
measured time period. This measure indicates whether sufficient CPU resources will be available to support
operational processing. This measure is also used to evaluate whether CPU reserve capacity will be sufficient
for high-usage operations or for added functionality.

Selection Guidance

Program Application
• Applicable to all domains. Primarily used for weapon

systems.
• Useful for any program with a dedicated processor and

critical performance requirements. Not generally used
on programs located on shared processors.

• Useful during development and software support
phases.

Process Integration
• Requires a tool that measures usage based on a

defined operational profile during a measured period of
time.

• The operational profile (load levels) has a significant
impact on this measure. Test should include both
normal and stress levels of operation.

• Estimates are very difficult to derive and require
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

• Actual processor utilization is often provided as an
overhead function of an operating system and is more
easily obtained.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• CPU Name
• Operational Profile
• Time CPU is Busy
• Measured Time Period
• Specified CPU Utilization Limit

Typical Collection Level
• CPU

Typical Reporting Level
• CPU
• Target HWCI

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Have sufficient CPU resources been provided?
• Do CPU estimates appear reasonable? Have large increases occurred?
• Can the CPU resources support additional functionality?

Part 2 - Selecting and Specifying Program Measures

 Page 161

Measure - CPU Throughput
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The CPU Throughput measure provides an estimate or actual count of the number of processing tasks that can
be completed in a specified period of time. This measure provides an indication of whether or not the software
can support the system’s operational processing requirements.

Selection Guidance

Program Application
• Applicable to all domains. Primarily used for weapon

systems.
• Useful for any program with a dedicated processor and

critical timing requirements. Not generally used on
programs located on shared processors.

• Useful during development and software support
phases.

Process Integration
• Actuals can be based on real-time observation or may

require a tool that measures task completion based on a
defined operational profile. This data is generally easy
to collect.

• The operational profile has a significant impact on this
measure. Tests should include both normal and stress
levels of operation.

• Estimates are very difficult to derive and require
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

• The measurement methodology for CPU throughput is
critical for meaningful results. In many cases the
measure is based on average CPU throughput. The
averaging period used is therefore important.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• CPU Name
• Operational Profile
• Number of Requests for Service
• Number of Requests for Service

Completed
• Measured Time Period
• Specified CPU Throughput Limit

Typical Collection Level
• CPU

Typical Reporting Level
• CPU
• Target HWCI

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Have sufficient CPU resources been acquired?
• Do CPU estimates appear reasonable? Have large increases occurred?

Part 2 - Selecting and Specifying Program Measures

Page 162

Measure - I/O Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The I/O Utilization measure calculates the proportion of time the I/O resources are busy during a measured time
period. This measure indicates whether I/O resources are sufficient to support operational processing
requirements.

Selection Guidance

Program Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for high traffic systems.
• Network I/O may also be measured under this measure.
• Useful during development and software support

phases.

Process Integration
• Actual measurement requires a tool that measures

usage based on a defined operational profile during a
measured period of time. Actuals are relatively easy to
collect.

• The operational profile has a significant impact on this
measure. The test cases should include both normal
and stress levels of operation.

• Estimates are very difficult to derive and require
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• I/O Channel Name
• Operational Profile
• Time I/O Resource is Busy
• Time I/O Resource is Available
• Measured Time Period
• Specified I/O Channel Utilization Limit

Typical Collection Level
• I/O Resource

Typical Reporting Level
• I/O Resource
• Target HWCI

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Do the I/O resources allow adequate data traffic flow?
• Can additional data traffic be provided after system delivery?
• Should I/O resources be expanded?

Part 2 - Selecting and Specifying Program Measures

 Page 163

Measure - I/O Throughput
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The I/O Throughput measure reports the rate at which the I/O resources send and receive data, according to the
number of data packets (bytes, words, etc.) successfully sent or received during a measured time period. This
measure indicates whether the I/O resources are sufficient to support the system's operational processing
requirements.

Selection Guidance

Program Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for high traffic systems.
• Network I/O may also be measured under this measure.
• Useful during development and software support

phases.

Process Integration
• Actual measurement requires a tool that measures

usage based on a defined operational profile during a
measured period of time. This is relatively easy to
collect.

• The operational profile has a significant impact on this
measure. Tests should include both normal and stress
levels of operation.

• Estimates are very difficult to derive and require
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

• The measurement methodology for I/O throughput is
critical for meaningful results. In many cases the
measure is based on average I/O throughput. the
averaging period used is therefore important.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• I/O Resource Name
• Operational Profile
• Number of Data Packets
• Number of Data Packets Successfully

Sent
• Number of Data Packets Successfully

Received
• Measured Time Period
• Specified I/O Throughput Limit

Typical Collection Level
• I/O Resource

Typical Reporting Level
• I/O Resource
• Target HWCI

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Can the software design handle the required amount of system data in the allocated time?
• Can the software handle additional system data after delivery?

Part 2 - Selecting and Specifying Program Measures

Page 164

Measure - Memory Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The Memory Utilization measure indicates the proportion of memory that is used during a measured time period.
This measure addresses random access memory (RAM), read only memory (ROM), or any other form of
electronic, volatile memory. This measure specifically excludes all types of magnetic and optical media (e.g.
disk, tape, CD-ROM, etc.). This measure provides an indication of whether the memory resources can support
the system’s operational processing requirements.

Selection Guidance

Program Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for memory constrained systems.
• Useful during development and software support

phases.

Process Integration
• Measure and monitor different types of memory (e.g.

RAM, ROM) separately. Specify the size of a word (e.g.
16 bit, 32 bit, etc.) for each memory type.

• Actual measurement requires a tool that measures
usage based on a defined operational profile during a
measured time period or task. This is relatively easy to
collect.

• The operational profile has a significant impact on this
measure. The tests should include both normal and
stress levels of operation.

• Estimates are very difficult to derive and require
significant simulation or modeling support. Estimates
must be developed early to impact design decisions.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Memory Name
• Operational Profile
• Memory Available
• Memory Used
• Measured Time Period
• Specified Memory Utilization Limit

Typical Collection Level
• CPU

Typical Reporting Level
• CPU
• Target HWCI

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Will the software fit in the processors?
• Can the software size increase after system delivery as needed to incorporate new functionality?
• What is the risk that system errors will be caused by lack of storage space?

Part 2 - Selecting and Specifying Program Measures

 Page 165

Measure - Storage Utilization
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The Storage Utilization measure reports the proportion of storage capacity used. The measure provides an
indication of whether storage resources are sufficient to store programs and/or the anticipated volume of
operational data generated by the system. The term "storage" refers to magnetic and optical media (e.g. disk,
tapes, hard drives, CD-ROM, etc.), but specifically excludes all types of random access memory (RAM), read
only memory (ROM), or any other forms of electronic memory.

Selection Guidance

Program Application
• Applicable to all domains. Primarily used for weapon

systems.
• Critical for storage constrained systems.
• Useful during development and software support

phases.

Process Integration
• Measure and monitor different types of storage (e.g.

disk, tape) separately. Specify the size of a word (e.g.
16 bits, 32 bits, etc.) for each storage type.

• Actuals are easy to measure. Estimates are often
based on product size.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Storage Name
• Storage Available
• Storage Used
• Specified Storage Utilization Limit

Typical Collection Level
• Storage Device

Typical Reporting Level
• Storage Device
• Target HWCI

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Have sufficient storage resources been provided?
• Do storage estimates appear adequate?
• What is the expansion capacity?

Part 2 - Selecting and Specifying Program Measures

Page 166

Measure - Response Time
Measurement Category - Target Computer Resource Utilization
Issue - Growth and Stability

The Response Time measure reports the amount of time required to process a request. The measure counts
the time between initiation of a request for service and the conclusion of that service. It provides an indication
of whether the target computer system responds in a timely manner.

Selection Guidance

Program Application
• Applicable to all domains. Used extensively on AIS

systems.
• Critical for programs with specified response time

requirements. Especially critical for real-time programs.
• Useful during development and software support

phases.

Process Integration
• Actuals can be based on real-time observation or may

require a tool that measures request completion based
on a defined operational profile. This data is generally
easy to collect.

• The operational profile has a significant impact on this
measure. Tests should include both normal and stress
levels of operation.

• This measure must be collected at a low level in order to
provide a good characterization of the level of service
provided.

Usually Applied During
• Design (Estimates)
• Implementation (Estimates and Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• HWCI Name
• Operational Profile
• Service Name
• Service Initiation Time
• Service Completion Time
• Maximum Allowable Service Time

Typical Collection Level
• Service

Typical Reporting Level
• Service

Count Actuals Based On
• Integrated system test
• Stress/endurance test

This Measure Answers Questions Such As
• Is the target computer system sufficient to meet response requirements?
• How long do certain services take?
• Does the software operate efficiently?

Part 2 - Selecting and Specifying Program Measures

 Page 167

PRODUCT QUALITY

MEASUREMENT TABLES

• Defect Profile

• Complexity

Part 2 - Selecting and Specifying Program Measures

Page 168

Part 2 - Selecting and Specifying Program Measures

 Page 169

Measurement Category - Defect Profile
Issue - Product Quality

Defect Profile measures identify the number of problem reports, defects, and failures in the software products
and/or processes. Defect Profile measures are some of the best measures for monitoring integration and test
progress. These measures also provide an indication of product quality.

Program Application
• Basic measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during development and software support phases.

Measures Included in this Category
• Problem Report Trends
• Problem Report Aging
• Defect Density
• Failure Interval

Limitations
• Measures in this category do not always address the effort that is required to implement the changes. It is

possible to have one change that has a major impact on all facets of the program, or multiple changes with
minimal impact.

Related Measurement Categories
• Work Unit Progress
• Rework
• Product Size and Stability

Additional Information
• A defect is a product's non-conformance with its specification. A problem report is a documented

description of a defect, unusual occurrence, observation, or failure that requires investigation and may
involve software modifications. Not all problem reports identify valid software problems. A valid software
problem may be associated with multiple defects.

• While commonly tracked during implementation and integration and test, defect profile measures are
extremely useful when they are applied during software requirements analysis and design.

Example Indicator(s)
• Problem Report Status (PSM Part 3, Section 3.12)
• Problem Report Aging (PSM Part 3, Section 3.13)
• Defect Density (PSM Part 3, Section 3.14)

Part 2 - Selecting and Specifying Program Measures

Page 170

Measure - Problem Report Trends
Measurement Category - Defect Profile
Issue - Product Quality

The Problem Report Trends measure quantifies the number, status, and priority of problems reported. It
provides very useful information on the ability of a developer to find and fix defects. The quantity of problems
reported reflects the amount of development rework (quality). Arrival rates can indicate product maturity (a
decrease should occur as testing is completed). Closure rates are an indication of progress and can be used to
predict test completion.

Selection Guidance

Program Application
• Basic measure applicable to all domains.
• Included in most DoD measurement policies and

commercial measurement practices.
• Applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Requires a disciplined problem reporting process.
• This measure is generally available during integration

and test. It is beneficial, however, to begin problem
tracking earlier. Potential areas for tracking include
requirements, design, code, and unit test inspections,
unit tests, CSCI and build level integration and testing,
and system level testing.

• The status codes used on a program should address at
a minimum what problem reports are open and closed.

• Easy to collect actuals when an automated problem
reporting system is used. Many programs do not
estimate the number of problem reports expected.

• The number of discovered problem reports should be
considered relative to the amount of discovery activity
(number of inspections, amount of testing, etc.).

• Many programs use the number of open problem
reports, by priority categories, as a measure of
readiness for test/delivery.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Priority
• Status Code
• Number of Problem Reports
• Build/Release
• Discovery Activity

Typical Collection Level
• CSCI or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Successfully tested
• Successfully integrated
• Delivered to field
• Problem report documented
• Problem report approved by

configuration control board

This Measure Answers Questions Such As
• How many (critical) problem reports have been written?
• Do problem report arrival and closure rates support the scheduled completion date of integration and test?
• How many problem reports are open? What are their priorities?

Part 2 - Selecting and Specifying Program Measures

 Page 171

Measure - Problem Report Aging
Measurement Category - Defect Profile
Issue - Product Quality

The Problem Report Aging measure reports the length of time that each problem report has remained open. The
measure is used to determine whether progress is being made in fixing problems. It helps assess whether or not
software rework is being deferred.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Requires a disciplined problem reporting process.
• Easy to collect actuals when an automated problem

reporting system is used. Most programs do not
estimate problem report aging.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Problem Report Name
• Component Name
• Priority
• Status Code
• Discovery Date
• Closure Date
• Build/Release

Typical Collection Level
• Problem Report

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Successfully tested
• Successfully integrated
• Delivery to field
• Problem report documented
• Problem report approved by

configuration control board

This Measure Answers Questions Such As
• How long does it take to close a problem report?
• Is the developer closing known problems in a timely manner? (How long have open problem reports

remained open?)
• Are the problems that are more difficult to fix being deferred?

Part 2 - Selecting and Specifying Program Measures

Page 172

Measure - Defect Density
Measurement Category - Defect Profile
Issue - Product Quality

The Defect Density measure is a ratio of the number of defects written against a component relative to the size
of that component. Either a product or function oriented size measure can be used. The measure helps identify
components with the highest concentration of defects. These components often become candidates for
additional reviews or testing, or may need to be re-written. Trends in the overall quality of a system can also be
monitored with this measure.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to all sizes and types of programs.
• Useful during development and software support

phases.

Process Integration
• Requires a disciplined problem reporting process and a

method of measuring software size.
• Requires the allocation of defect and size data to the

associated component affected.
• In order to use functional measures of size,

requirements or function points must be allocated to the
associated components.

• Actuals are relatively easy to collect. Most programs
do not estimate defect density.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Defects
• Priority
• Number of Lines of Code
• Source (new, modified, deleted,

reused, NDI, GOTS, or COTS)
• Language
• Build/Release

Size May be Measured As
• Lines of Code
• Components
• Requirements
• Function Points

Typical Collection Level
• CSCI or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Defects documented
• Successfully integrated
• Successfully tested
• Delivered to field

This Measure Answers Questions Such As
• What is the quality of the software?
• What components have a disproportionate amount of defects?
• What components require additional testing or review?
• What components are candidates for rework?

Part 2 - Selecting and Specifying Program Measures

 Page 173

Measure - Failure Interval
Measurement Category - Defect Profile
Issue - Product Quality

The Failure Interval measure specifies the time between each report of a software failure. The measure is used
as an indicator of the length of time that a program can be expected to run without a software failure (during
systems operation). The measure provides insight into how the software affects overall system reliability. This
measure can be used as an input to reliability prediction models.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to any program with reliability requirements.
• Useful during development in system or operational

test. Used throughout software support based on
reported operational failures.

Process Integration
• Requires a disciplined failure tracking process. Easier

to collect if an automated system is used. Data can be
gathered from test logs or incident reports.

• Consider what priority of failures to include.
• Be sure to exclude non-software failures.
• Some programs specify threshold limits for software

reliability.

Usually Applied During
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Failure Identifier
• Date/Time Stamp
• Operational Hours to Failure
• Priority

Typical Collection Level
• Build/Release

Typical Reporting Level
• Build/Release

Count Actuals Based On
• Failure documented
• Failure validated

This Measure Answers Questions Such As
• What is the program's expected operational reliability?
• How often will software failures occur during operation of the system?
• How reliable is the software?

Part 2 - Selecting and Specifying Program Measures

Page 174

Measurement Category - Complexity
Issue - Product Quality

Complexity measures quantify the structure of software components, based on the number and intricacy of
interfaces and branches, the degree of nesting, the types of data structures, and other system characteristics.
Complex components are generally harder to test, are more difficult to maintain, and may contain more defects
than less complex components. Complexity measures provide indications of the need to redesign and the
relative amount of testing required of any component.

Program Application
• Measurement category applicable to programs with long-term software support requirements.
• Applicable to most software process models.
• Useful during development and software support phases.

Measures Included in this Category
• Cyclomatic Complexity

Limitations
• Data is not generally available until after a component has been coded (although some CASE tools measure

design complexity). Reducing complexity requires rework to redesign or recode the software.
• The interpretation of complexity is different for various high order languages.
• Some components must be complex to meet specified functional and performance requirements. The

measures do not account for this.

Related Measurement Categories
• Defect Profile
• Product Size and Stability
• Rework

Example Indicator(s)
• Software Complexity (PSM Part 3, Section 3.15)

Part 2 - Selecting and Specifying Program Measures

 Page 175

Measure - Cyclomatic Complexity
Measurement Category - Complexity
Issue - Product Quality

The Cyclomatic Complexity measure counts the number of unique logical paths contained in a software
component. This measure helps assess both code quality and the amount of testing required. A high
complexity rating is often indicative of a high defect rate. Components with high complexity usually require
additional reviews or testing, or may need to be re-written.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to programs with testability, reliability, or

maintainability concerns.
• Not generally used for COTS or reused code. Not

generally used on software from automatic code
generators or visual programming environments.

• Useful during development and software support
phases.

Process Integration
• Cyclomatic complexity does not differentiate between

type of control flow. A CASE statement counts as high
complexity even though it easier to use and understand
than a series of conditional statements.

• Cyclomatic complexity does not address data
structures.

• Operational requirements may require efficient, highly
complex code.

• Relatively easy to collect actuals when automated tools
are available (e.g. for Ada, C, C++). Estimates are
generally not derived, but a desired threshold may be
specified.

Usually Applied During
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Cyclomatic Complexity Rating
• Build/Release

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent
• Build/Release

Count Actuals Based On
• Release to configuration management
• Passing unit test
• Passing inspection

This Measure Answers Questions Such As
• How many complex components exist in this program?
• What components are the most complex?
• What components should be subject to additional testing?

Part 2 - Selecting and Specifying Program Measures

Page 176

Part 2 - Selecting and Specifying Program Measures

 Page 177

DEVELOPMENT PERFORMANCE

MEASUREMENT TABLES

• Process Maturity

• Productivity

• Rework

Part 2 - Selecting and Specifying Program Measures

Page 178

Part 2 - Selecting and Specifying Program Measures

 Page 179

Measurement Category - Process Maturity
Issue - Development Performance

Process Maturity measures address the capability of the software development processes within an organization.
The measures may be used to predict the ability of an organization to best address the issues and constraints
of a development program. These measures may also be used internally as part of a process improvement
function.

Program Application
• Measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning.

Measures Included in this Category
• Capability Maturity Model Level

Limitations
• These measures may be obtained through a formal assessment for certification or through an informal self-

evaluation. Only the results of a formal certification should be accepted for source selection. A formal
certification requires an investment to achieve required capabilities and to complete the certification
process. A strong management commitment is essential.

• Process capability is often determined at an organization level. That capability may not be carried to the
department or project levels, especially when there are significant program cost and schedule constraints.

• Process capability may help to select an adequate developer, but actual performance may vary
considerably among developers at the same maturity level.

• A high level of software process maturity does not guarantee program success.
• There is subjectivity in determination of the process maturity.
• Different process assessment models may not yield comparable results

Related Measurement Categories
• Environment Availability
• Productivity
• Rework

Example Indicator(s)
• Software Process Maturity (PSM Part 3, Section 3.16)

Part 2 - Selecting and Specifying Program Measures

Page 180

Measure - Capability Maturity Model Level
Measurement Category - Process Maturity
Issue - Development Performance

The Capability Maturity Model (CMM) Level measure reports the rating (1-5) of a software development
organization’s software development process, as defined by the Software Engineering Institute. The measure is
the result of a formal assessment of the organization’s project management and software engineering
capabilities. It is often used during the source selection process to evaluate competing developers.

Selection Guidance

Program Application
• Applicable to all domains.
• Normally applied at the organizational level.
• Useful during program planning, development and

software support phases.

Process Integration
• Requires formal training and a very structured

assessment approach. Requires a significant amount
of time and effort.

• Assessment may be formally conducted by an external
assessor, or a self-evaluation can be performed.

• Rating may be used during source selection to help
select a developer. Assessment may be used as part
of a process improvement program.

Usually Applied During
• Not applicable

Specification Guidance

Data Items Typically Collected
• Organization Name
• CMM Rating

Typical Collection Level
• Program

Typical Reporting Level
• Organization

Count Actuals Based On
• Prior to contract award
• Annual performance evaluation

This Measure Answers Questions Such As
• Does a developer meet minimum development capability requirements?
• What is the developer's current software development capability?
• What project management and software engineering practices can be improved?
• Is the developer's software process adequate to address anticipated program risks, issues, and constraints?

Part 2 - Selecting and Specifying Program Measures

 Page 181

Measurement Category - Productivity
Issue - Development Performance

Productivity measures identify the amount of software product produced per unit of effort. Productivity
measures are widely used as an indication of whether a program has adequate funding and schedule relative to
the amount of software to be developed. Assessments of actual productivity provide an indication of whether
the developer is producing code at a sufficient rate.

Program Application
• Measurement category applicable to most programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.
• While not explicitly included in most DoD measurement polices and commercial measurement practices,

the data necessary to calculate these measures are generally included.

Measures Included in this Category
• Product Size/Effort Ratio
• Functional Size/Effort Ratio

Limitations
• Productivity measures cannot be compared to each other, unless the same definitions are used for the

amount of product or function (in the same language) and effort (same labor categories included). This is
probably the most misused measure.

• Actual software productivity for different programs developed by the same organization can vary
considerably. A high productivity on one program does not guarantee a high productivity for others.

Related Measurement Categories
• Product Size and Stability
• Functional Size and Stability
• Effort Profile
• Milestone Performance

Example Indicator(s)
• Software Productivity (PSM Part 3, Section 3.17)

Part 2 - Selecting and Specifying Program Measures

Page 182

Measure - Product Size/Effort Ratio
Measurement Category - Productivity
Issue - Development Performance

The Product Size/Effort Ratio measure specifies the amount of software product produced relative to the amount
of effort expended. This common measure of productivity is used as a basic input to project planning and also
helps evaluate whether performance levels are sufficient to meet cost/schedule estimates.

Selection Guidance

Program Application
• Applicable to all domains. Commonly used in weapons

systems.
• Used for programs of all size. Less important for

programs where little code is generated such as those
using automatic code generation and visual
programming environments.

• Not generally used for COTS or reused software.
• Estimates are often used during program planning.

Both estimates and actuals are used during
development and software support to focus on the
incorporation of new functionality. Not generally used
for maintenance programs focused on problem
resolution.

Process Integration
• In order to compare productivities from different

programs, the same definitions of size and effort must
be used. For size, the same measure (e.g. Lines of
Code) must be used as well as the same definition (e.g.
logical lines). For the effort measure, the same labor
categories and software activities must be included.

• The environment, language, tools, and personnel
experience will effect productivity achieved.

• Productivity can also be calculated using software cost
models. Many of these models include schedule as
part of the productivity equation.

• To validly calculate productivity, the effort measure
must correlate directly with the size measure. If, for
example, effort for a component is included but the
component's size is not, productivity will be lower.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Organization Name
• Build/Release
• Product Size (from Product Size and

Stability measurement category)
• Language
• Effort (from Effort Profile

measurement category)

Typical Collection Level
• Build/Release
• Program
• Organization

Typical Reporting Level
• Build/Release
• Program
• Organization

Count Actuals Based On
• Completion of build/release
• Components implemented
• Components integrated and tested

This Measure Answers Questions Such As
• Is the developer producing the product at a sufficient rate to meet the completion date?
• How efficient is the developer at producing the software product?
• Is the planned/required software productivity rate realistic?

Part 2 - Selecting and Specifying Program Measures

 Page 183

Measure - Functional Size/Effort Ratio
Measurement Category - Productivity
Issue - Development Performance

The Functional Size/Effort Ratio measure specifies the amount of functionality produced relative to the amount
of effort expended. This measure is used as a basic input to project planning and also helps evaluate whether
performance levels are sufficient to meet cost/schedule estimates.

Selection Guidance

Program Application
• Applicable to all domains. Commonly used in AIS

systems.
• Useful when product size measures are not available.
• Useful during program planning, development, and

software support phases.

Process Integration
• In order to compare productivities from different

programs, the same definitions of size and effort must
be used. For size, the same measure (e.g. Function
Points) must be used as well as the same counting
practices. For the effort measure, the same labor
categories and software activities must be included.

• The environment, language, tools, and personnel
experience will effect productivity achieved.

• Productivity can also be calculated using software cost
models. Many of these models include schedules as
part of the productivity equation.

• To validly calculate productivity, the effort measure
must correlate directly with the size measure. If, for
example, effort for a function is included but the
functional size is not, productivity will be lower.

• Useful early in the program, Before actual product size
data is available.

Usually Applied During
• Requirements Analysis (Estimates and Actuals)
• Design (Estimates and Actuals)
• Implementation (Estimates and Actuals)
• Integration and Test (Estimates and Actuals)

Specification Guidance

Data Items Typically Collected
• Organization Name
• Build/Release
• Functional Size (from Functional Size

and Stability measurement category)
• Effort (from Effort Profile

measurement category)

Typical Collection Level
• Build/Release
• Program
• Organization

Typical Reporting Level
• Build/Release
• Program
• Organization

Count Actuals Based On
• Completion of build/release
• Functions implemented
• Functions integrated and tested

This Measure Answers Questions Such As
• Is the developer producing the software at a sufficient rate to meet the completion date?
• How efficient is the developer at producing the software?
• Is the planned/required software productivity rate realistic?

Part 2 - Selecting and Specifying Program Measures

Page 184

Measurement Category - Rework
Issue - Development Performance

Rework measures address the amount of rework due to defects in completed work products (documents, design,
code, test plans, testing, etc.). Rework measures are used to evaluate the quality of the software products and
development process. They provide information on how much software must be recoded and how much effort is
required for corrections.

Program Application
• Measurement category applicable to most programs.
• Applicable to most software process models. Not generally used in rapid prototype processes.
• Useful during development and software support phases.

Measures Included in this Category
• Rework Size
• Rework Effort

Limitations
• Data collection is difficult and often labor intensive.
• Most accounting systems do not include rework effort in separate accounts (in order to track rework effort at

least one cost account needs to be added).
• Requires a consistent process for effort allocation to rework/non-rework categories.

Related Measurement Categories
• Product Size and Stability
• Defect Profile
• Complexity

Example Indicator(s)
• Rework Effort (PSM Part 3, Section 3.18)

Part 2 - Selecting and Specifying Program Measures

 Page 185

Measure - Rework Size
Measurement Category - Rework
Issue - Development Performance

The Rework Size measure counts the number of lines of code that must be changed to fix known defects. This
measure helps in assessing the quality of the initial development effort, by indicating the amount of total code
that must undergo rework.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to most development processes. In a rapid

prototype process, it is only applicable to the "final"
version of the software product.

• Not generally used for non-developed code such as
COTS.

• Useful during development and software support
phases.

Process Integration
• Very difficult to collect. Most configuration

management systems do not collect information on
changes to the size of code or reason for the change
(rework).

• Rework size should only include code changed to correct
defects. Changes due to enhancements are not rework.

• Rework cost and schedule should be included in the
development plan.

Usually Applied During
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Component Name
• Number of Lines of Code Changed

Due to Rework

Size May be Measured As
• Lines of Code
• Components

Typical Collection Level
• Unit or equivalent

Typical Reporting Level
• CSCI or equivalent

Count Actuals Based On
• Release to configuration management
• Passing inspection
• Passing unit test

This Measure Answers Questions Such As
• How much code had to be changed as a result of correcting defects?
• What was the quality of the initial development effort?
• Is the amount of rework impacting the cost and schedule?

Part 2 - Selecting and Specifying Program Measures

Page 186

Measure - Rework Effort
Measurement Category - Rework
Issue - Development Performance

The Rework Effort measure counts the amount of work effort expended to find and fix software defects. Rework
effort may be expended to fix any software product, including those related to requirements analysis, design,
code, etc. This measure helps assess the quality of the initial development effort, and identify products and
software activities requiring the most rework.

Selection Guidance

Program Application
• Applicable to all domains.
• Applicable to most development processes. In a rapid

prototype process, it is only applicable to the "final"
version of the software product.

• Not generally used for effort associated with non-
developed code such as COTS.

• Useful during development and software support
phases.

Process Integration
• Difficult to collect. Some cost accounting systems do

not collect information on rework effort.
• For basic tracking, a single WBS/cost account should

be created to track all rework effort (per organization).
For more advanced tracking, multiple WBS/cost
accounts should be created to track rework at the
component and/or activity level.

• Rework effort should only include effort associated with
correcting defects. Effort expended due to incorporation
of enhancements is not rework.

• Rework cost and schedule should be included in the
development plan.

Usually Applied During
• Requirements Analysis (Actuals)
• Design (Actuals)
• Implementation (Actuals)
• Integration and Test (Actuals)

Specification Guidance

Data Items Typically Collected
• Organization
• WBS or Task Element
• Labor Hours

Typical Collection Level
• WBS or task element

Typical Reporting Level
• WBS or task element
• Organization

Count Actuals Based On
• End of financial reporting period

This Measure Answers Questions Such As
• How much effort was expended on fixing defects in the software product?
• What software development activity required the most rework?
• Is the amount of rework impacting cost and schedule?

Part 2 - Selecting and Specifying Program Measures

 Page 187

TECHNICAL ADEQUACY

MEASUREMENT TABLES

• Technology Impacts

Part 2 - Selecting and Specifying Program Measures

Page 188

Part 2 - Selecting and Specifying Program Measures

 Page 189

Measurement Category - Technology Impacts
Issue - Technical Adequacy

Technology Impacts measures quantify the positive or negative impacts of new technology used on the
program. They are defined and selected to track the effect of highly leveraged software technologies. They can
include functionality delivered, the amount of code developed, the defect discovery rates, and required replans.
Technology Impact measures provide an indication of the relative effects of developing or maintaining software
in different environments.

Program Application
• Measurement category applicable to many programs.
• Applicable to all software process models.
• Useful during program planning, development, and software support phases.

Measures Included in this Category
• Program Defined Measures

Limitations
• It is very difficult to attribute problem impacts to one particular software technology. Measures in this

category, however, do provide usable insight.

Related Measurement Categories
• Productivity
• Defect Profile
• Product Size and Stability
• Functional Size and Stability
• Milestone Performance

Example Indicator(s)
• Software Origin (PSM Part 3, Section 3.19)

Part 2 - Selecting and Specifying Program Measures

Page 190

Part 2 - Selecting and Specifying Program Measures

 Page 191

GENERAL MEASUREMENT

SPECIFICATION TABLE

Part 2 - Selecting and Specifying Program Measures

Page 192

Part 2 - Selecting and Specifying Program Measures

 Page 193

General Measurement Specification Table

This table provides measurement specification guidance applicable to all measures, and augments the
specification guidance found in the individual Measurement Description Tables. It provides information
which helps to define overall data and implementation requirements for all selected measures.

Specification Guidance

• Data Items - The data elements for each selected measure and the levels of collection and reporting for
each should be identified.

• Data Types - Measurement data representing plans, changes to plans, and actuals for each measure

should be collected and reported. Plans and estimates should be updated on a regular basis.

• Measurement Definitions - The developer should identify the actual measurement definitions and

methodologies that will be used for each specified measure. If these change over the course of the
program, the definitions and associated interpretations should be updated and provided to the program
office. Differences in the estimation methodologies and the way the actuals are counted for each
individual measure should be identified. The “exit” criteria for counting actuals should be defined for
each measure.

• Data Dates - For each measure, both the date that the measurement data was collected and the date

that it is reported should be identified. The data should be provided in a timely manner. The difference
between the date the data was collected and the date the data was provided to the program office
should be minimized.

• Collection Periodicity - Measurement data should be collected on a periodic, not event driven basis.

This is generally monthly on most programs but can be adjusted as necessary. The periodicity may
have to be modified for selected measures due to software process constraints.

• Measurement Scope - If more than one organization is involved in developing the software for a

program, measurement data should be collected from each and identified by source. Different
definitions for the same measures should be identified.

• Program Phase - The measures which are selected and integrated into the program should generally be

applied to all life cycle phases, including program planning, development, and software support.
Throughout all phases measurement plans and estimates should be continuously updated and reported.

• Data Reporting Mechanisms - The reporting mechanisms for delivering data to the program office from

the developer should be identified for each measure. Every effort should be given to establishing the
interfaces required to electronically transfer the data on a periodic basis.

Part 2 - Selecting and Specifying Program Measures

Page 194

Part 2 - Selecting and Specifying Program Measures

Page 195

CHAPTER 3 - MEASUREMENT SELECTION AND

SPECIFICATION EXAMPLE

Chapters 1 and 2 provide the guidance and detailed information
required to select and specify program measures. This chapter
provides an example program scenario to show how to use this
information to actually select a set of software measures. Other
examples of measurement selection and specification are provided
in the Case Studies in Part 5 of the Guide.

3.1 Program Scenario

During the program planning phase of a large weapons system
software upgrade, the program office learned that the updated
system would have to be deployed earlier than originally planned.
The planning efforts completed to date clearly indicated that there
were already some significant constraints with respect to schedule,
and this change increased the risk even further. Given that the
program was already getting a considerable amount of external
visibility, the Program Manager decided that he would rely on a
well implemented measurement process to provide him with the
software information that he needed to properly manage the
program issues.

The program was required to follow many of the DoD acquisition
reform requirements, and as such, a number of new technical and
management approaches were to be implemented. The Program
Manager established several planning related Integrated Product
Teams (IPT), and formally tracked the issues and risks associated
in the program.

The primary risk to the program was the short development
schedule. The program had originally been “sold” on the new
mission capabilities and the use of advanced technologies, which
increased the overall technical risk of the software development,
and now the need to deliver the system earlier than expected was of
increased concern.

The software engineering IPT was involved in tailoring the
measurement process. To start, the key characteristics of the

Part 2 - Selecting and Specifying Program Measures

Page 196

program were identified and documented. This information is
summarized as follows:

• Large real-time weapons system

• Existing system baseline

• Approximately 1.5 Million lines of source code to be
implemented

• Multiple software languages - Ada, C, and Assembly

• Multiple developers working under a prime contractor
responsible for system integration

• Average software process maturity across all organizations

• Constrained funding limits

Due to the schedule risk and the large amount of functionality that
had to be implemented in a short time, the program office required
that the developer maximize the use Commercial Off the Shelf
(COTS) software components, reuse a considerable amount of
existing legacy software, adopt an open systems architecture, and
apply commercial software process standards.

3.2 Measurement Selection Summary

Following the PSM measurement selection and specification
approach, the program office prioritized the program specific
software issues and allocated them to the appropriate Common
Software Issues. The measurement analyst then reviewed the PSM
measurement tables and determined the key measurement
categories and associated measures that were needed to best
provide the required information. Figure 3-1 summarizes the
results of the selection process, and lists the primary measures that
were selected.

The software engineering IPT felt that the importance of the
schedule and progress issue required the implementation of a
number of related measures. Along with Milestone Dates, which
would already be available from the program management process,
they selected a number of measures in the Work Unit Progress
category.

Part 2 - Selecting and Specifying Program Measures

Page 197

Figure 3-1. Scenario Issues, Measurement Categories, and Selected Measures

These measures would provide incremental completion information
for each software activity. In this way the program team would be
able to track the progress of each activity and software product to
completion. The Work Unit Progress measures that were selected
were the ones most useful in tracking the development activities
given the large amount of COTS and reused code that would be
implemented. Thus, the focus was on the selection of requirements
oriented measures, and measures which provided progress
information for integration and test rather than for design and
implementation. This approach provided more useful information
given the extent of COTS and reused software to be used.

Since the development plan was based on highly leveraged software
technology, there were issues with respect to the actual impact of
the COTS and reused code on the development schedule, and
overall development productivity. As such, the team selected the
Product Size/Effort Ratio measure under the Productivity category
to measure and evaluate overall development performance. They
also defined a Technology Impact measure which would show if
the relative amount of developed to non-developed code was
changing. Both of these measures required the use of lines of code
to size non-developed software. The Effort measure was selected
to support the productivity assessment.

Issues Categories Measures
Schedule and Progress Milestone Performance Milestone Dates

Work Unit Progress Components Integrated and
Tested

Requirements Allocated

Requirements Tested

Problem Reports Resolved

Incremental Capability Build Content - Function

Resources and Cost Effort Profile Effort

Growth and Stability Product Size and Stability

Functional Size and Stability

Lines of Code

Requirements

Product Quality Defect Profile Problem Report Trends

Problem Report Aging

Development Performance Productivity Product Size/Effort Ratio

Technical Adequacy Technology Impacts Code Growth by Source

Part 2 - Selecting and Specifying Program Measures

Page 198

Due to the constrained time frame and the large amount of
functionality which had to be delivered, the team felt that
requirements growth would be a major issue. Any significant
growth in the requirements could significantly impact cost and
schedule. They therefore selected the Requirements measure under
the category of Functional Size and Stability.

Given the overall planning constraints and the criticality of the new
functions, product quality was of concern. To address this, both
the Problem Report Trends and Problem Report Aging measures
were selected, to be applied to all software, inclusive of the COTS
and reused code.

At the completion of the measurement selection process the IPT
had defined a basic list of measures which directly addressed the
issues inherent to the program (see Figure 3-1). After each measure
was specified, the overall set of measurement requirements was
conveyed to the developer for integration into the software
process.

Issues

Measures

Indicators

Analysis

Information

A Guide to Objective Program Insight

Action

PRACTICAL

MEASUREMENT

SOFTWARE

ANALYSIS TECHNIQUES

AND EXAMPLES

PART 3

Part 3 - Analysis Techniques and Examples

Page 200

Part 3 - Analysis Techniques and Examples

Page 201

ANALYSIS TECHNIQUES AND EXAMPLES

Part 2 of Practical Software Measurement: A Guide to Objective
Program Insight stresses the importance of selecting the measures
which best address the software issues for a particular program.
This part of PSM explains how to actually apply measurement:
using measurement to gain insight into the issues that are of
greatest concern for the program. Measurement is only useful
when it provides information which helps to make program-related
software decisions.

Part 1 of Practical Software Measurement describes the overall
measurement process and the various techniques a measurement
analyst should use when defining and generating measurement
indicators. This part of the Guide provides more specific indicator
guidance, and provides examples of how measurement indicators
can be applied to analyze software issues.

This part of the Guide is organized into four chapters:

• Chapter 1, Measurement Application Overview -
summarizes the process described in Part 1 for collecting,
analyzing, and reporting measurement data and
information.

• Chapter 2, Indicator Definition - describes how to produce
graphs and reports which help to visually represent an
issue.

• Chapter 3, Single Indicator Examples - includes, for each
measurement category described in PSM, an example of
how a measurement indicator can be defined and analyzed.

• Chapter 4, Integrated Indicator Examples - includes
examples of how different indicators can be used together to
analyze specific program issues.

The application guidance provided in this part of PSM is based on
actual experience. Many of the examples used are taken directly
from actual DoD and Industry programs.

Part 3 - Analysis Techniques and Examples

Page 202

Part 3 - Analysis Techniques and Examples

Page 203

TABLE OF CONTENTS

CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW.. 205

1.1 Collect and Process Data... 205

1.2 Define and Generate Indicators... 206

1.3 Analyze Issues.. 207

1.4 Report Results .. 207

1.5 Take Action... 208

CHAPTER 2 - INDICATOR DEFINITION .. 209

CHAPTER 3 - SINGLE INDICATOR EXAMPLES... 213

3.1 Milestone Progress Indicator.. 216

3.2 Design Progress Indicator... 218

3.3 Schedule Variance Indicator .. 220

3.4 Incremental Build Content Indicator.. 222

3.5 Effort Allocation Indicator .. 224

3.6 Staff Experience Indicator .. 226

3.7 Cost Profile Indicator .. 228

3.8 Resource Utilization Indicator ... 230

3.9 Software Size Indicator... 232

3.10 Requirements Stability Indicator .. 234

3.11 Response Time Indicator... 236

3.12 Problem Report Status Indicator.. 238

3.13 Problem Report Aging Indicator... 240

3.14 Defect Density Indicator ... 242

3.15 Software Complexity Indicator .. 244

3.16 Software Process Maturity Indicator... 246

3.17 Software Productivity Indicator.. 248

3.18 Rework Effort Indicator... 250

3.19 Software Origin Indicator... 252

Part 3 - Analysis Techniques and Examples

Page 204

TABLE OF CONTENTS - continued

CHAPTER 4 - INTEGRATED INDICATOR EXAMPLES .. 255

4.1 Design Completion Analysis.. 256

4.2 Test Completion Analysis... 258

4.3 Readiness for Delivery Analysis .. 260

4.4 Maintenance Analysis... 262

Part 3 - Analysis Techniques and Examples

Page 205

CHAPTER 1 - MEASUREMENT APPLICATION

OVERVIEW

Utilizing measurement data to analyze program issues is an
iterative, not a one-time, process. Data is continuously collected
and measurement indicators are defined and generated at regular
intervals throughout a program. Although each issue may require
different data and different indicators, the basic analysis process is
the same. Figure 1-1 describes this process:

Collect and
Process Data

Define and

Indicators

Analyze
Issues

Take
Action

Other Program
Information

Derived
Issues

Report
Results

Software
Questions

Software
Issues

Generate

Figure 1-1 Measurement Application Process

This version of PSM primarily uses examples to illustrate how
indicators are defined and applied to help identify and resolve
program issues. The next version of the Guide (3.0) will provide
more detailed guidance on how issues can be systematically
analyzed.

1.1 Collect and Process Data

After the measurement process is tailored for a program, the
specific measures, associated data, and the implementation
requirements should be defined. How the data is actually collected
is dependent on the developer’s software process, project
organization, and existing tools. Planning data will most often be
collected from project scheduling tools, spreadsheets, or

Part 3 - Analysis Techniques and Examples

Page 206

documents. Actual data will most often be collected from sources
such as project tracking tools, problem and defect tracking
databases, static and dynamic analysis tools, time reporting
systems, and configuration management systems.

Data may be reported at different levels of detail and at different
periodicities than it was collected. However, data at a reasonably
low-level of aggregation should be supplied to the program
management office in order to allow the required analyses to be
conducted. The program management office should verify the data
before using it to assess program status. Verification involves
looking for missing data items, cross-checking the data for
accuracy, and ensuring data is being provided at the proper level of
detail. Evaluating the accuracy and integrity of the data being
supplied reveals much about the developer’s process and the issues
that may later impact the program.

1.2 Define and Generate Indicators

Measurement indicators are the primary mechanisms used for issue
analysis and reporting. An indicator is a measure or combination of
measures that provides insight into a software issue or concept.
Multiple indicators may often be needed to thoroughly understand
the status of an issue. Many measurement indicators are produced
by using an analysis technique that compares one or more
measured values to corresponding expected values.

Measured values are the actual measurement data collected and
reported by the developer. Examples include hours of effort
expended or lines of code produced. Expected values are planned
or historical measurement data such as planned milestone dates,
target level of reliability or required productivity. An expected
value may also reflect a standard rule of thumb or threshold, such
as the generally recognized rule of thumb which recognizes ten as
the maximum desired value for a component’s cyclomatic
complexity score. A series of data points is often provided for
both measured and expected values.

An indicator is produced by applying an analysis technique to the
data. The technique usually involves the application of a graphing
technique or a mathematical operation, or both, which results in a
comparison of the measured and expected values. Various
indicators may need to be defined and generated at various times

Part 3 - Analysis Techniques and Examples

Page 207

throughout a program to effectively analyze an issue. The
combination of measurement data used, the issue being analyzed,
and the insight desired, all influence the generation of an indicator.
The name of the indicator should reflect these elements.

1.3 Analyze Issues

Analyzing a software issue involves using indicators to identify
unexpected situations. Then, information received from the
analysis is coupled with other program information and personal
experience. Insight is achieved by combining information from
these three sources; this insight is then used to assess the impact
the situation may have on desired program outcomes.

Issue analysis also involves using problem solving skills to gain an
understanding of why the situation exists so that the proper
corrective action can be initiated. As information is gathered
regarding an issue, actual findings will often lead to new and
different types of analyses, utilizing new and different indicators.
In this regard, the analysis process must be dynamic so that the
underlying causes of problems can be localized and identified.

Rules of thumb are often used to evaluate whether a variance
between measured and expected values represents a situation
requiring further action. For example, lessons learned from past
projects in one organization may dictate that whenever a variance
in either schedule or budget is greater than ten percent, the Program
Manager should investigate the situation and take corrective action.
Organizations should attempt to define analysis rules of thumb
wherever possible, as this increases the likelihood that the proper
level of analysis will be performed consistently for each program.

1.4 Report Results

Once the status of an issue is understood, the findings and
recommendations should be reported to program management.
This is normally done via a briefing or report. The following
information should be communicated:

• Overall status

• Specific situations or problems discovered

• Recommendations

Part 3 - Analysis Techniques and Examples

Page 208

• Identification of potential new issues

Results should be used by the Program Manager at program status
review meetings, at major milestone reviews, and ideally
throughout the program. Adequate time should be allocated in
advance to collect and process the data, analyze the issues, prepare
reports, and conduct the briefings. Care should be taken to insure
that all information conveyed in the reports can be explained. The
developer should also be briefed on the analysis results.

1.5 Take Action

Action must be taken to realize any benefit from measurement.
The goal of project measurement is to identify problems and take
corrective action in time to affect the outcome of the project.
Actions may be initiated by either the developer or the Program
Manager.

Actions, once taken, should be tracked to assess the effectiveness
of the action and to ensure that the action does positively affect
outcomes.

Part 3 - Analysis Techniques and Examples

Page 209

CHAPTER 2 - INDICATOR DEFINITION

Measurement indicators can provide valuable insight into a
particular issue. Indicators help to explain both what is happening
and what may happen with respect to the software issue. Simple
charting techniques can be used to produce graphical
representations of the indicators. The ability to extract the
pertinent information contained in the measurement data can be
improved with proper selection and use of these charting
techniques. The two most commonly used charting techniques are
described below.

Line Charts, sometimes called run charts, provide a way to
represent a series of measurement data values over time. A series
may contain either measured or expected values; each value in the
series is reported for a specified point in time. Values are plotted
as points on the graph, and the values are connected with lines to
help show progress or a trend. For example, a line chart may
include one series of planned values which shows the cumulative
number of units scheduled to complete coding and unit testing each
month, over a six month period of time. As units are actually
completed, a second series of values is summed and added to the
graph each month to allow a comparison between measured and
expected values.

Bar Charts provide a way to represent the count or frequency of a
set of components or events. Bars are typically drawn vertically
with the Y-axis indicating the units or events being counted. Each
bar contains data associated with a class or grouping of data.
Understanding the distribution of the data across the groups is
often useful. For example, the bar might represent the number of
defects detected: 1) for each product component, or 2) within each
phase of the software development life cycle. Sets of bars can also
be used to compare two series, such as measured and expected
values. Histograms and Pareto charts are two special types of bar
charts.

Good graphic displays of indicators facilitate communication of
measurement results. Therefore, graphs must not be too complex.
Each graph should convey a clear message. It is better to have
many graphs than many messages on one graph, especially when

Part 3 - Analysis Techniques and Examples

Page 210

getting started. Some guidelines for developing effective graphs
include the following:

• Provide a descriptive title identifying the indicator name,
type of data, and component or CSCI (if applicable)
represented by the graph.

• Show an as-of line or date indicating the reporting period
represented by this data. Many graphs will show plans or
projections beyond the as-of date.

• Axis labels should include type of units and scale markers
(e.g., dates or counts).

• Provide indicators of major milestones that correspond
to the interval plotted when showing time trends.

• Use the connect-the-dots technique rather than curve-
fitting to show trends.

• Use contrasting styles for lines, bars, and data points that
represent different groups of data.

• Label line, bar, and data points directly on the figure, if
possible. Otherwise, use a key that associates a label with
each contrasting style of line, bar, or data point.

• Identify the source of the data. Include the version
number of documents.

• Use similar conventions for all reports. For example,
always use solid boxes for actuals and open boxes for plans.

• Adjust the horizontal axis to show the expected range of
the data plotted.

• Label significant events and trends in the data.

• Be careful that the use of percentages does not hide
significant trends in the data.

• Use the same axes on both graphs when comparing two
graphs.

Figure 2-1 shows a graph that illustrates the guidelines listed above.

Part 3 - Analysis Techniques and Examples

Page 211

Requirements Stability

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

N
u

m
b

e
r

o
f

R
e

q
u

ir
em

e
n

ts

Total
Changes

SSR PDR

Data as of 30 Jun 95Program: PSM

2

43

5

1

Conventions:
	 1. Descriptive Title
	 2. Milestones
	 3. Program Name
	 4. Measurement Date
	 5. Key

Figure 2-1. Sample Graph Format

Part 3 - Analysis Techniques and Examples

Page 212

Part 3 - Analysis Techniques and Examples

Page 213

CHAPTER 3 - SINGLE INDICATOR EXAMPLES

This chapter contains examples of single indicators used to analyze
the issues in this document. These are examples only and do not
represent a definitive set that should be applied to all programs.
At least one sample indicator has been included for each PSM
measurement category. Examples are presented using a two-page
format, which contains general descriptions, a visual representation
of the indicator produced from detailed measurement data, and brief
explanations of how the indicator was generated and how the
corresponding issue might be analyzed. Many of the examples
include more than one graph. Each indicator description contains
the following information:

• Indicator Name - The name reflects the measurement data
used, the issue being analyzed, and the insight desired.

• Issue - Common Software Issue being analyzed.

• Category - PSM Measurement Category which best
matches the insight desired.

• Measure - Name of the measure selected for use in this
example.

• Description - A description of the selected indicator,
including its purpose and the questions it can help answer.

• Example Graph - A description of the sample graph
provided, including how it was produced. (Some examples
contain an analysis of the indicator at more than one level of
detail and therefore contain more than one graph.)

• Feasibility Analysis - Instructions for evaluating the
feasibility of the planned values used in this example.

• Performance Analysis - A description of how the
indicator depicted in the example might be analyzed to
obtain information about the corresponding issue.

• Lessons Learned - Helpful information such as the
suggested reporting level, how much variance is typically

Part 3 - Analysis Techniques and Examples

Page 214

considered acceptable, and which factors often interfere
with the analysis of this indicator.

Part 3 - Analysis Techniques and Examples

Page 215

The following examples are included:

Issue Indicator Section

Schedule and Progress Milestone Progress 3.1

Design Progress 3.2

Schedule Variance 3.3

Incremental Build Content 3.4

Resources and Cost Effort Allocation 3.5

Staff Experience 3.6

Cost Profile 3.7

Resource Utilization 3.8

Growth and Stability Software Size 3.9

Requirements Stability 3.10

Response Time 3.11

Product Quality Problem Report Status 3.12

Problem Report Aging 3.13

Defect Density 3.14

Software Complexity 3.15

Development Performance Software Process Maturity 3.16

Software Productivity 3.17

Rework Effort 3.18

Technical Adequacy Software Origin 3.19

Part 3 - Analysis Techniques and Examples

Page 216

3.1 Milestone Progress Indicator

Issue Schedule and Progress.

Category Milestone Performance.

Measure Milestone Dates.

Description Helps identify the current status of major project events, and
allows assessment of the impact of potential or actual schedule
slips on future activities and milestones.

Example
Graph

A Gantt chart (Figure 3-1) was used to present the information.
Milestones symbols were derived from single dates while start and
end dates were used to produce activity bars for major build-level
activities.

Feasibility
Analysis

Evaluate each activity’s planned start and end date for
reasonableness. The evaluation should include an assessment of
whether all activities are included, what activities affect the critical
path, and the amount of overlap between various activities.

Performance
Analysis

Figure 3-1 shows a delayed program start resulting in a slip in Build
1 of the software. Based on known dependencies, the slips
projected for Build 2 activities and milestones have been
incorporated in the chart. Further analysis of staffing levels, work
unit progress, and defect rates should help uncover the reasons for
any further schedule slips. The impact of these schedule slips
must be evaluated in light of program priorities and constraints.

Lessons
Learned

Slips in activities and milestones on the critical path are of greatest
concern due to the ripple effect in the later parts of the schedule.
Ensure the graph contains a sufficient level of detail to monitor
progress. If multiple builds or releases are planned, there should be
separate activities and milestones for each build/release.

Part 3 - Analysis Techniques and Examples

Page 217

19961994 1995

Activity

Software Development Milestone Progress

Build 1 and Build 2
 Requirements Analysis

 Software Requirements Review

 Preliminary Design

 Software Design Review
 Preliminary

Build 1
 Detailed Design

 Software Design Review

 Implementation and Unit Testing

Build 2
 Detailed Design

 Software Design Review

 Implementation and Unit Testing

4/1 8/15
4/13 9/1

9/1

9/30

8/1 2/1
8/15 2/15

10/15

11/15

10/20 6/1

10/30 6/22

6/15

7/1

5/15 11/15

6/15 1/30

11/1 6/1
11/15 6/15

7/1

7/15 12/20

Program: PSM Data as of 15 Jun 96

Figure 3-1. Software Development Milestone Progress

Part 3 - Analysis Techniques and Examples

Page 218

3.2 Design Progress Indicator

Issue Schedule and Progress.

Category Work Unit Progress.

Measure Components Designed.

Description Helps identify or predict schedule slips and uncover design size
growth, by comparing the number of units completing design to the
number of units scheduled for design completion over time.

Example
Graph

Overall design progress (Figure 3-2a) was graphed using a line chart
containing cumulative measures for the original plan, the recent
replan, and the actual units designed to date. Each point is
calculated by adding the number of units allocated for the reporting
period to their respective cumulative totals from the last reporting
period.

A bar chart (Figure 3-2b) was used to perform a more detailed
analysis of design progress by CSCI. The second bar in each series
represents the number of units that should be completed “as of” the
reporting date, and provides the most meaningful comparison
against actual progress.

Feasibility
Analysis

Check to ensure that initial design plans and any replans reflect the
total number of CSUs as documented for the system. Look for a
slope that is unusually steep. Also evaluate the planned rate of
design completion in light of project realities such as staffing levels,
experience, and requirements volatility.

Performance
Analysis

Figure 3-2a indicates that design progress was behind the original
plan at the end of August, resulting in a replan of the overall
activity. Actual design progress has remained fairly close to the
new plan. Further analysis at the CSCI level (Figure 3-2b) reveals
that, while progress on the units for CSCI A and C is close to plan,
less than one third of the units planned to date for CSCI B have
completed design. Additional analyses of CSCI B’s staffing levels
and experience, rework effort, and changing requirements should
help identify the cause of this deviation.

Lessons
Learned

Be careful of major changes in the rate of progress. Once an actual
trend line is established, it is difficult to modify the rate of
completion. A 10% cumulative or 20% per period actual deviation
from the plan should be considered significant.

Part 3 - Analysis Techniques and Examples

Page 219

Design Progress

0

50

100

150

200

250

300

350

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96

Date

N
u

m
b

e
r

o
f

U
n

it
s

 C
o

m
p

le
ti

n
g

 D
e

s
ig

n

Plan 1
Plan 2
Actual

Program: PSM Data as of 30 Nov 95

Figure 3-2a. Design Progress by Date

Design Progress

0

20

40

60

80

100

120

CSCI A CSCI B CSCI C

N
u

m
b

e
r

o
f

U
n

it
s

 C
o

m
p

le
ti

n
g

 D
e

s
ig

n

Total
Plan
Plan
to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-2b. Design Progress by CSCI

Part 3 - Analysis Techniques and Examples

Page 220

3.3 Schedule Variance Indicator

Issue Schedule and Progress.

Category Schedule Performance.
`
Measure Schedule Variance.

Description Provides an indication of schedule progress based on dollars
budgeted per WBS element. The measure addresses the developer’s
ability to complete scheduled activities within the planned time
frame and indicates the extent that the developer is ahead or behind
schedule.

Example
Graph

The schedule variance (SV) was graphed using a line chart (Figure 3-
3). This is calculated as SV = BCWP - BCWS, where BCWP is the
budgeted cost of work performed and BCWS is the budgeted cost of
work scheduled. Data below the zero line is an indication that the
program is behind schedule, while values above the line indicate the
program is ahead of schedule.

Feasibility
Analysis

Not applicable.

Performance
Analysis

Figure 3-3 indicates that initial progress was behind schedule until
August. The sudden, dramatic drop in September is the greatest
concern, however. Did a large number of people leave the program?
Further analysis of staffing levels and work progress should help
identify the cause. A replan may be necessary.

Lessons
Learned

Investigate large deviations from the schedule. Schedule variance
lines that continue to decrease over multiple months should be
monitored closely. When schedule variance becomes large, a
rebaseline should occur and a realistic plan should be established.

Part 3 - Analysis Techniques and Examples

Page 221

Schedule Variance
Software

-500

-400

-300

-200

-100

0

100

200

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Date

V
a

ri
a

n
c

e
 (

In
 T

h
o

u
s

a
n

d
s

 o
f

D
o

ll
a

rs
)

Data as of 31 Oct 95Program: PSM

Figure 3-3. Schedule Variance

Part 3 - Analysis Techniques and Examples

Page 222

3.4 Incremental Build Content Indicator

Issue Schedule and Progress.

Category Incremental Capability.

Measure Build Content - Component.

Description When multiple builds are planned, this indicator helps determine if
capability is being delivered to the customer or to integration and
test on schedule. The graph compares the number of components in
each build that should have been delivered to date, against the
number actually delivered.

Example
Graph

A bar chart (Figure 3-4) was produced by summarizing, for each
build, the number of components: 1) originally planned for delivery,
2) planned for delivery based on the latest plan, and 3) actually
delivered to integration and test.

Feasibility
Analysis

Evaluate whether the distribution of components across incremental
builds is reasonable, considering overlapping work effort and the
likelihood of slippage. Also, ensure that the sum of each build’s
planned number of components is equal to the total number of
components scheduled for the final release.

Performance
Analysis

Figure 3-4 shows that components in both Builds 1 and 2 were
deferred to Build 3, increasing its size by over 30%. While all
components have been integrated to date, it is likely that these
deferments will result in delays in testing, and may impact customer
delivery milestones. Analyze test schedule and progress data to
further assess the impact of these deferments.

Lessons
Learned

Deferments to later builds without adjustments to the schedule are
of greatest concern. A 5% or greater variance in a single build or a
10% variance across two or more builds should be considered
significant. Also, make sure that only components accounted for in
the planned figures are included in actual counts.

Part 3 - Analysis Techniques and Examples

Page 223

Incremental Build Content

0

5

10

15

20

25

30

35

40

Build 1 Build 2 Build 3

N
u

m
b

e
r

o
f

U
n

it
s

 I
n

te
g

ra
te

d

Plan 1
Plan 2
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-4. Incremental Build Content

Part 3 - Analysis Techniques and Examples

Page 224

3.5 Effort Allocation Indicator

Issue Resources and Cost.

Category Effort Profile.

Measure Effort.

Description Used to assess the adequacy of planned effort and analyze the
actual allocation of labor to development activities.

Example
Graph

Total software effort was graphed using a line chart (Figure 3-5a)
containing measures from the original plan, the April 1995 replan,
and actual staff months expended to date.

A bar chart (Figure 3-5b) was used to obtain a more detailed view of
effort allocation by software activity. The current plan for each
activity and the associated actual data was graphed as of the last
reporting period.

Feasibility
Analysis

Evaluate whether the planned effort distribution is realistic.
Additionally, check that the distribution of effort between the
development activities is realistic. Ensure that enough effort has
been allocated to early requirements and design activities and to later
testing activities, as these areas are often underestimated.

Performance
Analysis

Figure 3-5a shows that actuals were initially below the original plan
for several months. The developer had problems staffing the
program due to delays in another program from which personnel
were due to transfer. A replan was implemented, and actuals
matched the new plan for several months, but then exceeded it. To
assess the causes of this overrun, Figure 3-5b was drawn. This
showed that additional effort was expended during software design.
Further analysis of staffing and experience levels indicated that this
was due to the developer’s inexperience with the domain.

Lessons
Learned

Check the rate of changes in effort data. Large numbers of people
normally cannot be effectively added within a very short period.
Large overruns during integration and test may be indicative of
quality problems with the code - there may be significant defects
that are delaying completion.

Part 3 - Analysis Techniques and Examples

Page 225

Effort Allocation

0

20

40

60

80

100

120

140

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96
Date

S
ta

ff
 M

o
n

th
s

Plan 1
Plan 2
Actual

Data as of 30 Nov 95Program: PSM

Figure 3-5a. Effort Allocation by Date

Effort Allocation
By Software Activity

0

50

100

150

200

250

300

350

400

450

Requirements
Analysis

Design Implementation Integration
and Test

Activity

S
ta

ff
 M

o
n

th
s

Plan to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-5b. Effort Allocation by Activity

Part 3 - Analysis Techniques and Examples

Page 226

3.6 Staff Experience Indicator

Issue Resources and Cost.

Category Staff Profile.

Measure Staff Experience.

Description Used to assess whether the personnel assigned to the program
possess the domain experience necessary to produce a system that
meets customer needs. The graph compares the development staff’s
years of real-time distributed systems experience to contract
requirements.

Example
Graph

Both series in the histogram (Figure 3-6) were produced by sorting
the development staff’s experience data by the real-time distributed
systems experience data item, and then summing the number of staff
members in each of six experience categories. This produced a
distribution of experience levels which could be charted and
compared to contract requirements. Since contract requirements
specify an average number of years of real-time distributed systems
experience (3 years), the staff’s average at the current time was also
calculated and displayed on the graph.

Feasibility
Analysis

Using historical information from similar programs, assess whether
the staff experience requirements to be specified in the contract are
reasonable. Evaluate both what is possible, given the number of
people available with relevant domain experience and their
backgrounds in developing technology solutions, and what is
needed.

Performance
Analysis

Figure 3-6 shows that the development organization proposed and
started the program with a staff reporting, on average, 3.43 years of
real-time distributed systems experience. In order to further
investigate recent schedule slippage and low productivity, new staff
experience data was requested. The new data reveals that, while
staff size has remained constant in spite of turnover, experience
levels of replacement staff have dropped. The average experience is
now only 2.43 years. Additional analysis should be performed of
skill requirements for the tasks remaining, and staff allocations.

Part 3 - Analysis Techniques and Examples

Page 227

Lessons
Learned

Analysis of staff experience is usually only performed at major
milestones on large programs, unless other analyses point to a
staffing problem. Ensure that years of experience data is kept up to
date. Be sure that experience obtained on the current program is
considered when interim analyses are performed.

Staff Experience
Real Time Distributed Software

0

5

10

15

20

< 1 1 - 2 2 - 3 3 - 4 4 - 5 > 5

Years of Experience

N
u

m
b

e
r

o
f

S
ta

ff

Initial
Current

Contract Requirement - 3 years
Initial - 3.43
Current - 2.43

Data as of 31 Dec 96Program: PSM

Figure 3-6. Staff Experience

Part 3 - Analysis Techniques and Examples

Page 228

3.7 Cost Profile Indicator

Issue Resources and Cost.

Category Cost Performance.

Measure Cost Profile.

Description Used to evaluate costs based on planned versus expended costs.
Used to assess whether a program can be expected to be
completed within cost constraints.

Example
Graph

A line chart (Figure 3-7) is used to present the cost information.
In addition to cumulative plan and actual cost, the graph also
contains the budgeted cost (top static line), and the funding
profile (funding provided in stepped increments).

Feasibility
Analysis

Ensure that the planned cost is realistic over the period of
performance. Large changes in the rate per period should be
evaluated for feasibility. Figure 3-7 shows a relatively consistent
planned expenditure rate. The funding profile should be
evaluated to ensure that adequate funding has been provided to
meet planned costs. Any delays in funding should be assessed
for impact on the program.

Performance
Analysis

Figure 3-7 shows a funding problem in March 1995. Some
development activities had to be delayed until the funding
problem was resolved. Actuals were initially below plan, but are
now tracking close to planned costs. Questions to ask about
variances and overruns include: Are overruns due to activities
costing more than planned? Is work beginning ahead of schedule?
If actual cost is below plan, does that mean that the program is
behind schedule or have activities cost less than planned?
Investigating these other issues will help isolate the problem.

Lessons
Learned

Evaluate major changes in the rate of actual cost expenditures.
Since software development is a labor intensive activity, this data
should track closely to effort data.

Part 3 - Analysis Techniques and Examples

Page 229

Cost Profile

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

D
o

ll
a

rs
 (

In
 T

h
o

u
s

a
n

d
s

)

Plan
Actual

Budget

Funded

Data as of 31 Aug 95Program: PSM

Figure 3-7. Cost Profile

Part 3 - Analysis Techniques and Examples

Page 230

3.8 Resource Utilization Indicator

Issue Resources and Cost.

Category Environment Availability.

Measure Resource Utilization.

Description Helps determine whether the facilities needed to test the system are
available and being utilized.

Example
Graph

A line chart (Figure 3-8) was produced containing four distinct
utilization measures: 1) planned test facility availability (based on
facility predictions), 2) actual test facility availability to date (based
on total time minus actual maintenance downtime), 3) scheduled
program utilization (based on program schedule), and 4) actual
program utilization to date (based on program hours logged).

Feasibility
Analysis

Check that the scheduled utilization of the test facility for the
program is achievable given predicted test facility availability.
Ensure that usage by other programs and scheduled downtime have
been accounted for in availability figures. Ensure that predictions
are consistent with recent past history. Evaluate the risks which
may arise in scheduling the test facilities resources if testing is
delayed.

Performance
Analysis

Analysis of Figure 3-8 shows that testing at the facility started one
month late. Also, a shortfall in the facility’s availability in
September appears to have impacted progress that month. Since the
actual hours used to date are significantly below planned, a replan is
probably needed. In addition, the cause of the shortfall in
availability should be investigated to help reduce changes in future
availability. Also, testing progress to date should be reviewed in
order to gain a more complete analysis of the situation.

Lessons
Learned

Unexpected variances in either resource utilization or availability
should be investigated. This may help prevent future problems.

Part 3 - Analysis Techniques and Examples

Page 231

Resource Utilization
Test Facilities

0

20

40

60

80

100

120

140

Jul Aug Sep Oct Nov Dec

Date

F
a

c
il

it
y

 H
o

u
rs

Scheduled
Used

Planned Availability

Actual Availability

Start of Test

Data as of 31 Sep 95Program: PSM

Figure 3-8. Resource Utilization - Test Facility

Part 3 - Analysis Techniques and Examples

Page 232

3.9 Software Size Indicator

Issue Growth and Stability.

Category Product Size and Stability.

Measure Lines of Code.

Description Provides an estimate of software size, which is a major variable used
to estimate software development effort and schedule. Used to
monitor progress by comparing actual code developed and modified
over time to plans for code development and growth. Unplanned
additions and changes to code can adversely influence schedules and
costs.

Example
Graph

A line chart (Figure 3-9a) was used to show changes over time to: 1)
overall software size estimates; and 2) actual size growth as the
development proceeds. Size is measured in source lines of code. A
corresponding bar chart (Figure 3-9b) shows the size breakdown by
CSCI, and reflects the changes due to replans.

Feasibility
Analysis

Compare total estimated lines of code and the estimated code
growth with other similar programs. Correlate size estimates over
time with staffing profiles for the development team. There should
be sufficient staff assigned during each time period to complete
coding assignments, after taking into account rework, concurrent
assignments, non-program time, and programmer productivity.

Performance
Analysis

Figure 3-9a shows progress in actual code development. Code
production is approaching the current size estimate. The graph also
shows growth in the size estimate. Figure 3-9b shows that most of
the estimated size increase was attributable to CSCI C.

Lessons
Learned

It is not unusual for there to be moderate increases in total software
size over the original estimates. Increases of up to 20% are
common. Larger increases in estimates or actuals should be
investigated.

Part 3 - Analysis Techniques and Examples

Page 233

Software Size
Lines of Code

0

5,000

10,000

15,000

20,000

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96
Date

S
o

u
rc

e
L

in
es

 o
f

C
o

d
e

Plan
Actual

Data as of 30 Apr 96Program: PSM

Figure 3-9a. Software Size (LOC)

Software Size
By CSCI

0

2,000

4,000

6,000

8,000

10,000

CSCI A CSCI B CSCI C

S
o

u
rc

e
L

in
es

 o
f

C
o

d
e

Plan 1
Plan 2
Plan 3

Data as of 1 May 96Program: PSM

Figure 3-9b. Software Size (CSCI)

Part 3 - Analysis Techniques and Examples

Page 234

3.10 Requirements Stability Indicator

Issue Growth and Stability.

Category Functional Size and Stability.

Measure Requirements.

Description Provides an early measure of software size. Used to monitor
changes to requirements throughout a program, which can serve as a
leading indicator of delays, rework, and cost increases.

Example
Graph

A line chart (Figure 3-10a) was used to show two related pieces of
information. The top line shows the trend in total number of actual
requirements defined to date. Data points past the “as of” date
reflect estimates. The bottom line is the total number of
requirements either added, changed, or deleted during the reporting
period. A bar chart (Figure 3-10b) was also produced to provide
more detail about whether the changes made were requirements
additions, modifications, or deletions.

Feasibility
Analysis

If requirements growth has been estimated for the program, use
other program knowledge to evaluate whether the amount of change
expected is realistic. Consider things like the developer’s capability,
the team’s understanding of the problem, and the number of
customers involved.

Performance
Analysis

Figure 3-10a shows an overall increase in requirements after the
March SSR, which was expected, and another unexpected increase
this month which can be traced to the PDR held in June. Figure 3-
10b indicates that the changes were the result of additions and
modifications to already defined requirements. The magnitude
(approximately 20% of the total requirements were affected during
this last period and total requirements increased by over 10%) and
timing (the project is well into the design activity) of these
requirements is a cause for concern. Resource allocations, effort
estimates, budgets, and schedules may be in jeopardy and should be
reevaluated.

Lessons
Learned

Constantly changing requirements or a large number of additions
after requirements reviews are leading indicators of schedule and
budget problems later in the program. Requirements should be
tracked at a lower level, such as by CSCI.

Part 3 - Analysis Techniques and Examples

Page 235

Requirements Stability

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

N
u

m
b

e
r

o
f

R
e

q
u

ir
e

m
e

n
ts

Total
Changes

SSR PDR

Data as of 30 Jun 95Program: PSM

Figure 3-10a. Requirements Stability

Requirements Stability
By Type of Change

-20

0

20

40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

N
u

m
b

e
r

o
f

R
e

q
u

ir
e

m
e

n
ts

Added
Modified
Deleted

SSR PDR

Data as of 30 Jun 95Program: PSM

Figure 3-10b. Requirements Stability by Type of Change

Part 3 - Analysis Techniques and Examples

Page 236

3.11 Response Time Indicator

Issue Growth and Stability.

Category Target Computer Resource Utilization.

Measure Response Time.

Description Measures whether the system can perform standard on-line
functions in a timely manner by comparing actual response times to
the required response times.

Example
Graph

A bar chart (Figure 3-11) was used to compare the results of a series
of response time tests against a contract-specified on-line response
time requirement. A series of test runs were executed for selected
sets of representative queries and update functions. For each
function, response time measures were collected using an automated
tool. The collected data sets were then averaged. The sample graph
shows a series of three test runs and indicates the acceptable average
response time as a straight line.

Feasibility
Analysis

Ensure that the response time requirement specified is feasible given
published or observed statistics such as database and hardware
benchmarks, performance models, or operational results from similar
systems.

Performance
Analysis

Figure 3-11 shows that query-type functions were initially
exceeding response time requirements. These functions were
subsequently modified to improve performance and are now within
the acceptable range. Update functions initially performed well, but
performance problems were noted in the second test. These were
apparently resolved prior to the third test. When results are outside
the acceptable range, a more detailed analysis by component or
transaction can help pinpoint the problem code.

Lessons
Learned

Define the criteria for choosing the functions whose response time
will be measured (typical, importance/criticality, frequency of
occurrence). Also determine what form of response time measures
should be compared to the planned or target figure (an average,
sample, worst case). Factors that may influence the validity of
actual response time measures include: 1) not simulating sufficient
load on the target machine during the tests, 2) not sampling
representative functions, and 3) using a test database that is smaller
than the operational version.

Part 3 - Analysis Techniques and Examples

Page 237

Response Time
On-Line Functions

0

10

20

Query Update
Function Type

A
ve

ra
g

e
T

im
e

(S
ec

o
n

d
s)

First
Test
Second
Test
Third
Test

Contract
Requirement
(10 Sec.)

Data as of 30 Jun 95Program: PSM

Figure 3-11. Response Time for On-Line Functions

Part 3 - Analysis Techniques and Examples

Page 238

3.12 Problem Report Status Indicator

Issue Product Quality.

Category Defect Profile.

Measure Problem Report Trends.

Description Problem Status provides information on the number of problem
reports found over time, and their status (open/closed). The
quantity of problem reports provides an indication of rework effort
and overall product quality. Closure rates help assess progress by
indicating the amount of work (rework) left to be done.

Example
Graph

The top line of the line chart (Figure 3-12a) shows the cumulative
number of problem reports detected to date. The bottom line shows
the number of problem reports that have been closed. The total
number of problem reports open, by priority code, is graphed using
a bar chart (Figure 3-12b).

Feasibility
Analysis

Not applicable.

Performance
Analysis

The top line in Figure 3-12a indicates that problems have been
steadily discovered over the past year. However, in the past several
months the discovery rate appears to have tapered off. If the reason
for this is that testing is successfully completing and the project is
nearing completion, this is a good sign. If the reason is that testing
has prematurely slowed or halted, this may indicate a significant
problem. The bottom line indicates that closure rate has not kept
pace with the discovery rate. Figure 3-12b shows that over half of
the remaining open problem reports are priority 1 and 2. These
problem reports should be reviewed to determine whether this is a
cause for concern.

Lessons
Learned

The closure rate should remain similar to the discovery rate. Large
gaps between the two trend lines indicates that problem correction
is being deferred, which could result in serious schedule, staffing,
and budget problems later in the project. A flat problem report
discovery trend line during design, coding, or testing may indicate
that reviews and tests are not being performed, and should be
investigated. Monitor open problem reports by priority to insure
that high priority defects are being fixed quickly.

Part 3 - Analysis Techniques and Examples

Page 239

Problem Report Status

0

250

500

750

1000

1250

1500

Jan 95 Apr 95 Jul 95 Oct 95 Jan 96 Apr 96 Jul 96 Oct 96

Date

N
u

m
b

e
r

o
f

P
ro

b
le

m
 R

e
p

o
rt

s

Discovered
Closed

Data as of 31 Dec 95Program: PSM

Figure 3-12a. Problem Report Status

Problem Report Status
Open by Priority

0

20

40

60

80

100

1 2 3 4 5

Priority

N
u

m
b

e
r

o
f

P
ro

b
le

m
 R

e
p

o
rt

s

Data as of 31 Dec 95Program: PSM

Figure 3-12b. Problem Report Status - Open by Priority

Part 3 - Analysis Techniques and Examples

Page 240

3.13 Problem Report Aging Indicator

Issue Product Quality.

Category Defect Profile.

Measure Problem Report Aging.

Description Provides information on the number and age of open problem reports.
The age distribution of problem reports helps to assess whether or not
problems are being dealt with in a timely manner.

Example
Graph

The bar chart (Figure 3-13) includes all open problem reports, divided
into categories by age. This was done by first calculating, for each
problem report, the number of days that have elapsed since the
problem report was initially reported. Problem reports were then
grouped by age categories and graphed.

Feasibility
Analysis

Not applicable.

Performance
Analysis

Figure 3-13 shows an average open age of 5.7 weeks for the open
problem reports. This is below the target of 8 weeks. Assessing
whether the age of open problem reports is a problem requires an
understanding of the length of program, the program’s current status,
commitments to users, and the type and severity of the defects still
open.

Lessons
Learned

When measurement results indicate that problem correction is being
deferred, it is likely that schedules, staffing levels, and budgets will be
impacted later in the project. During testing, test progress is often
significantly impacted by the deferring problem correction. During
software support, the age of problems reported by customers should
be monitored to insure that customer problems are addressed in a
timely manner. Analysis of problem report aging by priority indicates
if higher priority problems (those which may be more difficult to
resolve) are being deferred longer than lower priority problems.

Part 3 - Analysis Techniques and Examples

Page 241

Problem Report Aging
Open Problem Reports

0

20

40

60

80

100

< 1 1 - 2 3 - 4 5 - 8 9 - 18 > 18 weeks

Weeks Open

N
u

m
b

e
r

o
f

P
ro

b
le

m
 R

e
p

o
rt

s
Average = 5.7 weeks
Target < 8 weeks

Data as of 7 Jan 96Program: PSM

Figure 3-13. Problem Report Aging

Part 3 - Analysis Techniques and Examples

Page 242

3.14 Defect Density Indicator

Issue Product Quality.

Category Defect Profile.

Measure Defect Density.

Description Used to assess product quality by normalizing the number of
defects detected in a product by the product’s size. Can be used to
identify which components, subsystems, or CSCIs have the most
quality-related problems.

Example
Table

A table (Figure 3-14) was used to show CSCI level defect densities
for the various development organizations that participated in a
particular project. Defect densities were calculated by dividing the
number of defects identified to date by CSCI size.

Feasibility
Analysis

Not Applicable.

Performance
Analysis

Figure 3-14 indicates that organization Z’s defect densities are
higher than average. This may mean that CSCI’s F and G will need
more attention, such as additional reviews or testing. Other
program-related factors such as component complexity, defect
distribution by classification, and organizational factors such as
process maturity should also be reviewed to gain a better
understanding of the reasons for these densities.

Lessons
Learned

Defect densities can be generated at lower levels to identify specific
components which should be subject to more quality control or
should be targeted for redevelopment. The overall quality of a
development program can often be evaluated by looking at the first
6-12 months of post-release defect densities. Large numbers of
defects reported from the field may be the result of requirements not
being met, inadequate testing, or poor code quality.

Part 3 - Analysis Techniques and Examples

Page 243

Defect Density

Organization CSCI Size
(KSLOC)

Defects Defect Density
(Defects/KSLOC)

X A 44 48 1.1
X B 32 60 1.9
Y C 36 36 1.0
Y D 28 33 1.2
Y E 34 42 1.2
Z F 15 46 3.1
Z G 9 30 3.3

Total 198 295 1.5

Program: PSM Data as of 30 Jun 95

Figure 3-14. Defect Density

Part 3 - Analysis Techniques and Examples

Page 244

3.15 Software Complexity Indicator

Issue Product Quality.

Category Complexity.

Measure Cyclomatic Complexity.

Description Measures the number of logic paths in a component. Can be used to
assess the amount of testing required, predict component defect
density, estimate future maintenance effort, or identify the
components that should be redesigned or reimplemented.
Component complexity measures are typically compared to a
standard or required threshold.

Example
Graph - Table

A bar chart (Figure 3-15a) was used to identify the number of
components in each complexity range. Each component within
CSCI A was measured using an automated code complexity analysis
tool. Component complexity values were separated into six
complexity range categories and graphed. The threshold line helps to
identify which units should be reviewed given that they have a
higher complexity.

A table (Figure 3-15b) was also produced by sorting the raw data by
complexity, and showing only those components whose complexity
was higher than the threshold.

Feasibility
Analysis

Evaluate whether the selected threshold can be met if one is set.
The types of software being developed and the language used should
be considered when evaluating the threshold selected.

Performance
Analysis

Figure 3-15a indicates that most of the components in CSCI A are
less than or equal to the maximum threshold of ten for component
complexity. The corresponding table, Figure 3-15b, identifies the
specific components that exceed complexity limits. Further analysis
of these components may identify one or more causes which are
contributing to high complexity. A decision should be made about
whether these components should be modified or rewritten.

Lessons
Learned

This measure is not generally available until after a component has
been coded. An automated code analysis tool is needed to
accurately and efficiently produce the measure.

Part 3 - Analysis Techniques and Examples

Page 245

Software Complexity
CSCI A

0

10

20

30

40

50

60

0 - 5 6 - 10 11 - 15 16 - 20 21 - 25 > 25

Cyclomatic Complexity

N
u

m
b

er
 o

f
U

n
it

s
Threshold = 10

Data as of 7 Jan 96Program: PSM

Figure 3-15a. Software Complexity CSCI A

Software Complexity
CSCI A

Units with Complexity > 10

Unit Cyclomatic
Complexity

A1 53

A2 49
A3 32
A4 27
A5 25
A6 25
A7 20

Program: PSM Data as of 7 Jan 96

Figure 3-15b. Software Complexity CSCI A - Units That Exceed Complexity Limits

Part 3 - Analysis Techniques and Examples

Page 246

3.16 Software Process Maturity Indicator

Issue Development Performance.

Category Process Maturity.

Measure Capability Maturity Model (CMM) Level.

Description Used to gain an understanding of an organization’s relative software
development capability. The CMM Level measure results from a
formal software capability evaluation (SCE) of an organization’s
software engineering and project management processes. Often used
to set standards for selecting a software development contractor and
to select among competing development organizations.

Example
Table

A table (Figure 3-16) was used to display process maturity scores
for three organizations. The score was produced using the formal
SEI Capability Maturity Model-based SCE assessment procedures.
Highlights (strengths and weaknesses) from the assessment findings
were also noted in the table.

Feasibility
Analysis

Not Applicable.

Performance
Analysis

Figure 3-16 reflects the results of SCE assessments for three
organizations. The rating scale for SCE assessments ranges from
one to five, where five indicates an organization with a high level of
software development capability (i.e., a very mature software
engineering process). Company B has received a higher rating than
companies A and C. However, all three organizations have a score
which either meets or exceeds the target level set as part of the
contract requirements. When this analysis is being performed as
part of the contractor selection process, detailed findings from the
assessment should be reviewed with special attention given to the
critical processes a contractor must possess for this contract.

Lessons
Learned

The process maturity score is only as good as the assessment
process that produced it. Also, consider how long ago the SCE was
performed and recognize that a maturity score is given at an
organization-level, based on a sampling of programs.

Part 3 - Analysis Techniques and Examples

Page 247

Software Process Maturity
SEI Capability Maturity Model

Organization Level Strengths Weaknesses
Target 3

Proposal 1
Company A

(Prime)
3

Effective SEPG and task team
structure, with many
improvements implemented.
Mature testing process.

No defined measurement
process/framework; measures not
integrated into project
management. Reviews are
informal. Test automation is new
and unproven.

Proposal 1
Company B

(Subcontractor)
4

Measurement used in-process to
make decisions. Historical
measurements and lessons
learned database used for project
planning. Good subcontract
management process.

Defect prevention/causal analysis
just getting started. Few advanced
tools used.

Proposal 2
Company C
(Prime Only)

3

Good CM, testing, inspections with
automation support.

Planned measurement data not
established for progress-related
issues; measurements not used to
make project decisions.

Program: PSM Data as of 7 Jan 96

Figure 3-16. Software Process Maturity - SEI Capability Maturity Model

Part 3 - Analysis Techniques and Examples

Page 248

3.17 Software Productivity Indicator

Issue Development Performance.

Category Productivity.

Measure Product Size/Effort Ratio.

Description Indicates the amount of work produced relative to the effort
expended. If an actual rate can be established early in a program or
one can be predicted based on historical data, it can be used to
estimate the remaining effort needed to complete the program.

Example
Graph

A bar chart (Figure 3-17) was used to compare a program’s planned
productivity rates with an actual rate to date, and to proposed
alternative replan rates. Each bar was produced by dividing work
effort (reported in staff months) into the product size measure-
Source Lines Of Code (SLOC).

Feasibility
Analysis

Compare planned productivity rates to past programs with similar
characteristics (e.g., tools and methods used, staff skills, language
used, etc.). Also, cross-check program data by calculating required
productivity based on the present plan data, then compare those
results to the planned productivity rates. Consider issues such as
learning curve, requirements volatility, and expected staff turnover
when evaluating the feasibility of a chosen rate.

Performance
Analysis

Figure 3-17 shows that two productivity rates were used as the
basis for developing program plans, about 170 for Build 1 and 110
for Build 2. However, with Build 1 well under way, actual
productivity is only 100, significantly lower than planned. Either
productivity must be increased, or substantially more effort will be
needed to develop the complete product. Further analysis to
determine the cause of lower-than-expected productivity should be
performed before deciding on a course of corrective action. The
third region of the bar chart shows two alternative action plans.
Option 1 proposes increasing productivity by the end of Build 1
(slightly) and substantially increasing it for Build 2. Option 2
assumes the productivity rate throughout the remainder of the
program will be similar to what has already been achieved, and adds
a new Build 3 to complete production at this rate. Unless major
changes could be immediately introduced, which is highly unlikely,
option 2 appears to be a more realistic alternative.

Part 3 - Analysis Techniques and Examples

Page 249

Lessons
Learned

If there is a significant change in productivity rates during a
program, attempt to discover the underlying reasons for the change.
Unplanned rework is a frequent cause of low productivity.

Software Productivity

0

20

40

60

80

100

120

140

160

180

Proposal Actuals
to Date

Replan
Option 1
(2 Builds)

Replan
Option 2

(Add Build 3)

S
L

O
C

 p
e

r
S

ta
ff

 M
o

n
th

Build 1
Build 2
Build 3

Program: PSM Data as of 31 Dec 96

Figure 3-17. Software Productivity

Part 3 - Analysis Techniques and Examples

Page 250

3.18 Rework Effort Indicator

Issue Development Performance.

Category Rework.

Measure Rework Effort.

Description Assesses the amount of effort expended to fix defects. Can be used
to compare the amount of effort attributable to rework against the
budget for rework.

Example
Graph

Two bar charts were produced. The first (Figure 3-18a) reports
rework as a separate category of work effort and compares rework
planned to the amount of rework actually performed to date. The
second chart (Figure 3-19b) was produced by an organization whose
time reporting system supports the collection of rework at the
activity level (i.e., requirements analysis, design, etc.). For each
chart, the accumulated number of planned and actual hours is used
to produce the bars.

Feasibility
Analysis

All programs will experience rework and it should be planned for.
Analyze rework planned as a percentage of overall effort and look at
the distribution of planned rework across project phases. Compare
these percentages and distributions to the actual rework figures from
past projects. Achieving lower amounts of rework typically
requires early defect control techniques such as reviews and
inspections, and higher levels of process capability.

Performance
Analysis

Figure 3-18a, reported during the integration and test activity of the
project, shows that planned rework has already been exceeded by
over 100%. This chart cannot, however, help identify the activities
where the rework occurred. Figure 3-18b can be used when a more
sophisticated rework reporting system is in place. In this chart,
rework has been tracked at the software activity level and only the
rework figures are graphed. This example shows that rework during
both requirements analysis and design was much greater than
expected.

Lessons
Learned

Rework occurs during all phases of a program. Taking the extra time
up front to do things right the first time can reduce overall rework.
Few organizations do a good job of planning for or tracking rework.
Most time accounting systems do not include separate rework
tasks. In lieu of time reporting, rework can sometimes be tracked
using review/inspection and problem report data.

Part 3 - Analysis Techniques and Examples

Page 251

Total Rework Effort
Compared to Development Effort

0

50

100

150

200

250

300

350

Requirements
Analysis

Design Implemenation Integration
and Test

Rework - All
Activities

Activity

S
ta

ff
 M

o
n

th
s

Plan
to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-18a. Total Rework Effort Compared to Development Effort

Rework Effort
By Activity

0

20

40

60

80

100

120

Requirements
Analysis

Design Implemenation Integration
and TestActivity

S
ta

ff
 M

o
n

th
s

Plan
to Date
Actual

Data as of 7 Jan 96Program: PSM

Figure 3-18b. Rework Effort By Activity

Part 3 - Analysis Techniques and Examples

Page 252

3.19 Software Origin Indicator

Issue Technical Adequacy.

Category Technology Impacts.

Measure Lines of Code.

Description Shows the amount of code by source (new, modified, retained,
deleted, GOTS, COTS), which can serve as an indicator of the
amount of work to be performed on a program.

Example
Graph

A stacked bar chart (Figure 3-19) was used to show the amount and
distribution of developed and non-developed code. The non-
developed portion of the bar is an estimate of the amount of code
that would have to be developed if the COTS/GOTS software was
not used; it is not an actual estimate of the COTS software itself
(since this is not usually available and only a small portion of the
COTS software may be used).

Feasibility
Analysis

The distribution of developed to non-developed code should be
reviewed to assess whether expectations for the amount of code that
will not be developed is realistic. The amount of new code needed
to integrate COTS and non-COTS software should also be
considered.

Performance
Analysis

Figure 3-19 shows three planned and one actual size measure. Plan
1 shows an almost 50-50 split between non-developed and new
code for the project. In plan 2, this ratio is revised; more new code
development is planned. Plan 3 shows an additional increase in new
code, resulting in an overall size increase. The actual size measures
are close to plan 3 estimates, with only approximately 20% of the
final product comprised of non-developed code. This change most
likely resulted in schedule delays and effort increases.

Lessons
Learned

Changes in assumptions concerning the use of COTS/GOTS
software or the amount of code that can be reused, can significantly
impact program schedules and budgets. Plans should be re-
evaluated when this occurs.

Part 3 - Analysis Techniques and Examples

Page 253

Software Origin
Developed Versus Non-Developed Code

0

500

1,000

1,500

2,000

2,500

Plan 1 Plan 2 Plan 3

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

Data as of 7 Jan 96Program: PSM

Figure 3-19. Software Origin - Developed Versus Non-Developed Code

Part 3 - Analysis Techniques and Examples

Page 254

Part 3 - Analysis Techniques and Examples

Page 255

CHAPTER 4 - INTEGRATED INDICATOR

EXAMPLES

This chapter provides examples of how more than one indicator
can be used together to address the issues typically of concern
during particular phases of the software life cycle. An integrated
analysis approach which examines related indicators together has
been found to be very effective for gaining insight into an issue.
These are examples only and do not represent a definitive set that
should be applied to all programs.

The first three examples in this chapter assume that the project
being monitored is in the middle of a major development activity.
Each example starts with the basic analysis of a progress-related
issue and proceeds through a series of supplemental analyses, in an
attempt to better understand project status or to uncover the
underlying cause of a problem. The fourth example in this chapter
shows how an organization might use a set of indicators to analyze
maintenance issues during the software support phase.

The following examples are included:

Analysis Focus Indicators Section

Design Completion Design Progress

Staff Level

4.1

Test Completion Implementation Progress

Test Progress

Problem Report Status

Staff Level

4.2

Readiness for Delivery Test Progress

Problem Report Status

Software Reliability

CPU Utilization

4.3

Maintenance Requirements Stability

Changes Implemented

Software Reliability

Milestone Progress

4.4

Part 3 - Analysis Techniques and Examples

Page 256

4.1 Design Completion Analysis

Description As a program completes system design and the focus shifts to
implementation activities such as coding and unit testing, the
staffing focus also shifts from analysts to programmers. It is
important not only to monitor progress during this phase, but to
also anticipate how changes in the schedule will impact staffing.

Basic Analysis In Figure 4-1, the primary design progress indicator used is the
work unit progress measures for units designed (a). This compares
actual units completing design each month to the planned rate of
completion. This indicator reveals that actual progress is
significantly under plan as of July. The plan data line also indicates
that all unit designs should be complete by the end of August.

Supplemental
Analyses

A closer look at the CSCI level indicator (b) reveals that, while all
CSCIs are behind schedule, CSCI B is significantly below its
completion plan.

The overall staff level (c) indicates that the program is currently
staffed with approximately the right number of people, according to
the monthly staffing plan. However, a drop in staffing occurred in
May. It was during that time frame that some staff turnover was
experienced. Is the program behind schedule due primarily to the
May dip in staffing?

An analysis of the current month’s actual staff level by labor
category (d) shows that, while the original staff plan for design
included mainly systems engineers and senior software engineers,
the new design team composition is quite different than planned.
The May changes in staffing resulted in the loss of several senior
designers. Instead of bringing on new analysts to complete the
design, the programmers assigned to join the project in July were
brought on the program early and assigned to design tasks. This had
a negative impact. The programmers didn’t have the experience to
perform these tasks and the remaining designers were delayed
bringing the new team members up to speed.

A revised plan for the remaining program activities is recommended.

Part 3 - Analysis Techniques and Examples

Page 257

D
es

ig
n

 C
o

m
p

le
ti

o
n

 A
n

al
ys

is
F

ig
u

re
 4

-1

a)
b

)

c)
d

)

D
es

ig
n

 P
ro

g
re

ss

025507510
0

12
5

15
0

17
5

20
0 Ja

n
F

eb
M

ar
A

pr
M

ay
Ju

n
Ju

l
A

ug
S

ep
O

ct
N

ov
D

ec

D
at

e

Number of Units Completing Design

P
la

n
A

ct
u

al

D
at

a
as

 o
f

31
 J

u
l 9

5
P

ro
g

ra
m

:
P

S
M

S
ta

ff
 L

ev
el

B
y

L
ab

o
r

C
at

eg
o

ry

05101520

S
r.

 S
ys

te
m

s
E

ng
in

ee
r

S
ys

te
m

s
E

ng
in

ee
r

S
r.

 S
of

tw
ar

e
E

ng
in

ee
r

S
of

tw
ar

e
E

ng
in

ee
r

L
ab

o
r

C
at

eg
o

ry

Number of Staff

P
la

n
A

ct
u

al

D
at

a
as

 o
f

31
 J

u
l 9

5
P

ro
g

ra
m

:
P

S
M

D
es

ig
n

 P
ro

g
re

ss
B

y
C

S
C

I

0102030405060

C
S

C
I A

C
S

C
I B

C
S

C
I C

Number of Units
Completing Design

T
o

ta
l

P
la

n
P

la
n

to
 D

at
e

A
ct

u
al

D
at

a
as

 o
f

31
 J

u
l 9

5
P

ro
g

ra
m

:
P

S
M

S
ta

ff
 L

ev
el

0510152025

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Number of Staff

P
la

n
A

ct
u

al

D
at

a
as

 o
f

31
 J

u
l 9

5
P

ro
g

ra
m

:
P

S
M

Part 3 - Analysis Techniques and Examples

Page 258

4.2 Test Completion Analysis

Description Two issues that impact test completion and often result in test
schedule problems are: 1) not receiving components on schedule to
test, and 2) waiting for fixed components to return to test after
defects have been identified. This example shows how four
indicators can be used to monitor test progress during the
integration and test phase of a software development program.

Basic Analysis The implementation progress line graph (a) indicates that
implementation of components (and consequently, delivery of
components to the testing group) was late. While all components
have been delivered to date, they were delivered weeks behind the
original schedule. Test progress is then shown (b). Three progress
measures are compared: 1) the original plans for test component
completion; 2) components upon which tests have been attempted;
and 3) components that have passed testing. Not surprisingly, for
testing which was scheduled to start during in February, not as
many components were tested as originally planned, and not as
many components which were tested successfully passed. While
components attempted have remained fairly close to planned,
components actually passed are well below plan.

Supplemental
Analyses

An assessment of problem report status (c) indicates that testing
has discovered a large number of problems. The closure rate,
however, is not keeping pace with the discovery rate. Additionally,
some high priority problem reports are still open, which may also
be impacting test progress. This may explain why the
“components passed” trend line (b) has recently leveled off. It may
be that a large number of components are actually being tested, but
have not been “passed” due to problem reports found. Or, it may
be that components originally delivered to test have been returned
to development awaiting defect removal, meaning that testing cannot
be completed for those components.

Test staffing (d) was scheduled to taper off, but the delays have
prevented this. Based on developer input regarding new plans for
fixing the outstanding problem reports, test schedules and staffing
plans must be revised.

Part 3 - Analysis Techniques and Examples

Page 259

T
es

t
C

o
m

p
le

ti
o

n
 A

n
al

ys
is

F
ig

u
re

 4
-2

a)
b

)

c)
d

)

Im
p

le
m

en
ta

ti
o

n
 P

ro
g

re
ss

020406080

10
0

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Components

P
la

n
A

ct
u

al

D
at

a
as

 o
f

29
 F

eb
 9

6
P

ro
g

ra
m

:
P

S
M

S
ta

ff
 L

ev
el

T
es

t
O

rg
an

iz
at

io
n

012345678910

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar
D

at
e

Number of Staff

P
la

n
A

ct
u

al

D
at

a
as

 o
f

29
 F

eb
 9

6
P

ro
g

ra
m

:
P

S
M

P
ro

b
le

m
 R

ep
o

rt
 S

ta
tu

s

050

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

O
pe

n
P

T
R

s
by

 P
rio

rit
y

H
ig

h
=

 5
M

ed
iu

m
 =

 6
5

Lo
w

 =
 1

55

D
at

a
as

 o
f

29
 F

eb
 9

6
P

ro
g

ra
m

:
P

S
M

T
es

t
P

ro
g

re
ss

C
o

m
p

o
n

en
ts

 S
u

cc
es

sf
u

ly
 T

es
te

d

02040608010
0

6
Ja

n
24

 J
an

11
 F

eb
29

 F
eb

18
 M

ar

D
at

e

Number of Components

P
la

n
A

tt
em

p
te

d
P

as
se

d

D
at

a
as

 o
f

29
 F

eb
 9

6
P

ro
g

ra
m

:
P

S
M

Part 3 - Analysis Techniques and Examples

Page 260

4.3 Readiness for Delivery Analysis

Description As a system approaches its delivery date, a number of issues may
influence the decision to release the product. In addition to assuring
that all testing has been completed, it is often necessary to
demonstrate that certain contract requirements have been met. For
example, there may be identified constraints that must be
accommodated or specified thresholds that must be met. Figure 4-3
contains a set of diverse indicators which represent the specific
concerns for this sample program prior to release.

Basic Analysis The test progress graph (a) reveals that requirements testing is
proceeding close to plan, with almost 80% of requirements tested to
date. With a release date scheduled at the end of April, it appears
that testing can be completed as scheduled.

Supplemental
Analyses

A look at the number and severity of open problem reports (b)
indicates that, while a large number of problem reports remain open,
only six are high priority (priority 1 or 2). These will have to be
fixed before the system can be released. The remaining problem
reports should probably be reviewed to ensure that deferment of
those problems will not adversely affect usability or key customer
requirements.

Software reliability (c) is calculated by logging the total number of
usage hours that elapse between failures during acceptance test. It
is approaching the acceptable minimum of 100 hours between
failures, and the trend line continues to rise. The failure interval
does not appear to be a cause for concern at this point.

The final issue being monitored is CPU utilization. Contract
requirements call for 50% reserve capacity. Tests show that current
utilization levels are above the 50% threshold, but only slightly.
Reducing this rate would require additional changes to some
programs that have otherwise been certified as working properly.
This rework decision could delay delivery. The Program Manager
may decide to make a trade-off by accepting a system that exceeds
the desired threshold, in order to allow the system to be delivered
on time.

Part 3 - Analysis Techniques and Examples

Page 261

R
ea

d
in

es
s

fo
r

D
el

iv
er

y
A

n
al

ys
is

F
ig

u
re

 4
-3

a)
b

)

c)
d

)
C

P
U

 U
ti

liz
at

io
n

0102030405060708090

10
0

27 Ja
n

17 F
eb

9
M

ar
30 M
ar

20 A
pr

D
at

e

Percent of CPU Cycles

R
es

er
ve

D
at

a
as

 o
f

30
 M

ar
 9

6
P

ro
g

ra
m

:
P

S
M

S
o

ft
w

ar
e

R
el

ia
b

ili
ty

020406080

10
0

12
0

27 Ja
n

17 F
eb

9
M

ar
30 M
ar

20 A
pr

D
at

e

Hours Between Failures

T
hr

es
ho

ld

D
at

a
as

 o
f

30
 M

ar
 9

6
P

ro
g

ra
m

:
P

S
M

P
ro

b
le

m
 R

ep
o

rt
 S

ta
tu

s
O

p
en

 b
y

P
ri

o
ri

ty

020406080

10
0 27

 J
an

17
 F

eb
9

M
ar

30
 M

ar
20

 A
pr

D
at

e

Number of Problem Reports

H
ig

h
M

ed
iu

m
L

o
w

D
at

a
as

 o
f

30
 M

ar
 9

6
P

ro
g

ra
m

:
P

S
M

T
es

t
P

ro
g

re
ss

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 27

 J
an

17
 F

eb
9

M
ar

30
 M

ar
20

 A
pr

D
at

e

Number of Requirements

P
la

n
A

ct
u

al

D
at

a
as

 o
f

30
 M

ar
 9

6
P

ro
g

ra
m

:
P

S
M

Part 3 - Analysis Techniques and Examples

Page 262

4.4 Maintenance Analysis

Description Systems maintenance issues are often very different than issues
related to new software development. Figure 4-4 provides a sample
set of common indicators which might be monitored on a regular
basis for a system which has recently entered the software support
phase. The sample system is currently on a three month release
cycle. The system has undergone three releases so far this year.
Work on a fourth release is currently in progress.

Basic Analysis Requirements stability (a) provides an indication of how the
planned content of each release was affected by changing
requirements prior to installation. (Maintenance requirements are
approved change requests.) Unplanned changes in release content
can cause delays because work effort is often expended making
changes to one set of requirements (i.e., approved change requests),
and then those requirements are set aside in order to work on higher
priority requests in the release. This is what happened during the
May release. A large number of changed requirements were
associated with Release 2.

The number of approved, pending change requests can be seen by
looking at the descending line at the top of the Changes
Implemented graph (b). Only a few additional change requests have
been introduced in the last 10 months, and the backlog of changes is
being gradually reduced. The chart indicates that, after each release
has been implemented, the problem reports addressed in the release
are closed and removed from the backlog.

The third chart (c) tracks software reliability. It is calculated by
dividing the number of failures reported by the actual hours of usage
between releases. The increase in the failure interval associated with
Release 2 is probably related to the volatility of Release 2’s content.
Releases 1 and 3 have exhibited a failure interval acceptably below
the desired target rate.

Finally, milestone progress (d) shows that Release 2 took longer
than planned and that Release 4 is behind schedule. The delay for
Release 2 was probably due to the large number of changes made in
that release. The reason for Release 4’s delay is most likely due,
again, to changes in release content (see chart a). If this trend
continues and is determined to be a problem, the process for release
content planning should be reviewed.

Part 3 - Analysis Techniques and Examples

Page 263

M
ai

n
te

n
an

ce
 A

n
al

ys
is

F
ig

u
re

 4
-4

a)
b

)

c)
d

)

R
eq

u
ir

em
en

ts
 S

ta
b

ili
ty

B
y

T
yp

e
o

f
C

h
an

g
e

-5
0050

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Number of Requirements

A
d

d
ed

M
o

d
if

ie
d

D
el

et
ed

R
el

ea
se

 4

R
el

ea
se

 1

R
el

ea
se

 2

R
el

ea
se

 3

D
at

a
as

 o
f

15
 O

ct
 9

7
P

ro
g

ra
m

:
P

S
M

C
h

an
g

es
 Im

p
le

m
en

te
d

010203040506070

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Change Requests

A
ct

u
al

 C
lo

su
re

O
p

en

R
el

ea
se

 1

R
el

ea
se

 2

R
el

ea
se

 3

D
at

a
as

 o
f

15
 O

ct
 9

7
P

ro
g

ra
m

:
P

S
M

S
o

ft
w

ar
e

R
el

ia
b

ili
ty

02468101214

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

D
at

e

Failures per 1000 Hours

R
el

ea
se

 1
R

el
ea

se
 2

R
el

ea
se

 4
R

el
ea

se
 3

T
ar

ge
t

D
at

a
as

 o
f

15
 O

ct
 9

7
P

ro
g

ra
m

:
P

S
M

M
ile

st
o

n
e

P
ro

g
re

ss
M

ai
n

te
n

an
ce

 A
ct

iv
it

ie
s

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

R
el

ea
se

 1
 -

 P
la

n

R
el

ea
se

 1
 -

 A
ct

u
al

R
el

ea
se

 2
 -

 P
la

n

R
el

ea
se

 2
 -

 A
ct

u
al

R
el

ea
se

 3
 -

 P
la

n

R
el

ea
se

 3
 -

 A
ct

u
al

R
el

ea
se

 4
 -

 P
la

n

R
el

ea
se

 4
 -

 T
o

 D
at

e

D
at

e
D

at
a

as
 o

f
15

 O
ct

 9
7

P
ro

g
ra

m
:

P
S

M

Part 3 - Analysis Techniques and Examples

Page 264

Issues

Measures

Indicators

Analysis

Information

A Guide to Objective Program Insight

Action

PRACTICAL

MEASUREMENT

SOFTWARE

ACQUISITION AND

CONTRACT

IMPLEMENTATION

PART 4

Part 4 - Acquisition and Contract Implementation

Page 266

Part 4 - Acquisition and Contract Implementation

Page 267

ACQUISITION AND CONTRACT IMPLEMENTATION

The measurement tailoring process described in Part 1 of Practical
Software Measurement: A Guide to Objective Program Insight
applies to all programs, whether the software is developed
organically or acquired through an external agreement. The first
two activities of the tailoring process result in a specification of the
Program Manager’s measurement requirements. The last activity
in the tailoring process integrates these requirements into the
developer’s process.

For programs where the developer is a government agency, the
measurement requirements can be conveyed and negotiated
informally. However, when the software is being acquired from an
external source, the interface between the Program Manager and
the developer must be managed more formally. This part of the
Guide explains how measurement is implemented via a contract
between a government organization and a private contractor.
These concepts also apply in varying degrees to situations in which
software is acquired from another government organization via a
Memorandum of Understanding/ Agreement (MOU/MOA) or Inter-
Service Support Agreement (ISSA).

This part of the Guide is organized into three chapters:

• Chapter 1, Contract Implementation Guidance - describes
the activities by which the Program Manager’s
measurement requirements are integrated with the
developer’s software process.

• Chapter 2, Sample RFP Wording - contains sample
wording that may be inserted into a Request For Proposal
(RFP) or Contract along with the rationale for each contract
requirement.

• Chapter 3, Additional Material - contains sample WBS
structures for both Weapons and AIS systems in addition to
a draft outline for a software measurement plan.

Part 4 - Acquisition and Contract Implementation

Page 268

Part 4 - Acquisition and Contract Implementation

Page 269

TABLE OF CONTENTS

CHAPTER 1 - CONTRACT IMPLEMENTATION GUIDANCE... 271

1.1 Contract Planning and Preparation... 271

1.2 Proposal Evaluation ... 271

1.3 Negotiation ... 272

1.4 Contract Modifications.. 273

CHAPTER 2 - SAMPLE RFP WORDING ... 275

2.1 Requirements for Software Measures... 275

2.2 Developer Access.. 276

2.3 Data Alternatives ... 277

2.4 Draft Measurement Plan .. 277

2.5 Proposal Evaluation Data.. 277

CHAPTER 3 - ADDITIONAL MATERIAL.. 279

Part 4 - Acquisition and Contract Implementation

Page 270

Part 4 - Acquisition and Contract Implementation

Page 271

CHAPTER 1 - CONTRACT IMPLEMENTATION

GUIDANCE

Through the contracting process, the program management team
ensures that the mechanisms are in place to collect the software
measurement data required to select a qualified developer and to
manage the software effectively throughout the course of the
program. This chapter identifies the measurement considerations
to be observed in each of the four steps of the contracting process:
contract planning and preparation, proposal evaluation,
negotiation, and contract modifications.

This contracting process is applicable to programs in both the
development and software support phases, although the issues
and the selected measures may be different. When adding measures
to an existing contract, the contract planning and preparation and
proposal evaluation steps are generally not implemented.

1.1 Contract Planning and Preparation

During contract planning and preparation, software measurement
requirements are identified and documented. These requirements
are defined using the process described in Part 2 of the Guide. The
RFP provides a vehicle for communicating these requirements to
potential contractors. Chapter 2 contains sample wording that
may be inserted into a RFP for this purpose. In the RFP, the
program management team may also request historical data
necessary to substantiate the developer’s proposal and to conduct
an independent feasibility analysis of the proposed software plan.
Chapter 2 also provides wording for this. In parallel with RFP
development, the program management team usually develops
independent estimates of size, schedule, effort and cost to use in
evaluating the contractors’ proposals.

1.2 Proposal Evaluation

Contractors respond to the RFP with a proposal explaining how
their measurement process will meet the Program Manager’s
information needs. Each prospective contractor’s proposed

Part 4 - Acquisition and Contract Implementation

Page 272

measurement process must be evaluated as part of the overall
proposal evaluation process. This evaluation includes an
assessment of the developer’s understanding of the issues specified
in the contract, as well as the effectiveness of the process and
measures that the developer is planning to use to address the
issues. The evaluation should assess the adequacy of proposed
measurement data definitions and methodologies. An on-site
evaluation at each developer’s facility may be performed to
validate the proposed measurement process identified in each
proposal.

The proposal evaluation team also needs to assess the feasibility of
each proposed developer’s estimates with respect to size,
schedule, effort, and cost. The team may use software
development cost and schedule estimating models to compute
performance parameters and look for inconsistencies that need to
be reconciled. In addition, the developer’s estimates should be
compared to the independent estimates done by the program office.
Feasibility is also evaluated with respect to the historical data
provided.

1.3 Negotiation

Once a developer has been selected, the negotiator begins the task
of finalizing the measurement requirements in the contract. In the
proposal, the developer should have identified any concerns with
the specified issues and measures and proposed alternatives as
appropriate. Alternative measures must adequately address the
identified issues and be used internally to manage the software
development.

The developer should identify any problems associated with the
specification guidance including the data items to be collected, the
collection and reporting levels, and the method for counting actuals.
The developer should describe his proposed implementation of the
measures, including definitions, estimation and actual measurement
methodologies, and data reporting mechanisms. All of these items
must be agreed upon during negotiations. The results of the
negotiations should be documented in the contract or in an
approved software measurement plan.

Part 4 - Acquisition and Contract Implementation

Page 273

1.4 Contract Modifications

It is important to understand that the software issues will change
during the program. The measurement and contracting process has
to be flexible enough to accommodate these changes. Different
measures may be required to address new or modified issues.
Changes may be required to specifications of existing measures
such as data definitions, data elements, or reporting mechanisms.

Contract modifications may also be necessary to implement
measurement requirements for existing programs that did not
originally require measurement. Even in these situations, the
program management team should still go through the process of
defining program issues and measurement requirements. The team
should work with the existing developer to determine if any
measures are already available that address these issues. The
developer may already be collecting some useful measures.

Part 4 - Acquisition and Contract Implementation

Page 274

Part 4 - Acquisition and Contract Implementation

Page 275

CHAPTER 2 - SAMPLE RFP WORDING

This chapter contains sample wording that may be inserted into a
RFP, contract, or other agreement between the Program Manager
and developer. The sections contain sample wording that may be
used to request software measurement data, address questions
about that data, and obtain a software measurement plan.

Each of the following sections contain a description of the rationale
for each request, followed by sample wording that may be directly
inserted into an agreement. The sample wording is in quotes in the
shaded area.

2.1 Requirements for Software Measures

Contract wording to require the collection of measurement data
should be specified. In the RFP, the program management team
should detail the software issues identified and the measures
required to address them. For each measure required, the program
management team should identify the specification guidance
including the data items to be collected, the collection and reporting
level, and the method for counting actuals as complete. The
following paragraph specifies monthly reporting, but this may be
adjusted as appropriate for each program.

“The developer shall provide the software measures specified in
Paragraph XXX on a monthly basis. For each measure, data shall
be provided for each data item at the specified collection level.
Data shall not be considered as actuals until the criteria for
counting actuals has been successfully met.”

Requirements for most software measures should include both
planned and actual performance data. Any changes to the planning
data should be identified, quantified, and provided to the Program
Manager. A few measures may not be accompanied by planning
data (such as defect and requirements stability data).

“For all of the measures specified in Paragraph XXX, the developer
shall provide an initial plan and periodic actual data. Any time that
the planning data for any of the detailed measurement parameters

Part 4 - Acquisition and Contract Implementation

Page 276

changes, the developer shall provide an updated plan within 30
days of the change.”

For each measure, the developer should propose measurement
definitions, methodologies, and data reporting mechanisms.

“For each measure specified in Paragraph XXX, the developer
shall provide a measurement definition, an estimation methodology,
the method used to measure actual data, and the data reporting
format and associated mechanism. This information shall include a
description of any tools utilized.”

Planned and actual data shall be based on the same measurement
methodology. Any changes in definitions, estimation methodologies,
or actual measurement approaches shall be documented within 30
days of the change and shall require approval of the Program
Manager.”

The data should be provided in a timely manner, as soon as
possible after data collection occurs (the wording recommends
within 30 days - you may want to modify this time period). The
lag time between data collection and reporting should be minimized
so that early warning indicators are available early.

“The required measures shall be delivered within 30 days after the
data is collected.”

2.2 Developer Access

Throughout the development, the program management team
should periodically review the measurement processes. In addition,
the measurement analyst will have questions about some of the
data. The measurement analyst needs to have access to the
developer to answer these questions and to gather the subjective
data that supports the proper interpretation of the quantitative
data.

“The developer shall provide direct access to the program team to
facilitate open communications with respect to the measurement
process. The developer shall also provide explanations and
rationale for changes, answer questions, and provide clarifications
regarding the measurement process and associated data and
information.”

Part 4 - Acquisition and Contract Implementation

Page 277

2.3 Data Alternatives

The measures specified in the RFP represent the needs of the
Program Manager. The developer may request the substitution of
an alternate software measure, if the alternative measure provides
similar insight into the associated software issue. The alternative
measure should be readily available from the developer’s
development process and should be used internally by the
developer.

“In the event that a specified measure is unavailable, the developer
shall submit a request for substitution. This request shall identify
an alternative measure with a data definition, rationale for the
change, a description of how this measure addresses the identified
issue, and a description of how this measure will be used internally.
The alternative measure must be readily available from the
software development process.”

2.4 Draft Measurement Plan

The developer should be required to develop a measurement plan
which specifies which issues and measures will be addressed during
the program. The plan should identify the software measurement
process to be used and specify how the developer will use the
measurement information. Chapter 3 contains a sample outline of a
software measurement plan.

“The developer shall submit a draft measurement plan which
specifies the issues to be addressed, the measures to be utilized, and
definitions of specified measures and measurement methodologies.
This plan shall identify the measurement approach to be utilized
including a description of how measurement information will be
utilized in the developer’s internal management of this program,
how data will be collected and utilized, points of contact,
responsibilities, and organization communications and interfaces.”

2.5 Proposal Evaluation Data

Proposal evaluation should include an assessment of the feasibility
of the software development plan based on information provided in
the proposal, historical data about the developer’s performance,

Part 4 - Acquisition and Contract Implementation

Page 278

and independent estimates prepared by the program management
team. Information used for this assessment includes:

• Required Productivity - The developer should provide an
assessment of the productivity required to successfully
execute the proposal, based on the planning parameters
provided in the proposal. The developer should include a
definition of any tools or methodologies used.

• Product Size, Effort Allocation, Milestone Dates - The
developer should submit estimated data for each of these
measures. This allows the proposal evaluation team to do
an independent feasibility assessment on each bidder. The
data should include a data definition and estimation
methodology.

• Historical Data - The developer should submit actual data
(product size, effort allocation, milestone dates, cost
profile, and productivity) from completed programs. Data
should be collected from programs that are similar in
domain, size, and complexity to the proposed program.

The first two items usually are required parts of the proposal,
whether or not the measurement approach described in this Guide
is applied. The following RFP wording is suggested to collect
historical data to substantiate the potential developer’s proposal
and to conduct the feasibility analysis:

“The developer shall provide historical data from at least three
completed programs to support the proposal. The technical
characteristics of the historical programs shall be similar to the
proposed system with respect to domain, size, and complexity. If
the developer does not have experience within these criteria, data
from other completed programs shall be provided. The data shall
include measures of size, schedule, effort, cost, and productivity by
WBS element. Any models and methodologies used shall be
documented for each historical program to a sufficient level of
detail to allow replication by the evaluation team.”

Part 4 - Acquisition and Contract Implementation

Page 279

CHAPTER 3 - ADDITIONAL MATERIAL

Two items that are important to implementing an effective
measurement process are the WBS and the measurement plan.
This chapter contains examples of a weapons system WBS,
automated information system WBS, and software measurement
plan outline.

Figure 3-1 contains a sample WBS that can be used in a weapons
software development. Once the developer is selected, it is
important to modify the WBS used during the selection process to
map to the developer’s negotiated WBS. The revised WBS
provides a tie between the estimated measures and the actual
measures. It also ensures that the cost account elements map to
the same WBS that is used for data collection. Figure 3-2 contains
a sample WBS that can be used in a AIS software development.

Figure 3-3 contains a sample outline of a Software Measurement
Plan. This plan should be modified as needed to accommodate
different program information needs and developer processes. It
may be included in the Software Development Plan (SDP),
Software Maintenance Plan (SMP), Computer Resource Life Cycle
Management Plan (CRLCMP), or similar planning document.

Part 4 - Acquisition and Contract Implementation

Page 280

System

Integral
Processes

Software
Configuration
Management

Software
Product

Evaluation

Software
Quality

Assurance

Corrective Action
(Problem Rpts)

Joint Technical &
Mgmt. Reviews

Other
Activities

Peculiar
Support

Equipment

Test &
Measurement

Equipment

Support &
Handling

Equipment

Common
Support

Equipment

Test &
Measurement

Equipment

Support &
Handling

Equipment

Operational Site
Activation

System Assy.,
Installation &

Checkout

Contractor
Technical
Support

Site
Construction

Site/Ship/
Vehicle

Conversation

Industrial
Facilities

Construction
Conversion/
Expansion

Equipment
Acquisition or
Modernization

Maintenance
(Industrial
Facilities)

Initial Spares
& Repair Parts

Project Planning
& Oversight

Establishing a SW
Development
Environment

Prime Mission
Product (PMP)

PMP
System

Engineering

PMP Hardware
Subsystem 1..n
(Specify Name)

System Reqs.
Analysis

System Design Build 1..n
(Specify Name)

Preparing For
Software Use

Preparing For
Software
Transition

PMP Applications
SW Subsystem 1..n

(Specify Name)

PMP Systems SW
Subsystem 1..n
(Specify Names)

CSCI/HWCI
Integration &

Testing

System
Qualification

Testing

Build 1..n
(Specify Name)

CSCI 1..n
(Specify Names)

Software
Implementation
and Unit Testing

Software
Requirements
Analysis

Software
Design

CSCI 1..n
(Specify Names)

Software
Requirements
Analysis

Software
Design

Software
Implementation
and Unit Testing

Rework Rework

Figure 3-1. Sample WBS for Weapon System

Part 4 - Acquisition and Contract Implementation

Page 281

System Operation
and Support

System/
Material

Item/
Management

Annual
Operations
Investment

Hardware
Maintenance

Software
Maintenance

MegaCenter
Operations

and
Maintenance

Support

Data
Maintenance

Unit/Site
Operations

Environmental
and

Hazardous
Material

Storage and
Handling

Contract
Leasing

Annual
System
Maintenance
Investment

Replenish-
ment
Spares

Replenish-
ment
Supplies
and
Consumables

Organic
Hardware
Maintenance

Contract
Maintenance
Support

Other

Commer-
cial-off-the-
Shelf
(COTS)

Applications/
Mission
Software
(non-COTS)

Communi-
cations
Software
(non-COTS)

Data Center
Software

Other
Software

Mission
Application
Data

Standard
Adminis-
trative
Data

System
Operation
Personnel

Utility
Requirements

Fuel and
POL

Facilities
Lease and
Maintenance

Communications

Base Operating
Support

Recurring
Training

Miscellaneous
Training

System

Engineering
Analysis &
Specifi-
cations

Concept
Exploration
Hardware

Concept
Exploration
Software

Concept
Exploration
Data

Exploration
Documen-
tation

Concept
Exploration
Testing

Facilities

Other

Investment

Program
Mgt.

Concept
Exploration

System
Devel.

System
Procure-

ment

Outsource/
Central/

MegaCenter
Investment

System,
Initiation,

Implemen-
tation, and
Fielding

Upgrade/
Preplanned

Product
Improvement

Disposal/
Reuse

System
Develop-
ment

Develop-
ment,
Prototype,
and Test
Site
Hardware
	
Software

Develop-
ment

System
Document-
ation

Data Devel.
and Transi-
tion

Database
Standards/
Dictionary

Development
Training

Test &
Evaluation

Devel.
Logistical
Support

Facilities

Environmental

Other
Development

Devel. HW

Sys. Deploy-
ment SW
(non-Dev.)

Initial
Document-
ation
Require-
ments

Logistics
Support
Equipment

Initial
Spares

Warranties

Capital
Investment

SW Devel-
opment

System
User
Investment

System
Integration,
Test and
Acceptance

Common
Support
Equipment

Site Act-
ivation and
facilities
Preparation

Initial
Supplies

Engineering
Changes

Initial
Logistics
Support

Office
Furniture and
General
Support
Furniture

Data Upload
and
Transition

Base/
Installation
Communi-
cations

Other

Upgrade
Develop-
ment

Life Cycles
Upgrades
Procurement

Capital
Recoup-
ment

Retirement

Environ-
mental/
Hazardous
Disposal

Rework

Figure 3-2. Sample WBS for AIS System

Part 4 - Acquisition and Contract Implementation

Page 282

Software Measurement Plan Outline

Part 1 - Introduction
- Purpose
- Scope

Part 2 - Program Description
- Software Technical Characteristics
- Software done at beginning, updated when changes occur

Part 3 - Measurement Approach
- How measurement is integrated into the software technical and

management processes
- How data will be collected and used
- Measurement Points of Contact (Developer, Subcontractors)
- Measurement Responsibilities
- Organizational communications and interfaces

Part 4 - Description of Program Software Issues
- Identification and prioritization of software issues, risks, and

objectives

Part 5 - Software Measures and Specifications
- Include for each selected measure (for each developer if different)

a. Measure name
b. Data items to be collected
c. Collection level
d. Reporting level
e. Criteria for Counting Actuals
f. Data definitions
g. Estimation methodology
h. Collection and reporting mechanisms
i. Source of data
j. Collection periodicity

Part 6 - Measurement Data Aggregation Structures
- Component Data Aggregation Structure (e.g., CSCIs, units)
- Software Activity Aggregation Structure (e.g., activity,

organization)

Figure 3-3. Sample Outline for Software Management Plan

Issues

Measures

Indicators

Analysis

Information

A Guide to Objective Program Insight

Action

PRACTICAL

MEASUREMENT

SOFTWARE

SOFTWARE

MEASUREMENT

CASE STUDIES

PART 5

Part 5 - Software Measurement Case Studies

Page 284

Part 5 - Software Measurement Case Studies

Page 285

SOFTWARE MEASUREMENT CASE STUDIES

Practical Software Measurement: A Guide to Objective Program
Insight was developed to show how measurement can be used to
address the software issues faced by today’s DoD Program
Manager. To better illustrate how the measurement process is
implemented for different types of programs, this part of the Guide
contains two software measurement case studies. The first (Part
5A) is based upon a major shipboard Weapons System
development. The second (Part 5B) is based on the development of
an Automated Information System designed to manage military
personnel information. These case studies describe how the
measurement process is tailored and applied to meet specific, and
sometimes unique, program management requirements.

The PSM case studies address the issues and challenges that most
DoD Program Managers face in planning and implementing
software intensive development programs. The case studies
concentrate on the issues the program manager must address with
respect to managing the program within defined acquisition and
technical constraints. They show how measurement is used to help
make decisions concerning these issues. The case studies also
illustrate how any DoD software development program can benefit
from implementing a tailored set of software measures within an
effective measurement process.

Although the Practical Software Measurement case study
parameters are based on actual DoD program characteristics, the
program scenarios, including the described system architectures,
program names and program organizations, are fictitious.

Part 5 - Software Measurement Case Studies

Page 286

Part 5 - Software Measurement Case Studies

Page 287

TABLE OF CONTENTS

WEAPONS SYSTEM CASE STUDY... 289

CHAPTER 1 - PROGRAM OVERVIEW.. 293

1.1 Introduction .. 293

1.2 Program Technical Approach ... 295

1.2.1 System Requirements Definition and Design Analysis... 295

1.2.2 DDG 51 C4I Baseline System Description.. 296

1.2.3 System Requirements and Design Recommendations .. 298

1.3 Program Management Approach.. 300

CHAPTER 2 - PROGRAM PLANNING AND ACQUISITION... 303

2.1 Software Program Planning ... 303

2.2 Software Acquisition ... 306

2.2.1 Request for Proposal ... 306

2.2.2 Proposal Evaluation.. 307

2.2.3 Award .. 310

2.2.4 Negotiations.. 312

CHAPTER 3 - SOFTWARE DEVELOPMENT .. 315

3.1 Tracking Development Performance... 315

3.1.1 Software Measurement Overview ... 315

3.1.2 Software Issue Identification and Analysis ... 316

3.2 Revising The Development Plan.. 325

3.3 Software Delivery .. 327

3.4 Epilogue... 328

AUTOMATED INFORMATION SYSTEM CASE STUDY ... 331

CHAPTER 1 - PROGRAM OVERVIEW.. 335

1.1 Introduction .. 335

1.2 Air Force Business Process Modernization Initiative....................................... 337

1.3 Program Description.. 339

Part 5 - Software Measurement Case Studies

Page 288

TABLE OF CONTENTS - continued

1.4 System Architecture and Functionality.. 340

1.4.1 Current Personnel System.. 340

1.4.2 Military Automated Personnel System (MAPS)... 341

CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL... 345

2.1 Evaluating the Software Development Plan... 345

2.2 Revising the Software Development Plan... 348

2.3 Tracking Performance Against the Revised Plan .. 352

CHAPTER 3 - EVALUATING READINESS FOR TEST ... 359

3.1 Increment 1... 359

3.2 Increment 2... 363

CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT ... 367

4.1 Increment 1 Installation.. 367

4.2 Software Support ... 368

4.3 Epilogue... 371

Part 5 - Software Measurement Case Studies

Page 289

WEAPONS SYSTEM CASE

STUDY

PART 5A

Part 5 - Software Measurement Case Studies

Page 290

Part 5 - Software Measurement Case Studies

Page 291

WEAPONS SYSTEM CASE STUDY

The Weapons System case study is based on the development of a
complex shipboard Weapons System designed to integrate multiple
platform target engagement and weapons management functions
into an existing system baseline. In this scenario, measurement is
used to help plan and track the software development effort from
the inception of the program through system deployment. The
development approach is based on the upgrade of an existing
system using Commercial Off the Shelf components and reused
software in a revised architecture. The developer is a competitively
selected contractor who works closely with the Navy Program
Manager to identify and resolve issues typical in a large
development program. These issues include software requirements
and size growth, incremental schedule slips, and overall software
development productivity shortfalls.

The Weapons System case study is organized into three chapters:

• Chapter 1, Program Overview - describes the technical and
management aspects of the software development effort.

• Chapter 2, Program Planning and Acquisition - shows
how measurement can be used to define and evaluate a
realistic software development plan.

• Chapter 3, Software Development - illustrates how
measurement helps to identify and track software issues,
and how the Program Manager uses measurement
information to evaluate development status and make
informed program decisions.

Part 5 - Software Measurement Case Studies

Page 292

Part 5 - Software Measurement Case Studies

Page 293

CHAPTER 1 - PROGRAM OVERVIEW

This chapter introduces the example Navy program and describes
the technical and management aspects of the development effort.
The program scenario is based on a major program upgrade to an
existing Navy surface ship Command, Control, Communications,
Computer, and Intelligence (C4I) system. The upgrade integrates
multiple platform target engagement and weapons management
functions into an existing software functional baseline. It includes
the addition of new software functions to the system, as well as
modifications to the existing software baseline.

1.1 Introduction

In the early 1990’s, the Navy began to recognize a growing need
for its ships and aircraft to operate interactively in a multiple
threat environment. This need was clearly demonstrated during the
Gulf War where well coordinated engagements, which integrated
the capabilities of a number of different platforms, provided
significant tactical advantages.

To define its changing mission requirements, the Navy initiated a
concept study to determine the feasibility and effectiveness of
integrating a multiple platform target engagement capability into
the fleet. The results of the study, completed in 1994, validated
the need for the proposed engagement capabilities and
recommended an implementation approach which built upon the
Navy’s existing C4I tactical systems on various platforms. The
study recommended that the Navy initially focus on the upgrade of
its existing surface combatants with new communications,
engagement management, and weapons control functions. These
new functions would be designed to allow two or more ships to
engage the enemy as a single entity. With the new capabilities, one
ship would be able to manage the overall sensor and target
scenarios for the entire group and assign, launch, and control the
weapons on the other ships using advanced tactical
communications links.

The Navy decided that the Arleigh Burke DDG 51 class of guided
missile destroyers (DDG) would be the first ships to receive the

Part 5 - Software Measurement Case Studies

Page 294

capability upgrade, as it was the largest and most modern class of
DDGs in the fleet. It named the program the DDG 51 Surface
Ship Concurrent Weapons Engagement Upgrade Program, or
DDG 51 SCWE for short. The objective of the DDG 51 SCWE
program was to define, develop and integrate a new concurrent
weapons engagement function into the existing C4I system on the
Arleigh Burke DDGs. Most of the efforts were to be focused on
the coordinated employment of long-range surface-launched
weapons, with an emphasis on the Tomahawk Cruise Missile.

The DDG 51 SCWE program was projected to require significant
changes in the architecture of the existing DDG 51 C4I system,
especially with respect to the software. Existing software
functions and interfaces required numerous changes, and the
multiple platform communications, target management, and
weapons management functions had to be developed and
integrated. New acquisition policies made the use of an Open
Systems Architecture (OSA) and Commercial-Off-The-Shelf
(COTS) software components almost mandatory. The overall
business environment required that the program be well managed in
terms of delivered functionality and in meeting pre-defined cost
and schedule objectives.

The Navy recognized the critical nature of the software
development component of the DDG 51 Surface Ship Concurrent
Weapons Engagement Upgrade Program and emphasized the need
for effective software management as part of the overall program
management approach. Understanding this need, the Naval Sea
Systems Command (NAVSEA) assigned Captain Katherine
McLain, USN, as the Program Manager. Captain McLain held an
advanced degree in Electrical Engineering from Stanford University,
and she had served as the software technical manager on a number
of previously successful Navy development programs. After
completing the Program Manager’s course at the Defense Systems
Management College (DSMC), Captain McLain assembled her
program management team at NAVSEA. Her office was designated
as PMO-551. The award date for DDG 51 SCWE Engineering and
Manufacturing Development (E&MD) was projected for mid-
1996. To ensure a successful program, a considerable amount of
work had to be completed before award.

Part 5 - Software Measurement Case Studies

Page 295

1.2 Program Technical Approach

1.2.1 System Requirements Definition and Design Analysis

Based on her previous experience, Captain McLain was familiar
with the software architecture and capabilities of the existing
DDG 51 C4I system. Like most of the large Navy systems
developed in the late 1980’s, the system on the Arleigh Burke
DDG class was built around the AN/UYK-43 Navy standard
computer, which centrally handled the processing for most of the
system’s different functions. The original C4I systems on the
DDG 51’s had been incrementally upgraded since they were first
deployed to integrate new sensor and weapons capabilities. Over
time, the system design had proven to be effective and reliable.

The software for the DDG 51 C4I system was implemented largely
in CMS-2, the Navy’s pre-Ada standard high order programming
language. The functions where real-time processing and timing
considerations were critical were coded in assembly language. The
original software had been developed using a modified DoD-STD-
2167 software development process and was currently being
maintained by the original developer under a separate maintenance
contract.

The mission requirements driving the DDG 51 SCWE program
provided some significant technical and program management
challenges for PMO-551. Captain McLain felt that one of the
keys to a successful development program was a well defined set
of system requirements. As part of the acquisition strategy,
PMO-551 awarded a series of competitive System Requirements
Definition-Design Analysis Study Contracts. These design study
contracts were specifically implemented to accomplish the
following:

• Provide a definitive analysis and characterization of the
existing DDG 51 C4I system hardware and software
architectures.

• Develop an approved set of system level requirements for
inclusion in the E&MD Request For Proposal (RFP).

• Develop innovative system design alternatives. These
alternatives in particular were focused on the use of COTS

Part 5 - Software Measurement Case Studies

Page 296

hardware and software components, and on the integration
of an OSA into the existing system to support future
capability growth.

1.2.2 DDG 51 C4I Baseline System Description

The results of the System Requirements Definition-Design
Analysis Study efforts provided a detailed characterization of the
existing DDG 51 C4I software architecture. Figure 1-1, a simplified
system diagram, shows that the system consisted of six primary
software functions, all resident in the AN/UYK-43 computer.
Functional data interfaces to the External Communications
subsystems, the Weapons subsystems, and to own-ship sensors
such as Navigation, Radar, Sonar, and Electronic Support
Measures (ESM), were through the System Control software
function using a Navy Tactical Data System (NTDS) interface
protocol. Two way data communications to the Command
Display and Control consoles was also provided by the System
Control software through an NTDS interface.

Each of the six primary software functions in the system was
comprised of three to six Computer Software Configuration Items
(CSCIs), as defined in DoD-STD-2167. In all, there were 24
CSCIs in the baseline system. The software architecture was well
defined, and the original developer had done an excellent job of
allocating and mapping the original software requirements to the
CSCIs. There was a full set of software technical specifications
available, but these had not been kept uniformly up to date,
especially with respect to the incremental design changes.

The DDG 51 C4I system software was relatively large and
somewhat complex. The various software functions worked
together to integrate real-time data from a variety of distinct
combat and ship control subsystems and processed the data into
the information needed to effectively engage enemy targets.

Part 5 - Software Measurement Case Studies

Page 297

S o n ar

(T h is is th e so n ar co m p u te r d iag ram)

Communications

External
Communications

T o m ah a w

k(W e ap o n

s)

Weapons

Navigation

NAV

Radar

RADAR

SONAR

ESM

ESM

NTDS
Surface Control

Target Tracking

Threat Evaluation

Target Engagement

External Comms

AN/UYK-43 computer

AN/UYK-43 Computer
System Control

Command Displays and System Displays
(the same graphics for both - old and new
case study systems)

System Display and Control

Figure 1-1. DDG 51 Weapons System Software Architecture

Baseline System

Each of the six primary software functions addressed a unique set
of functional requirements:

• System Control - The System Control function included
the AN/UYK-43 operating system and provided the
primary software services functions for the system. Its
functions included system database management, initial
program load, configuration and reconfiguration
management, and display control.

• Surface Control - The Surface Control function addressed
own-ship maneuvering and navigation requirements and
calculated ship’s heading, speed, and position on a real-time
basis. It also included capabilities that helped position the
ship with respect to other surface contacts.

• Target Tracking - The Target Tracking function integrated
and correlated all sensor data, and calculated, evaluated, and
tracked surface, subsurface, and air contacts on a real-time
basis.

Part 5 - Software Measurement Case Studies

Page 298

• Threat Evaluation - The Threat Evaluation function
correlated all of the sensor data from all targets and, through
a series of complex threat algorithms, calculated and
prioritized each target within an overall threat profile.

• Target Engagement - The Target Engagement function
included software that managed the overall enemy
engagement and controlled all weapons allocations to
individual targets. It also assigned weapons presets based
on the calculated target parameters. This function was one
of the most critical in the system.

• External Communications - The External
Communications function provided interfaces between the
C4I system and a number of tactical digital communications
data links. These data links provided for the exchange of
contact and targeting information with other off-ship
platforms.

Together, the DDG 51 C4I system software functions included
over one million logical lines of source code distributed among 24
CSCIs as shown in Figure 1-2.

DDG 51 Baseline System
Software Description

Function Number
of CSCIs Language Size

(SLOC)
System Control 6 CMS-2/Assembly 305,000

Surface Control 3 CMS-2/Assembly 175,000

Target Tracking 3 CMS-2 125,000

Threat Evaluation 3 CMS-2/Assembly 180,000

Target Engagement 5 CMS-2 220,000

External Communications 4 CMS-2 110,000

Total 24 1,115,000

PMO-551: DDG 51 SCWE Data as of 15 Oct 95

Figure 1-2. DDG 51 Baseline System Software Description

1.2.3 System Requirements and Design Recommendations

The System Requirements Definition-Design Analysis study effort
provided a definitive set of system level requirements for the DDG
51 SCWE upgrade program. After reviewing the requirements with

Part 5 - Software Measurement Case Studies

Page 299

her staff, Captain McLain had a clear understanding of the
magnitude of the changes required for the existing DDG 51 C4I
system. She knew that the new multi-ship engagement functions
would have a significant impact on the existing system and
software architectures. She also estimated that the current
software baseline would more than double in size.

In addition to the new multiple platform engagement management
and weapons control functions, the system level requirements
included the need for:

• New display processing capabilities.

• New assignable command and display workstations.

• Automatic reconfiguration of the engagement control
functions in the event of a platform specific failure.

• Enhanced weapons safety provisions.

• Advanced multiple ship and aircraft contact correlation.

• Additional secure digital data links.

• An increase in the overall system processing capacity.

Even at this point in the program, Captain McLain knew that
managing the requirements, especially those allocated to the
software, would be important to the success of the upgrade
program.

Given the large amount of functionality that was to be added to the
baseline DDG 51 system, the System Requirements Definition-
Design Analysis studies also proposed a number of system and
software design alternatives that addressed the Navy’s desire for
development affordability and life cycle cost savings. These
alternatives were all based upon retaining a large part of the
baseline system hardware and software and adding the new
capabilities using COTS components integrated via an OSA local
area network. In all cases, the alternatives addressed the addition
of new processing and display capabilities using advanced display
workstations.

Part 5 - Software Measurement Case Studies

Page 300

The design alternatives outlined in the study recommendations
maintained much of the integrity of the existing system hardware
and software. In addition, they addressed the Navy’s policy to
embrace open commercial interface standards and COTS products
in implementing the new functionality.

1.3 Program Management Approach

With the system specifications and the design studies completed,
Captain McLain began to concentrate on the program’s acquisition
requirements. With her own program office personnel, and
support from the Naval Surface Warfare Center (NSWC) in
Dahlgren, Virginia, Captain McLain believed she had a very capable
acquisition team, especially with respect to software.

With the changes in the DoD business environment over the past
several years, Captain McLain knew that the DDG 51 SCWE
program would be very visible within the Navy and DoD. It was
one of the first major programs to fully address the DoD’s
acquisition reform requirements, which included the extensive use
of commercial product standards, COTS hardware and software,
software reuse, and the integration of a new OSA.

One of the key aspects of acquisition reform was its emphasis on
less developer oversight by the acquisition organization. This
requirement led to several very critical software decisions by
Captain McLain:

• The developer had to have a mature software development
process, and the developer’s overall capability with respect
to software process would be a key consideration in source
selection.

• Insight into the software processes and products, across all
activities and development phases, would be provided by a
Practical Software Measurement process. Both PMO-551
and the developer would use software measurement to
identify and manage the software development issues.

• The government and developer organizations would
function as an integrated product team and communicate on
an objective basis.

Part 5 - Software Measurement Case Studies

Page 301

• The software would be developed using a tailored MIL-
STD-498 development process. Along with this, a detailed
software Work Breakdown Structure (WBS) would be
implemented to manage the program’s development
products and activities.

Captain McLain planned to award the development contract to a
capable software developer with a proven history of success. She
made it clear that she expected both her PMO-551 organization
and the developer to address the software issues in an objective
manner. Captain McLain knew that delivering the specified
requirements to the fleet within the program’s schedule and
funding constraints would be a significant challenge.

Part 5 - Software Measurement Case Studies

Page 302

Part 5 - Software Measurement Case Studies

Page 303

CHAPTER 2 - PROGRAM PLANNING AND

ACQUISITION

With the system requirements completed, PMO-551 began to
focus on the detailed planning for the DDG 51 Surface Ship
Concurrent Weapons Engagement Upgrade Program. Before
awarding the development contract, Captain McLain and the Navy
program team had to define a feasible software development plan,
issue the Request for Proposal (RFP) and evaluate the submitted
proposals during source selection. Even at this early planning
stage, Captain McLain used information derived from the software
measurement process to support her planning objectives.

This chapter of the case study shows how software measurement
can help during the Program Planning phase of software
development. The activities that take place during this phase set
the stage for project success or failure. Their importance cannot be
over-emphasized. It is during this time in the program that the
Program Manager implements the measurement process as an
integral part of the overall program management structure.
Software measurement is used to ensure that the software
development plan is realistic and the software developer has the
capability to successfully complete the job.

2.1 Software Program Planning

The most important software planning task for Captain McLain
and her staff was to develop a realistic DDG 51 SCWE software
implementation plan. Aware of the direct relationships between
the overall size of the software and development cost and schedule,
Captain McLain and her software engineering team generated
independent estimates for the key parameters.

PMO-551 began with a preliminary allocation of the system
requirements to a notional set of software components, keeping in
mind that they would be retaining much of the existing software
and using a significant amount of COTS software to implement the
new functions. Based on these requirements, and the size of the
existing code, the team estimated the size of the software to be
developed. They generated estimates of development effort and

Part 5 - Software Measurement Case Studies

Page 304

schedule using two techniques. First, they had their own
engineering rules-of-thumb for development productivity (lines of
code per staff month) and code-production rates (lines of code per
calendar month). These rules-of-thumb were derived from their
past experiences with similar C4I programs. In both cases, these
engineering estimates encompassed the key software development
activities (software requirements analysis through system
integration and test). Secondly, they used a commercially-available
software cost estimating model.

From these estimates, Captain McLain concluded that the
schedule required to realistically complete the software was
between 74 and 78 months, starting with contract award and
ending with certification testing and delivery. Unfortunately, this
time was somewhat longer than the schedule the Navy defined.
The ship deployment and shipyard availability schedules were
driving the DDG 51 SCWE development schedule, and the
software was the “long pole in the tent”. Captain McLain knew,
based on her analysis, that the schedule was going to be a high risk
area and took steps to address this issue in her plan.

Captain McLain understood that the program budget and
functional requirements were essentially set, so she looked at
several options for reducing the planned software development
schedule.

Captain McLain updated her plan to include the following:

• More parallel implementation of the software development
activities. This included an incremental development
approach for the software with the functionality developed
and integrated into multiple builds and the overlapping of
specific software implementation, integration, and test
activities.

• Maximized use of COTS and non-developed (NDI)
software and reuse of as much of the existing code as
possible.

• Assumption of relatively high software development
productivity based on her plan to make the developer’s
software process capability a key criterion for contract
award.

Part 5 - Software Measurement Case Studies

Page 305

After these modifications, the PMO-551 re-ran the software
estimates. Specifically, the PMO-551 planning team assumed the
amount of code that had to be developed was smaller due to the
use of additional COTS software and more reused software
components from the baseline system. The resulting DDG 51
SCWE software development schedule showed that the full set of
software requirements could be implemented in 66 months, within
the original budget objective. This estimate was close to the
delivery target date set by the Navy.

From a technical perspective, Captain McLain decided that any
new software developed for the system should be developed in
Ada, using the Ada 95 standard.

The results of the estimation process helped the PMO-551
planning team complete their tailoring of MIL-STD-498. The risk
areas and the issues they identified in their software analysis
helped to define the required MIL-STD-498 activities and
products.

At the completion of the PMO-551 planning process, Captain
McLain had a pretty good idea of what her software development
risks were and where she would have to focus her attention during
the development.

Although her development plan was not without some risk, it was
realistic. Most importantly, she had a clear picture of the
program’s software development issues:

• The realism of the software schedule and the capability of
the developer to meet the planned milestones.

• The real possibility for growth in the software
requirements.

• The ability of the developer to adequately staff the
software development effort.

• The overall impact of cost and schedule constraints on the
ability of the developer to build quality into the software.

• The adequacy of the developer’s software process
capability.

Part 5 - Software Measurement Case Studies

Page 306

• The adequacy and effectiveness of the software
development technical approach.

2.2 Software Acquisition

2.2.1 Request for Proposal

After the independent PMO-551 software development plan was
complete, Captain McLain turned her attention to issuing the
DDG 51 SCWE Request for Proposal (RFP) and to choosing a
capable developer. The results of the design analysis studies were
made available to all bidders. At the bidder’s conference, Captain
McLain made it clear the successful bidder would have to
demonstrate an effective software development process capability.
With the success of the program tied to the overall capability of
the software developer, Captain McLain specifically addressed her
software development requirements in the RFP. In their
proposals, the bidders were required to provide the following:

• Their preliminary allocation of the system level
requirements provided with the RFP to a proposed
software architecture.

• Their approach for using the existing DDG 51 C4I software
as the baseline for DDG 51 SCWE software development.

• Their proposed use of COTS software components and an
OSA in the redesigned system.

• A comprehensive set of software data describing the
bidder’s performance on similar development programs.
This data included the sizing, schedule, effort, and problem
report data, as well as the program descriptive data required
to evaluate the developer’s software development
performance.

• A detailed software measurement plan that linked the
program’s risks and issues to defined measures and that
explained how the software measurement data would be
used to track software progress and quality and support
objective communications between the Navy and developer
teams.

Part 5 - Software Measurement Case Studies

Page 307

• A detailed description of the proposed software
development processes and activities, coupled to an overall
DDG 51 SCWE software development plan. A detailed
software WBS was also required, as well as quantified
estimates of key software parameters related to the
proposed software development approach.

Captain McLain also required that each bidder submit, as part of
their proposal, a summary of defined issues resulting from their
analysis of the technical program and planning parameters and the
innovative approaches they would implement to address these
issues.

2.2.2 Proposal Evaluation

The RFP was released in the fall of 1995, and a total of five
proposals were submitted. Of these five, two were considered by
the source selection team to be in the competitive range. Each of
the two prime contractors on these two bids was teamed with
several subcontractors. After a detailed evaluation of each
proposal, a recommendation for award was forwarded to the
Program Manager. There were many aspects about the winning
proposal that impressed the source selection team:

• The successful bidder’s historical data was credible. The
proposal provided clear definitions for software size,
schedule, effort, and problem report data, and indicated
what was included and what was excluded in the numbers.
The data supported the bidder’s claim that it had an
effective software process.

• The successful bidder’s DDG 51 SCWE software
development plan was based on achievable performance and
productivity objectives, and the rationale for the
projections was supported by objective estimates of the
associated software parameters. Further, the proposed
software development plan included a detailed software
WBS mapped to the proposed architecture and
development activities. The WBS related the proposed
software development process to the bidder’s
recommendations for tailoring MIL-STD-498.

Part 5 - Software Measurement Case Studies

Page 308

• The successful bidder’s software development plan
included an incremental software development approach
with a relatively sequential set of development activities
allocated between two major builds.

• The successful bidder’s proposed measurement program
met all of the requirements specified in the RFP and clearly
reflected that the bidder had experience in using
measurement to support successful development programs.
In the proposal, the proposed measures were tied to an
accurate assessment of the program issues.

From the systems design perspective, the successful bidder met
the defined technical requirements for the DDG 51 SCWE
program. The proposed system design, as shown in Figure 2-1,
included the following:

• The modification of the existing system architecture to
include open system interfaces. This change called
specifically for the implementation of an open commercial
standard Fiber Distributed Data Interface (FDDI) Local
Area Network (LAN) to interface the existing sensors and
the new functions to the AN/UYK-43 computer. This
design change provided for minimal “breakage” to the
existing system and supported an affordable development
and future system expansion using cost-effective
components.

• The development and integration of new display
workstations with integrated processors to handle the new
multiple ship engagement functions and associated display
and control functions. The proposed workstation design
made use of both COTS hardware and software. The
workstations were to be interfaced to the baseline system
through the FDDI LAN. This approach also addressed the
need for an advanced human-machine interface required to
implement the new target engagement and weapons
management functions.

• The replacement of the existing flat-file data management
software in the AN/UYK-43 with a COTS based relational
database manager and the use of the same relational
database structure for the new applications resident in the

Part 5 - Software Measurement Case Studies

Page 309

new workstations. This design change addressed the large
increase in the amount of data that the new system would
have to process.

• The reallocation of the revised software functionality
between the AN/UYK-43 and the new processors in the
display workstations. The proposal included the revision
and reallocation of the critical engagement and weapons
management functions to the workstation processor.

External Comms

Target Tracking

Surface Control

AN/UYK-43 Computer
System Control

System
Displays

FDDI LAN

Target Engagement

Threat Evaluation

Workstation Control

Weapons

Workstations

NAV ESM RADAR SONAR

Communications
Subsystems

Figure 2-1. DDG 51 Weapons System Software Architecture

Upgraded System

In all, the new software architecture added one major function,
Workstation Control, to the system. The AN/UYK-43 Threat
Evaluation function, however, was materially revised and moved to
the workstation processor. The AN/UYK-43 Target Engagement
function was to be completely rewritten and also moved to the
workstation. This increased the number of CSCIs to 32. The
overall amount of software change was significant, but it reflected
the nature of the new concurrent weapons engagement mission
requirements.

Part 5 - Software Measurement Case Studies

Page 310

2.2.3 Award

The PMO-551 software measurement analyst, Gary Wilson, was a
member of the source selection team. The results of his analysis of
the submitted software measurement data were an important factor
in selecting the winning bidder. Also significant was the quality of
the data in the winning proposal which demonstrated that the
developer could objectively identify and manage software issues
using software measurement.

The source selection team developed a number of software
measurement indicators to support analysis of the proposed
software development plans. The critical question was the
feasibility of the proposed software development schedule, given
the bidder’s estimated software size and proposed effort profile.
This assessment was based on the calculated software
development productivity required to meet the proposed
objectives and the relationship of this required productivity to the
bidder’s performance history on previous programs. Did the
proposal indicate, for example, that the bidder would have to
improve his demonstrated software productivity significantly to
meet his proposed schedule, and, if so, was his approach for doing
this realistic?

Of equal importance was the relationship between the proposed
DDG 51 SCWE software planning parameters. For example, did
the scheduled software development activities peak while the
development staff was being reduced? These were the types of
questions the source selection team was asking.

Gary Wilson developed an indicator which showed the software
productivity history of the two bidders in the competitive range.
On the same indicator, he graphed the software productivity
required for the DDG 51 SCWE, based on the measurement data
submitted in each of the proposals (Figure 2-2). The software size
estimates were normalized based on how the developer said the
code was to be implemented (COTS, NDI, new, or modified), and
the schedule and effort data was used as it was submitted.

The Software Productivity indicator clearly showed that the
successful bidder had proposed a software productivity rate for
the DDG 51 SCWE program that was consistent with his historical
performance. The unsuccessful bidder had proposed a significant
increase over his demonstrated productivity rate, but there was no

Part 5 - Software Measurement Case Studies

Page 311

basis for his claim. In fact, when the source selection team
investigated, it found that the high productivity rate, as proposed,
was tied to an artificially low cost bid in terms of the number of
software development staff that was planned for the development
program. In addition, the historical data submitted by the
unsuccessful bidder was inconsistent, with no clear definitions for
how software lines of code, effort, or milestones were measured.
The source selection team requested several clarifications from the
bidder, but did not receive enough information to substantiate the
data.

Software Productivity
Historical by Bidder

0

20

40

60

80

100

120

140

160

180

200

Successful
Bidder

Unsuccessful
Bidder

S
L

O
C

 p
er

 S
ta

ff
 M

o
n

th

Historical - 1
Historical - 2
Historical - 3
Proposal

PMO-551: DDG 51 SCWE Data as of 31 Mar 96

Figure 2-2. Historical Software Productivity by Bidder

One concern with the successful bidder’s proposal was a
somewhat risky 60 month software development schedule. The
source selection team, however, felt that the software process, as
proposed, was capable enough to mitigate this risk.

When assessed with respect to the results of the cost and technical
proposal evaluations, the software measurement results supported
award to the higher priced, but more credible bidder. The
successful bidder’s software data was clearly representative of a
development organization that had an established software
measurement program embedded into a mature software
development process. This bidder’s measurement process could
best address the software issues and risks associated with the
DDG 51 SCWE program.

Part 5 - Software Measurement Case Studies

Page 312

In May 1996, Captain McLain announced that CDX Systems, Inc.
was awarded the development contract for the DDG 51 Surface
Ship Concurrent Weapons Engagement Upgrade Program.

2.2.4 Negotiations

During contract negotiations, PMO-551 finalized the software
development and measurement plans with the Project Manager
from CDX Systems. There were several key objectives:

• Re-affirm the software development start date of 1 July
1996.

• Define the software development schedule, effort, and
sizing plans.

• Define clearly which software measures would be applied,
how CDX Systems would define each software measure,
and how software measurement data would be transferred
between CDX Systems and the program office.

• Ensure the subcontractors were consistent in their use of
measurement when reporting to the prime contractor.

The discussions with CDX Systems were extremely important.
The developer was able to make sure that the program office
software team had a clear understanding of the software data they
would be receiving. They would understand what the data
represented, how it was measured, and most important, how it
related to the CDX Systems software development process.

Captain McLain asked her staff to evaluate the software plans for
feasibility and consistency. Gary Wilson graphed a set of
indicators based on the current CDX Systems planning data.
These indicators are shown in Figure 2-3, Figure 2-4, and Figure 2-
5.

Part 5 - Software Measurement Case Studies

Page 313

Effort Allocation
Planned

0

50

100

150

200

250

300

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01

Date

S
ta

ff
 M

o
n

th
s

SRR
Start of

Bld 1 I&T

PMO-551: DDG 51 SCWE Data as of 31 May 96

Start of Bld 2
S/W Design

Start of
Bld 2 I&T TRR

Start of Bld 1
S/W Design

Figure 2-3. Planned Software Effort Allocation

The proposed changes to the existing system resulted in a large
increase in the total size of the software. Almost 700K lines of
existing software were retained from the baseline system. Even
with this amount of software reuse, close to one million new lines
of code would have to be written. With the addition of the COTS
software components, the total estimated size of the new system
was over 3 million logical lines of code. The software effort plan
showed a traditional staffing profile and was consistent with the
overall development activities as scheduled. Overall, software
planning data represented a well defined software development
approach.

Part 5 - Software Measurement Case Studies

Page 314

19981996 1997

Activity

2/1

7/1 1/1

5/1
11/1

1/1

5/1

Master Software Development Schedule

1/3

10/1
2/1

4/1 4/1
1/1

9/1
9/1

1/2

3/1

9/1

3/1

6/1

7/1

2000 20011999

Requirements Analysis and Design
 Software Requirements Analysis
 Software Requirements Review
 Preliminary Design
 Preliminary Design Review (PDR)

Build 1
 Detailed Design
 Critical Design Review (CDR-1)
 Implementation and Unit Testing
 Integration and Test (I&T)

Build 2
 Detailed Design
 Critical Design Review (CDR-2)
 Implementation and Unit Testing
 Integration and Test (I&T)

System Test
 Test Readiness Review (TRR)
 Software Qualification Testing

5/1 2/1

PMO-551: DDG 51 SCWE Data as of 31 May 96

DDG 51 Weapons System

Figure 2-4. Master Software Development Schedule

Software Size
Estimated Logical Source Lines of Code

Build 1 New Modified Existing Deleted COTS Delivered
SLOC

System Control 20,000 0 305,000 45,000 325,000 605,000

Surface Control 0 0 175,000 0 0 175,000

Target Tracking 5,000 3,000 125,000 0 0 133,000

External Communications 0 0 0 0 0 0

Threat Evaluation 70,000 0 45,000 45,000 0 70,000

Target Engagement 190,000 0 95,000 95,000 0 190,000

Workstation Control 250,000 0 0 0 1,225,000 1,475,000

Build 1 - Total 535,000 3,000 745,000 185,000 1,550,000 2,648,000

Build 2 New Modified Existing Deleted COTS
Delivered

SLOC
System Control 0 0 0 0 0 0

Surface Control 0 0 0 0 0 0

Target Tracking 0 0 0 0 0 0

External Communications 30,000 0 110,000 0 0 140,000

Threat Evaluation 215,000 0 135,000 135,000 0 215,000

Target Engagement 210,000 0 125,000 125,000 0 210,000

Workstation Control 0 0 0 0 0 0

Build 2 - Total 455,000 0 370,000 260,000 0 565,000

Total 990,000 3,000 1,115,000 445,000 1,550,000 3,213,000

PMO-551: DDG 51 SCWE Data as of 31 May 96

Figure 2-5. Software Size Estimate

Part 5 - Software Measurement Case Studies

Page 315

CHAPTER 3 - SOFTWARE DEVELOPMENT

After the DDG 51 SCWE contract was awarded, Captain McLain
began the complex task of managing the software development
process. Software measurement activities shifted from evaluating
the software plans to tracking performance against those plans.
With her own Navy program organization and CDX Systems,
Captain McLain believed she had a capable software development
team—one that could effectively identify and resolve the expected
software development issues and make the program a success.

This chapter explains how software measurement helps identify
and objectively analyze the software issues and shows how the
Program Manager uses the resulting information to make informed
program decisions. For the DDG 51 SCWE program, software
measurement has become an integral part of the Program
Management process and provides PMO-551 with an effective
tool for communicating with the developer.

3.1 Tracking Development Performance

3.1.1 Software Measurement Overview

DDG 51 SCWE software development officially started with the
kickoff meeting between CDX Systems and PMO-551 on 1 July
1996. At the kickoff meeting, Captain McLain explained it was
important that her software engineering staff communicate
effectively with the developers at CDX Systems. She also stated
her expectation that they take an integrated team approach to
resolving any technical and management issues. Captain McLain
addressed the importance of an effective software measurement
process and emphasized she would use the software data to help
manage the program and to identify problems as early as possible.

CDX Systems presented a overview of their DDG 51 SCWE
software development process and explained how they were going
to use software measurement to manage the progress and quality of
the software. The lead CDX software engineer on the program

Part 5 - Software Measurement Case Studies

Page 316

provided a description of the key characteristics of their
measurement program:

• The overall measurement program was applied across all
software development activities at the CSCI level. Low
level software data was collected monthly and entered into
their software project management database. For some
measures (e.g., lines of code), data was collected down to
the level of individual units. Per the development contract,
PMO-551 would have direct electronic access to this data.

• For the project, the process for estimating and measuring
each software parameter was defined and was consistent
with the CDX approach used for past programs. In
addition, CDX reported that all of the software
development subcontractors agreed to use the same
measurement definitions.

• CDX Systems reviewed the DDG 51 SCWE software WBS
and showed how the overall measurement structure was
aligned with the defined software activities and products.
They also reviewed their MIL-STD-498 implementation.

• CDX Systems stressed that the measurement program
began with the accurate definition and tracking of both the
stated and derived software requirements. They showed
how they were going to measure the total number of
requirements and how they were going to track the
allocation of the requirements to the software architecture.

• CDX completed the discussion by reviewing the overall set
of measures they intended to use. The measures
themselves were relatively basic, but were implemented
within a well defined process at a meaningful level of detail.

3.1.2 Software Issue Identification and Analysis

During the first year, the project proceeded relatively smoothly.
The software measurement process was in place and Captain
McLain received a monthly issue evaluation from Gary Wilson.
The software measurement indicators showed some variance in the
monthly actuals relative to the plans, but there were no major
deviations. The Preliminary Software Design Review, which

Part 5 - Software Measurement Case Studies

Page 317

addressed the CSCI architectural design, was completed on 15 June
1997, six weeks behind schedule. Considering the DDG 51 SCWE
was a six-year development program, this was only a small
schedule slip and did not cause much concern.

In June of 1997, the Navy decided that the DDG 51 SCWE
functional baseline had to be modified to incorporate a new variant
of the surface-launched Tomahawk cruise missile. The functions
required to implement this new missile were added to the Build 1
software requirements. Since the new missile was added at the
beginning of CSCI detailed design, both PMO-551 and CDX
Systems believed that there would not be any major schedule
impact from the modification.

During the next two months, a team of software engineers from
CDX Systems worked with PMO-551 to analyze and document
the additional requirements and to prepare the technical inputs for
the Engineering Change Proposal (ECP). The new Tomahawk
variant added approximately 550 additional requirements and
62,000 Source Lines of Code (SLOC) to the planning baselines.
The resultant changes were allocated to 450 new software units.
The majority of these requirements were applicable to the Target
Engagement function. The Workstation Control and System
Control functions also had minor revisions due to the new missile.
These new requirements increased the risk associated with the
Target Engagement function, which had already been identified as
high risk by both PMO-551 and CDX Systems.

In November of 1997, Gary showed Captain McLain a Build 1
software development progress indicator based on the number of
software units completing detailed design (Figure 3-1). The first
thing he pointed out was the lag in development progress. The
number of units completing detailed design was significantly
behind plan. CDX Systems had developed a revised plan that took
into account the additional software units which were added
because of the new missile functionality. The new plan called for a
much higher unit design completion rate than originally projected
or had been achieved to date.

Gary had discussed this indicator with CDX Systems. They
believed they could meet the higher unit completion rate projected
in their revised plan. They based this assumption on the 80 new
people they added to the staff over the past few months. CDX

Part 5 - Software Measurement Case Studies

Page 318

Systems indicated they now had sufficient resources available to
complete the software development within the projected schedule.

Design Progress
 Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Mar 97 Jun 97 Sep 97 Dec 97 Mar 98
Date

N
u

m
b

er
 o

f
U

n
it

s
C

o
m

p
le

ti
n

g
 D

es
ig

n
Plan 1
Plan 2
Actual

PMO-551: DDG 51 SCWE Data as of 30 Nov 97

SDR-P
Start of

Build 1 I&T

Figure 3-1. Unit Design Progress

In April of 1998, the developer experienced serious and unexpected
problems trying to integrate the COTS products into the DDG 51
SCWE software baseline. Specifically, CDX Systems ran into the
following difficulties:

• The task of integrating the COTS operating system was
considerably more complicated than had been originally
anticipated. Performance problems required the design and
implementation of a functional software “shell” between
the applications software and the COTS operating system.
This meant that new requirements and code had to be added
to the Workstation Control function.

• Performance problems were discovered while integrating the
COTS relational databases in both the workstation and the
AN/UYK-43. The critical ship-to-ship data items were not
being processed quickly enough. The only solution was to
revert back to flat file processing for the critical portions of
this data.

With this new set of problems, it was clear that the schedule risk
was increasing. In fact, the Build 1 Software Design Review

Part 5 - Software Measurement Case Studies

Page 319

covering CSCI detailed design was delayed for almost three
months.

Captain McLain continued to review the summary level indicators
on a monthly basis. In August 1998, she decided she wanted to
see some indicators that could localize the problem areas to
specific software functions. She directed Gary to take a close look
at the current set of indicators to assess project status.

First, Gary constructed a graph, shown in Figure 3-2, showing the
growth in requirements over the past two years. The first point,
July 1996, represents the number of stated requirements that were
defined in the contract proposal. Between the beginning of the
contract and June 1997, the number of requirements increased.
The majority of this growth occurred during software requirements
analysis, as the CDX system and software engineers achieved a
better understanding of the system functionality and developed the
derived software requirements. The number of requirements
increased again between June and August 1997 due to the addition
of the new Tomahawk missile functionality. Between August
1997 and August 1998, the number of requirements again increased
with the addition of requirements resulting from the problems
experienced while integrating the COTS software.

Requirements Stability
Build 1

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Jul 96 Oct 96 Jan 97 Apr 97 Jul 97 Oct 97 Jan 98 Apr 98 Jul 98

Date

N
u

m
b

er
 o

f
R

eq
u

ir
em

en
ts

Growth due to
Derived Requirements

Growth due to Problems
Integrating COTS Software

Growth due to Addition of
New Weapon Capability

Stated
Requirements

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

SRR
Start of

Build 1 I&T

Figure 3-2. Requirements Stability

While it was obvious that the system as a whole experienced
significant requirements growth, Gary also looked at the

Part 5 - Software Measurement Case Studies

Page 320

requirements growth for each of the major software functions in
the system as shown in Figure 3-3. From this breakdown, it
became clear that a large portion of the requirements growth was in
the workstation functions. Most of the requirements growth
related to the new missile occurred in the Target Engagement
function. The growth related to the COTS implementation
problems increased the number of requirements in the Workstation
Control and System Control functions.

Requirements Stability
By Function

Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

System
Control

Surface
Control

Target
Tracking

External
Comm

Threat
Evaluation

Target
Engagement

Workstation
Control

Function

N
u

m
b

er
 o

f
R

eq
u

ir
em

en
ts

As of 7/96
As of 6/97
As of 8/97
As of 8/98

AN/UYK-43
Software

Workstation
Software

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Not in
Build 1

Not in
Build 1

Figure 3-3. Requirements Stability by Software Function

Captain McLain also wanted more information about the growth of
requirements and the impact of that growth on product size. From
the low level data in the PMO-551 database, Gary constructed a
software size estimate by software origin indicator as shown in
Figure 3-4. This indicator showed that the requirements changes
had not only increased the projected size of the software, but also
had impacted how much of the software had to be newly
developed. The latest plan indicated that more effort and schedule
would be required due to an overall decrease in the estimated
amount of non-developed code.

Captain McLain was also concerned about whether CDX’s
software development staffing levels were tracking to plan and if
the amount of effort being applied to the project was adequate.
The next graph Gary showed Captain McLain was the monthly
effort data presented in Figure 3-5.

Part 5 - Software Measurement Case Studies

Page 321

Software Origin
Developed Versus Non-Developed Code

Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Plan 1 Plan 2 Plan 3 Plan 4

S
o

u
rc

e
L

in
es

 o
f

C
o

d
e

(I
n

 T
h

o
u

sa
n

d
s)

Non-Developed
(COTS, Reuse)
Developed
(New, Modified)

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Figure 3-4. Software Size Estimates by Software Origin

This graph showed that although the development was initially
understaffed, CDX Systems added additional people to make up
for the early deficit. In a subsequent discussion with CDX
Systems, Captain McLain was assured there were enough
resources to complete the software development.

Effort Allocation

0

50

100

150

200

250

300

Jul 96 Jan 97 Jul 97 Jan 98 Jul 98 Jan 99 Jul 99 Jan 00 Jul 00 Jan 01 Jul 01

Date

S
ta

ff
 M

o
n

th
s

Plan
Actual

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

SRR
Start of Bld 1
S/W Design

Start of
Bld 1 I&T

Start of Bld 2
S/W Design

Start of
Bld 2 I&T TRR

Figure 3-5. Software Effort Allocation

Gary then showed Captain McLain an earlier indicator of software
development progress based on the number of units that had
completed detailed design as shown in Figure 3-6. From this

Part 5 - Software Measurement Case Studies

Page 322

indicator, it appeared the rate of units completing detailed design
had increased significantly after the initial lag noticed in November
of 1997. The data showed that all of the units had completed the
detailed design milestone within one month of the revised plan.

Design Progress
Build 1

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Mar 97 May 97 Jul 97 Sep 97 Nov 97 Jan 98 Mar 98 May 98

Date

N
u

m
b

er
 o

f
U

n
it

s
C

o
m

p
le

ti
n

g
 D

es
ig

n

Plan 1
Plan 2
Actual

PMO-551: DDG 51 SCWE Data as of 31 May 98

SDR-P
Start of

Build 1 I&T

Process Controls
Removed

Figure 3-6. Unit Design Progress

While the progress indicator gave Captain McLain some reason for
optimism, the problem report data told a different story. Gary
showed Captain McLain a summary of the cumulative number of
total and closed problem reports which had been collected during
integration and test. These are shown in Figure 3-7.

Captain McLain noted that the problem report discovery rate
increased rapidly during integration and test. She was disturbed by
the fact that problem report discovery appeared to be occurring at
a much higher rate than problem report closure. She then asked
Gary to show her the problem report data for the individual
functions.

Gary calculated defect density by dividing the number of unique
valid defects by the new and modified source lines of code for each
function as shown in Figure 3-8. It was clear that, even when
normalized by size, the Target Engagement function was much
more of a problem than any of the other functions. Captain
McLain asked Gary to find out what was going on with this
function.

Part 5 - Software Measurement Case Studies

Page 323

Problem Report Status
Build 1

0

200

400

600

800

1000

1200

Mar 98 May 98 Jul 98 Sep 98 Nov 98 Jan 99 Mar 99 May 99

Date

N
u

m
b

er
 o

f
P

ro
b

le
m

 R
ep

o
rt

s

Discovered
Closed

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

Start of
Build 1 I&T

End of
Build 1 I&T

(Plan)

Figure 3-7. Problem Report Status

Defect Density
Build 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

System
Control

Surface
Control

Target
Tracking

External
Comm

Threat
Evaluation

Target
Engagement

Workstation
Control

Function

D
ef

ec
ts

 p
er

 N
ew

/M
o

d
if

ie
d

 K
S

L
O

C

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

N/A

AN/UYK-43
Software

Workstation
Software

N/A

Figure 3-8. Defect Density – Build I

Gary visited CDX Systems and met with the software engineering
manager to discuss the workstation CSCI problems. He discovered
that as of January 1998, unit design and code inspections had been
discontinued in an effort to complete the development activities as
quickly as possible. The delays in software development progress
had begun to impact the software testing process. Successful
completion of the unit design and code inspections had been the
primary exit criteria for measuring unit development progress.
With this requirement relaxed, the software developers were not

Part 5 - Software Measurement Case Studies

Page 324

required to adhere to a key process activity which ensured that
only complete, high quality units were delivered for integration. In
effect, the quality of the software became secondary to meeting the
schedule and the measurement indicators had helped to identify the
problem.

Most of the software units impacted by this process change
belonged to the Target Engagement function. This explained the
sudden increase in apparent software development progress based
on the number of units completing detailed design. It also
explained the large number of problem reports being discovered in
integration and test. Defects that should have been found during
those inspections were not being discovered until later. In his
discussions with CDX Systems personnel, Gary also found out
that the majority of the recently added personnel were working on
problem corrections and rework. It was clear that, by removing the
process controls, CDX had only made the situation worse.

By this time, Captain McLain had serious doubts about the
likelihood of completing Build 1 on schedule. In examining the
schedule revisions as shown in Figure 3-9, she noted that CDX
Systems made a series of periodic minor revisions to the DDG 51
SCWE detailed milestone schedule. No changes to any
intermediate milestone were made until it was obvious that the
completion date for that milestone would not be met. Even when
revisions were required, CDX Systems made only small
incremental changes, rather than doing a comprehensive analysis to
determine when the activities could realistically be completed.
While completion estimates for the detailed milestones had
slipped, the completion of integration and testing for Build 1 had
not been adjusted. The result was an integration and test schedule
that was becoming less and less feasible.

Captain McLain began to realize that she might have to reassess
the current DDG 51 SCWE software development plan. Her
suspicions were confirmed when she looked at the achieved
productivity to date for Build 1. It did not appear that CDX
Systems would be able to produce the planned amount of code for
Build 1 within the current schedule. After reviewing the analysis
results with the CDX Systems Program Manager, Captain McLain
decided to replan the software development effort.

Part 5 - Software Measurement Case Studies

Page 325

Revised Software Development Schedule
Build 1 Activities

1996 1997 1998 1999

Activity

Requirements Analysis
Plan 1
Plan 2
Actual

Detailed Design
Plan 1
Plan 2
Plan 3
Actual

Implementation and Un it
 Testing

Plan 1
Plan 2
Plan 3
Actual

Integration and Test

Plan 1
Plan 2
Actual

Preliminary Design

Plan 1
Plan 2
Plan 3

7/1 1/1
2/1
2/5

7/1
7/1

7/1

2/1

11/1 5/1
12/1 5/15
12/1 7/15

5/1
5/15

7/15

1/1
2/15

4/1

4/1
5/8

7/15

2/15
3/31

4/26

10/15
10/1

1/13

4/1

4/1
4/1

PMO-551: DDG 51 SCWE Data as of 31 Aug 98

4/26 1/20

DDG 51 Weapons System

Figure 3-9. Revised Software Development Schedule

3.2 Revising The Development Plan

In October of 1998, Captain McLain met with the PMO-551 staff
and with managers from CDX Systems to replan the remainder of
the DDG 51 SCWE project. Two options were considered:

• Moving software functionality from Build 1 to Build 2.

• Adding another build, Build 3, and balancing software
functionality between the builds. Under this option, Build
1 and Build 2 were revised so that each would contain an
equal amount of code, while a smaller amount of code was
integrated into Build 3. Most of the code that was shifted
to a later build was from the Target Engagement function.
This was the highest risk function and had the most
problems with respect to development progress and
quality. The Threat Evaluation and Workstation Control
functions also had a small amount of code shifted between
the builds.

Part 5 - Software Measurement Case Studies

Page 326

Captain McLain asked Gary to evaluate the feasibility of each of
these two options as shown in Figure 3-10.

Software Productivity
Replan Analysis

0

20

40

60

80

100

120

140

160

180

Actuals
to Date

Original
Plan

Replan
Option 1

(2 Builds)

Replan
Option 2

(Add Build 3)

S
L

O
C

 p
er

 S
ta

ff
 M

o
n

th

Build 1
Build 2
Build 3

PMO-551: DDG 51 SCWE Data as of 31 Oct 98

Figure 3-10. Replanned Software Productivity by Build

The first replan was rejected because of the high productivity
requirement for Build 2. This option required the productivity of
Build 2 to be higher than what had been achieved to date on Build
1. This requirement was assessed to be unrealistic. Implementing
this option would most likely have resulted in a second replan later
in the development cycle.

The second option was selected because of several favorable
elements:

• The required productivity for each remaining build was
based on CDX Systems’ achieved software productivity to
date on DDG 51 SCWE.

• This option supported the original delivery schedule of 1
July 2001, although with reduced functionality. An
additional delivery was added for September 2002, 14
months after the original delivery. This additional delivery
would include all of the required functionality.

• This option was based on the current staffing resources
available to the DDG 51 SCWE program. No additional
personnel would be required for this approach. It was

Part 5 - Software Measurement Case Studies

Page 327

believed that adding more people at this point in the
development would only delay the delivery further.

• Although the schedule was extended by 14 months and
additional funding had to be identified, the revised plan was
realistic and contained no major risks.

When PMO-551 presented the replan to the Navy, the
measurement analysis results helped to clarify the situation and
showed that PMO-551 had an objective understanding of the
software development constraints and issues.

As part of the replan, CDX Systems assured the program office
that all process controls would be reinstated, including the unit
design and code inspections.

3.3 Software Delivery

After the replan, Captain McLain and Gary continued to monitor
the DDG 51 SCWE project. Captain McLain believed that two
issues needed to be monitored more closely. First, she wanted to
ensure that the requirements were being verified at a sufficient rate
to meet the delivery schedule. Secondly, Captain McLain wanted
to assess the adequacy of CDX Systems’ integration and testing
process.

To address the requirements issue, an indicator depicting the
number of software requirements that had been successfully
verified during integration and test was developed as shown in
Figure 3-11. Progress was steady, which told the program office
that the planning revisions were effective. CDX Systems was
producing the software in accordance with the revised schedule and
was projected to meet all delivery requirements.

The quality of the software had also improved. The problem
report discovery rate had begun to decrease, and even with the
increased test activity, CDX was finding fewer serious problems as
shown in Figure 3-12.

Part 5 - Software Measurement Case Studies

Page 328

Requirements Successfuly Tested
Total System

0

5,000

10,000

15,000

20,000

25,000

Jul 96 Jan 97 Jul Jan 98 Jul Jan 99 Jul Jan 00 Jul Jan 01 Jul Jan 02
Date

N
u

m
b

er
 o

f
R

eq
u

ir
em

en
ts

Total

Successfully
Tested

PMO-551: DDG 51 SCWE Data as of 31 Jul 02

SRR

Start of
Build 1 I&T TRR

Start of
Build 2 I&T

Start of
Build 3 I&T

Figure 3-11. Software Requirements Successfully Tested

Problem Reports Versus Test Cases Completed
Total System

0

10

20

30

40

50

60

70

80

Jan 98 Jul Jan 99 Jul Jan 00 Jul Jan 01 Jul Jan 02

Date

N
u

m
b

er
 o

f
T

es
t

C
as

es

0

50

100

150

200

250

300

N
u

m
b

e
r

o
f

P
ro

b
le

m

R
ep

o
rt

s
Test Cases
Attempted

Problem Reports
Discovered per Period

PMO-551: DDG 51 SCWE Data as of 31 May 02

Figure 3-12. Software Problem Reports and Test Cases

Completed

3.4 Epilogue

Builds 1 and 2 were delivered on schedule. Figure 3-13 shows the
actual productivities achieved for those builds along with the
productivity observed for Build 3 as of March 2002. Actual
productivity increased across the three builds, contributing to the
on-time delivery for each build.

Part 5 - Software Measurement Case Studies

Page 329

Software Productivity
Performance Summary

0

20

40

60

80

100

120

140

160

180

Actuals
to Date

Original
Plan

Replan

S
L

O
C

 p
er

 S
ta

ff
 M

o
n

th

Build 1
Build 2
Build 3

PMO-551: DDG 51 SCWE Data as of 31 Mar 02

Figure 3-13. Software Productivity Performance Summary

In September of 2002, the PMO-551 / CDX Systems, Inc. team
deployed the DDG 51 Surface Ship Concurrent Weapons
Engagement Upgrade system on the USS John Paul Jones, DDG
53. Although the issues related to the software development were
significant, use of software measurement had helped the Program
Manager to make objective and informed decisions which led to the
program’s ultimate success.

Part 5 - Software Measurement Case Studies

Page 330

Part 5 - Software Measurement Case Studies

Page 331

MAPS

AUTOMATED

INFORMATION SYSTEM

CASE STUDY

PART 5B

Part 5 - Software Measurement Case Studies

Page 332

Part 5 - Software Measurement Case Studies

Page 333

AUTOMATED INFORMATION SYSTEM

CASE STUDY

The Automated Information System case study is based on the
development of a military personnel information system for the U.S.
Air Force. It addresses the use of measurement on a program
which has been under development for some time. The program
has recently failed a major acquisition milestone review, and
measurement is seen as a way to gain an increased level of control
over the software development effort. The system is being
developed by an organic Air Force activity working for a Program
Manager within the same command. The development addresses
current DoD initiatives to promote open systems, AIS
interoperability, and the use of commercial-off-the-shelf (COTS)
software packages. The technical approach includes the use of
third and fourth generation languages and conversion of existing
data structures. The critical issues are largely driven by external
development dependencies. They include the need to meet
aggressive development and deployment schedules, and the
requirement that the overall readiness of the software for
deployment be objectively determined.

The Automated Information System case study is organized into
four chapters:

• Chapter 1, Program Overview - describes the technical and
management aspects of the software development effort.

• Chapter 2, Getting the Program Under Control - shows
how measurement can be implemented on an existing
program to define a realistic software development plan,
and subsequently how to track the development against that
plan.

• Chapter 3, Evaluating Readiness for Test - illustrates how
measurement helps to objectively determine if the software is
ready for operational test and subsequent deployment.

Part 5 - Software Measurement Case Studies

Page 334

• Chapter 4, Installation and Software Support - shows how
measurement is used after the system is fielded to identify
and correct user problems.

Part 5 - Software Measurement Case Studies

Page 335

CHAPTER 1 - PROGRAM OVERVIEW

This chapter introduces the AIS program scenario and describes the
technical and management aspects of the development effort. The
program scenario is based on the implementation of a measurement
process on an existing program. As such, special consideration is
given to using software measurement data that is readily available
within the established software and program management
processes. The example program is representative of a typical AIS
system under development to meet DoD business process
reengineering objectives.

1.1 Introduction

Over the past several years, Ridgway Air Force Base in Cheyenne,
Wyoming has become established as a primary source for the
development of Air Force business information systems. The
software development group at Ridgway began as an organic
software maintenance organization, and has successfully
transitioned its business base from the support of Air Force
logistics and maintenance systems to software system
reengineering and development. Ridgway has benefited from the
recent DoD emphasis on upgrading existing information systems
into an integrated set of more manageable, cost-effective resources,
and has become an important resource in the Air Force Materiel
Command.

In 1993 the Air Force designated Ridgway Air Force Base as the
lead development organization for the Military Automated
Personnel System (MAPS). MAPS represented the Air Force's
“next generation” military personnel information system. The
program was part of a larger initiative to reengineer the Air Force's
administrative business processes. The reengineering plan included
service-wide initiatives to modernize information system hardware,
software, and communications interfaces at both the base and
headquarters levels. Existing mainframes and terminals were to be
replaced by client/server architectures, and new capabilities were to
be implemented by adapting existing databases and integrating them
with newly developed applications software. MAPS was an
important link in business system modernization effort, since it

Part 5 - Software Measurement Case Studies

Page 336

was the first part of the overall system to be developed and
delivered. MAPS was scheduled to be deployed at a number of Air
Force bases during 1997. Needless to say, MAPS was an
important, and highly visible program.

In 1995, MAPS had been under development for two years.
During that time, the Ridgway software development group tried
to keep current with changing DoD acquisition policy and related
software initiatives. These included the definition of open systems
architectures, the integration of Commercial Off the Shelf (COTS)
software components, the use of advanced third and fourth
generation programming languages, and an overall restructuring of
the development organization using Integrated Product Teams
(IPT).

In November of 1995, a new Program Manager was assigned to the
MAPS program. Air Force Lt. Col. Barry Thompson was a 1978
graduate of the Air Force Academy. His background included four
years with the Air Force's Operational Test & Evaluation Center
and eight years in various Air Force system program offices. His
last assignment was as the Deputy Program Manager for a major
upgrade to an Air Force maintenance data system.

Lt. Col. Thompson’s assignment to the MAPS program did not
come under the best of circumstances. At the time of Lt. Col.
Thompson's arrival, MAPS had just undergone an unsuccessful
review by the DoD's oversight committee for major AIS systems,
the Major Automated Information Systems Review Council
(MAISRC). MAPS had failed to receive a Milestone III approval
for system production and deployment from the MAISRC. This
was largely a result of problems with the software, especially with
respect to the amount of completed functionality and the overall
quality of the existing code. The MAISRC report indicated that
there was little confidence in the cost and schedule estimates
presented by the previous Program Manager in an effort to
substantiate his development plan. There was also a lack of
available data which showed the MAISRC how the Program
Manager was addressing the key MAPS software development
issues.

Lt. Col. Thompson arrived at Ridgway with clear direction to get
the project under control and to establish an objective, credible plan
for the remainder of the development. Lt. Col. Thompson’s first
task was to review the overall technical and management

Part 5 - Software Measurement Case Studies

Page 337

characteristics of the program. He wanted to identify the events
and decisions which had helped to shape the program in order to
identify the key software issues and problems that he needed to
address.

1.2 Air Force Business Process Modernization Initiative

In reviewing the MAPS program history with the Ridgway
development team, Lt. Col. Thompson learned exactly how MAPS
fit into the Air Force Business Process Modernization Initiative.
The MAPS program was intended to reengineer the existing
military personnel information system currently in use throughout
the Air Force. MAPS was the first application to be developed.
Subsequent applications which were to be integrated as part of the
initiative included revised supply, finance and accounting, medical,
payroll, and base-level maintenance functions. The scope of the
initiative was significant. In addition to the upgrade of the base
level business functions, the new applications were required to
support a seamless interface at the headquarters level. As such,
almost all of the key Air Force AIS systems would be impacted in
one way or another.

Lt. Col. Thompson noted several key features of the Air Force
Business Process Modernization Initiative:

• Client/Server Architecture - The existing mainframe
computers and associated video terminals were to be
replaced by client/server architectures at each base and at
each command headquarters.

• Open Systems - The current dependence on vendor-
specific, proprietary operating systems and database
management systems was to be replaced by open system
standards-based architectures. A POSIX compliant
operating system had been selected as part of the software
architecture for MAPS and the other Air Force AIS
systems which were to be reengineered.

• Standard Data Elements - The efficient flow of data from
one DoD information system to another was an important
objective of the initiative. In order to achieve a high level of
interoperability, the revised Air Force systems, including

Part 5 - Software Measurement Case Studies

Page 338

MAPS, had to adhere to a standard set of data definitions.
Control of the data standardization effort was the
responsibility of the Defense Information Systems Agency
(DISA).

• Process Modeling - All of the business processes which fell
under the modernization initiative were required to be
modeled using the ICAM definition language (IDEF). This
modeling effort was important to ensure the efficiency and
interoperability of the various information systems which
would be reengineered as part of the initiative.

• Integrated Databases - An important aspect of the
modernization initiative was the intent to move away from
“stove-piped” business applications, each with its own
database and unique application characteristics. MAPS,
therefore, had to include an integrated database which could
be accessed by the various user applications using a
common data interface. The intent was for any given data
element to be entered only once at the point of origination.
The data would then be made available to other
applications. Development and control of the logical and
physical data models rested with the Air Force, and again
the MAPS design had to comply with higher level
requirements.

• Maximum use of COTS Software Components - The use of
commercial software packages was strongly encouraged.
As part of the modernization initiative, special waivers had
to be obtained to develop unique software applications if a
commercial counterpart which met the defined requirements
was available.

• TAFIM - All of the revised AIS systems which comprised
the modernization initiative, including MAPS, were
required to be designed and implemented in accordance with
the DoD’s Technical Architecture Framework for
Information Management (TAFIM).

Part 5 - Software Measurement Case Studies

Page 339

1.3 Program Description

Lt. Col. Thompson's staff briefed him on the key project events
and the technical and design characteristics of the MAPS program.
MAPS began in the summer of 1994. It had been under
development since that time by the Air Force's Administrative
Systems Development Activity at Ridgway Air Force Base in
Cheyenne, Wyoming. All of the personnel involved in the MAPS
development effort were organic to the Activity. That is, they
were either civilian or military personnel directly employed by the
Air Force. The system and software requirements, and high-level
design were defined during the first year of the MAPS
development. In November of 1995, a briefing was given to the
DoD MAISRC oversight group to support a Milestone III
decision. Serious concerns were voiced by the members of the
group during the briefing. The major issues focused on the
development of the MAPS software and included the following:

• The original software development schedule had been
slipping on an incremental basis. The revised “get well”
schedule presented by the previous Program Manager
appeared to be unrealistic, and could not be substantiated
based upon the development performance to date.

• Similar to the schedule issue, there was no credible basis for
the cost projections presented to the MAISRC. It
appeared to the MAISRC that the cost of the software was
being driven by the number of development personnel
available, not by the size and capability of the software
which had to be developed.

The original MAPS development plan called for two incremental
deliveries of the required capability. When Lt. Col. Thompson
arrived at Ridgway, the software for the first incremental release
was under development.

MAPS began under a tailored MIL-STD-7935A software process
and had begun to transition to MIL-STD-498. The software
development languages included both Ada 95 and C. Development
tools included a state of the art Ada programming support
environment, a screen generator, and a report generator. A COTS
relational database was also an integral part of the design.

Part 5 - Software Measurement Case Studies

Page 340

The MAPS software design included twenty-four functionally
defined Computer Software Configuration Items (CSCIs). Thirteen
of these were allocated to Increment 1 of the development and nine
were allocated to the second increment. The remaining two CSCIs
were data conversion software. For each of these CSCIs, access to
the database was to be implemented using SQL. User access and
interface was designed to be implemented using predefined, “user
friendly” screens. Site operators had additional access using SQL.
The user interface was to be developed using X-Windows and was
designed to be MOTIF compliant.

1.4 System Architecture and Functionality

The primary objective of the MAPS program was to reengineer the
existing Air Force military personnel information system to add
new functionality and to meet the overall integrated system
requirements defined by the Business Process Modernization
Initiative. To fully understand the technical implications of
migrating the existing system to the new design, Lt. Col.
Thompson compared the architecture and functionality of the
current military personnel system with the MAPS requirements
and specifications.

1.4.1 Current Personnel System

Figure 1-1 shows the hardware architecture for the current
personnel system. The current system is, in reality, two separate
AIS systems. One resides at the base level and the other at
command headquarters. Both the base level and the headquarters
implementations were based on the use of mainframe computers
and video terminals. The applications for both system levels were
written in COBOL, and included hierarchical databases. Both
incorporated character-oriented, non-graphical user interfaces.

The operating concept of the current system included periodic data
transactions from the base-level systems to the headquarters level
system. Selected data was uploaded to headquarters every 24
hours. As with many legacy information systems, the current
military personnel implementation had experienced a significant
number of problems with respect to inconsistent edits between the
two systems. Part of this was attributable to the base level system
requiring very loose edits, while the edits for the headquarters

Part 5 - Software Measurement Case Studies

Page 341

system were much more constrained. Consequently, there was a
very large rejection rate for data which was uploaded to the
headquarters system. As such, data was often lost in the
transaction process.

To access data at the base level from the headquarters database,
users had to log in and connect the systems over standard phone
lines. This interface approach had proven to be unreliable and
added to the problems associated with transferring data.

Mainframe-based
Computer System

Base Personnel System (BPS)

HPS

Mainframe-based
Computer System

Headquarters Personnel System (HPS)

Night ly
BPS

Base 1

Base 3

Mainframe-based
Computer System

Base 2

Figure 1-1. Current System Architecture

1.4.2 Military Automated Personnel System (MAPS)

The hardware architecture for MAPS is shown in Figure 1-2.
MAPS is designed as a single integrated personnel system which
incorporates real time data updates and access between the base
and headquarters level system implementations. The headquarters
portion of the system incorporates a mainframe computer which is
used only for data storage. It is part of the headquarters local area
network (LAN). MAPS incorporates a client/server design at both
the base and headquarters levels. Data transfer between the levels
is provided by a designated MILNET interface.

The MAPS client/server architecture integrates Graphical User
Interface (GUI) and display functions on individual PCs, while the
shared application functions reside on a UNIX based server. This
design is applicable at both the base and headquarters levels.

When MAPS is initially fielded at each Air Force base, it will be
required to interface with the existing base-level AIS systems.
These systems will gradually disappear as the Business Process

Part 5 - Software Measurement Case Studies

Page 342

Modernization Initiative progresses. As each existing AIS system
is reengineered and integrated into the overall information system
structure, all base-level applications will transition to a common
enterprise architecture with access to a common database. As with
MAPS, all interaction between applications will then occur through
the shared database.

Base Functions
(Increment 1)

HQ Functions
(Increment 2)

Base 1

Base 3

Headquarters

MILNET

Server Server

Mainframe

Base 2

Figure 1-2. MAPS Architecture

The MAPS design incorporates two functional subsystems. As
expected, these include the Base-level functional subsystem and the
Headquarters functional subsystem. The Base-level subsystem
includes those standard functions that support the military
personnel assigned to individual bases, or to commands, such as
individual aircraft squadrons, which are resident on base. The type
of personnel data which must be available from MAPS at the base
level includes individual information on each officer and enlisted
person assigned at the base. This data includes age, rank, skill
level, training history, individual personnel assignment and
promotion history, and information pertinent to past performance
evaluations. The Base-level MAPS subsystem also contains
personnel information at the command level, such as squadron
mobilization personnel requirements, casualty data, skill profiles,
and personnel replacement priority information.

The MAPS Headquarters subsystem includes military personnel
functions that generally support higher level information
requirements than those needed at the base level. The

Part 5 - Software Measurement Case Studies

Page 343

Headquarters subsystem provides information which supports
overall force mobilization, strategic planning, and analysis of force
manpower requirements. For example, if a senior Air Force
commander wants to deploy an offensive air superiority fighter
such as the F15-E, the Headquarters subsystem can provide
information about the location of each F15-E squadron, and the
availability and training history of the pilots, maintenance
personnel and other support crew. If the Air Force needed to plan
for night time air sorties into mountainous terrain, MAPS would
help identify those squadrons with the appropriate qualifications.

The overall MAPS development plan called for the subsystems to
be developed and delivered in separate increments. The Base-level
functions would comprise Increment 1 and the Headquarters
functions Increment 2. In addition to development of the
respective increment functionality, MAPS required that the data
from the current military personnel information system be
converted and entered into the redesigned MAPS data structures.
As such, the MAPS software development effort included the
development of data conversion software for both the base-level
and the headquarters-level databases.

Part 5 - Software Measurement Case Studies

Page 344

Part 5 - Software Measurement Case Studies

Page 345

CHAPTER 2 - GETTING THE PROGRAM UNDER

CONTROL

After his review of the MAPS development effort, Lt. Col.
Thompson knew that he had a pretty big challenge in front of him.
A detailed review of the software development and management
processes revealed that the program was essentially being run with
milestone schedules and viewgraphs. By mid-1995, the software
development schedule milestones had begun to slip on a regular
basis. Although this was evident in the milestone charts, there was
no action being taken to identify and correct the underlying causes.
An analysis of the problem report data in the configuration
management database showed that many more software problem
reports were being opened than were being closed. All of the
available personnel, as it was explained to him, were assigned to
implementing and testing the code to meet the defined schedule for
Increment 1. There wasn’t really enough time to keep up with the
problem fixes at this stage of the development.

To gain control over the MAPS software, Lt. Col. Thompson had
to address two key issues. The primary issue was software
development Schedule and Progress. Lt. Col. Thompson had to
assess the feasibility of the current schedule, and determine why
performance against the schedule was lagging. Second, he had to
address the overall Product Quality of the developed software
products. Based upon past experience, Lt. Col. Thompson had a
pretty good idea that the software defects represented in the open
problem report backlog had a lot to do with the schedule issue.
Given the increased visibility of the program after the results of the
MAISRC review, Lt. Col. Thompson knew that the system had to
work correctly when it was initially fielded.

2.1 Evaluating the Software Development Plan

When Lt. Col. Thompson reviewed the MAPS development plan,
he tried to identify how the original schedules and staffing
requirements were established. The most detailed schedule
information that was available was in the form of Gantt charts
showing major project milestones and dates. There was little detail

Part 5 - Software Measurement Case Studies

Page 346

with respect to the low level MAPS software development
activities and associated CSCI development tasks. There was a
program Work Breakdown Structure (WBS), but it seemed to
apply only loosely to the current tasks. It appeared that the
overall development schedule was driven by the required delivery
date of the system. Key development activities were scheduled
very optimistically to meet the delivery date.

There was no MAPS staffing plan that allocated personnel
resources to specific software development tasks. A total of 40
software personnel were assigned full time to the MAPS program.
All were available through the planned delivery date for Increment
2. The people were being applied to the program on a level of
effort basis.

By this time it was clear to Lt. Col. Thompson that in order to
manage the critical software issues he needed better and more
detailed information. To help him get the information, he assigned
one of the members of his program staff, Jennifer Cooper, as the
MAPS software measurement analyst. Jennifer was familiar with
implementing a measurement process from her experience on past
programs, but this would be the first time she had to tailor and
apply measurement for an existing program. Jennifer met with Lt.
Col. Thompson to identify and prioritize the major software issues
to be addressed by the measurement effort. From the discussion it
was clear that Lt. Col. Thompson would give the measurement
activities a high priority, and that he intended to use the
measurement results to not only help to get the program back on
track, but also to show senior management how the program was
progressing.

Lt. Col. Thompson and Jennifer Cooper discussed the problems
related to implementing measurement on an existing program,
especially one which was in trouble. Although all of the
measurement data that they wanted would not be immediately
available, they felt that they had enough basic information to start
to address the key issues. They both decided that it would be a
good idea to review the software measurement results on a weekly
basis.

The first question Lt. Col. Thompson had to answer was whether
or not the original MAPS software schedule was realistic, given the
projected level of staffing and the overall performance of the
development team to date.

Part 5 - Software Measurement Case Studies

Page 347

Lt. Col. Thompson asked Jennifer to generate an independent
schedule estimate based upon the size of the software and the
expected software productivity. Although this sounded like a
straightforward request, Jennifer understood that the characteristics
of the program required two separate sets of analysis. There were
two different “types” of software development taking place, each
described by distinct development approaches. These included:

• Development of the application software for both
incremental deliveries. This development effort was based
on the use of advanced development techniques and 4th
generation languages.

• Development of the data conversion software. This
development effort could best be described as a “typical”
support software development effort using a high order
language with minimal process requirements.

When the system is ready for delivery there will actually be a
conversion of the databases and the installation of the system at
each base (Increment 1) and at command headquarters (Increment
2). At this point, however, this was not a major concern.

Jennifer needed to estimate the size of the software to be
developed in order to project the MAPS development schedule.
She decided to use function points as the basic size measure for the
Increment 1 and 2 application software. Function points, although
somewhat harder to estimate and measure than lines of code,
seemed to be a better choice due to the mix of third and fourth-
generation languages (4GL) on this part of the development. Since
the developers were also using a screen generator tool to develop
the user interface screens, the use of lines of code or another
product size measure would have been difficult. Jennifer used two
methods to calculate the required productivity figures. In addition
to a simple functional size to effort ratio, Jennifer used a software
cost model that accepted function points as a data input. The
model also took into account the productivity impact of language
type and reused code.

For the data conversion software, Jennifer decided to use lines of
code to estimate the size of the software. In this case, lines of code
were a better choice because the software was being written
entirely in C.

Part 5 - Software Measurement Case Studies

Page 348

Jennifer spent several weeks with the development team to arrive
at the function point counts and the lines of code estimates. The
function point counts were based upon the methodology defined in
the Function Point Counting Practices Manual, Release 4.0, from
the International Function Point Users Group (IFPUG). The lines
of code estimates were based on the number of logical statements
and excluded comments. Jennifer summarized the sizing results for
Lt. Col. Thompson on the table shown in Figure 2-1.

The information showed the size for each of the CSCIs in
Increments 1 and 2. The table also showed the primary language
and the projected number of low-level design components or units.

The relational database and the Ada to SQL bindings inherent in the
MAPS design were relatively new COTS software products.
Input screens and reports were being generated by 4GLs.

Jennifer’s projections indicated the following:

• The minimum schedule to develop both functional
increments is four months longer than the current
development schedule.

• In order to meet even the extended schedule, the MAPS
development staffing levels would have to be significantly
increased.

Although these analysis results were expected, they indicated that
Lt. Col. Thompson would have to replan the remainder of the
MAPS program to define a more realistic development plan.

2.2 Revising the Software Development Plan

Lt. Col. Thompson used the cost model estimates as the basis for a
revised software development plan. He asked Jennifer to show the
new schedule in the form of a Gantt chart. This revised schedule is
shown in Figure 2-2.

The revised schedule began with the completed activities. The
system requirements and high-level design activities were ongoing
from July 1994 through May 1995.

Part 5 - Software Measurement Case Studies

Page 349

Software Size Estimates

CSCI Abbr. Language Number
of Units

Size
(Function
Points)

Increment 1 - Base Level Functions
1. Personnel Information BPI Ada 58 429
2. Assignments BAS Ada 36 227
3. Availability (TDY, etc.) BAV Ada 12 71
4. Unit Training BUT Ada 20 114
5. Unit Skills Inventory BUS Ada 34 223
6. Security Clearances BSC Ada 15 138
7. Performance Evaluations BPE Ada 41 252
8. Promotions BPR Ada 37 154
9. Unit Mobilization BUM Ada 51 390
10. Unit Reenlistments BUR Ada 17 92
11. Casualty Reporting BCR Ada 23 109
12. Unit Replacement Priorities BUP Ada 27 147
13. Personnel Database (Base level entities) BPD 450

Increment 1 Total 371 2,796

Increment 2 - HQ Functions
1. Organization Master HOM Ada 33 189
2. Force Training HFT Ada 28 141
3. Force Skills HFS Ada 22 123
4. Manpower Requirements HMP Ada 55 375
5. Manpower Authorization HMA Ada 21 115
6. Force Replacement Priorities HFP Ada 30 170
7. Strategic Planning HSP Ada 47 320
8. Force Mobilization HFM Ada 65 392
9. Personnel Database (HQ-level entities) HPD 210

Increment 2 Total 301 2,035

CSCI Abbr. Language Number
of Units

Size
(SLOC)

Data Conversion Programs
1. Base-level BDC C 10 9,500
2. HQ-level HDC C 7 6,000

Conversion Total 17 15,500

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 2-1. Software Size Estimates

Part 5 - Software Measurement Case Studies

Page 350

6/3 8/30

1994 199 5 1996 1 997

Task Name

Military Automated Personnel System

2 /1 5/1
5 /1 8/3 0

1/2 6/3

9 /2 1/2
1/2 4/1

4/1 8/1

8/1 9/1

5/11/2
7/1 1/2

11/15/1

11/1 3 /15

11/1 3/1 5

6/3 8/30

12 /318/30

Total Sys te m
 Softw are Re quirements
 Preliminary De sign

Increment 1
 De tai led Design
 Co ding and Uni t Test
 Softw are Integration and Test
 Syste m In teg ra tio n an d Te st
 Operational Accepta nce Te st
 Da ta Conversio n Softwa re
 Installation

Increment 2
 De tai led Design
 Co ding and Uni t Test
 Softw are Integration and Test
 Syste m In teg ra tio n an d Te st
 Operational Accepta nce Te st
 Da ta Conversio n Softwa re
 Installation

1 /2 10/1

Ridgeway AFB: MAPS Data as of 31 Jan 96

Software Development Schedule

Figure 2-2. Software Development Schedule

Top level requirements and design were completed early in the
development effort for the entire system. With these activities
complete, the revised schedule called for the independent
development of the application software in two parallel increments
as previously defined. The development of each increment
included detailed design, coding, and integration and test.

The detailed design for Increment 1 was completed in November of
1995. Increment 1 was to be fielded by the end of 1996. Detailed
design for Increment 2 was scheduled to begin in early 1996.
Increment 2 was scheduled for delivery in mid 1997. The data
conversion software was scheduled to be developed in parallel with
the respective functional increments. Data conversion and
installation was scheduled to occur over a ten-month period for
Increment 1 and a one-month period for Increment 2.

Lt. Col. Thompson identified two major development activities on
the critical path. These were the Personnel Information CSCI for
the Base-level subsystem and the data conversion software for
both functional increments. The “Personnel Information” CSCI
was critical because it has to be completed before the other CSCIs
could be integrated and tested. The data conversion software was
critical because it was needed to convert the existing databases at
each base and at headquarters. The data conversion software had
to be completed, and had to work properly, before the MAPS

Part 5 - Software Measurement Case Studies

Page 351

increments could be fielded. Lt. Col. Thompson decided to track
these critical-path items closely.

The results of the productivity analysis were also used as the basis
for the revised MAPS staffing plan. The projected effort
allocations for Increment 1 and Increment 2 were graphed as shown
in Figure 2-3. When Lt. Col. Thompson reviewed the incremental
effort allocation, he noted that the peak full time staffing
requirement did not exceed 35 people. Since the schedule called for
the MAPS increments to be developed in parallel, Lt. Col.
Thompson asked Jennifer to generate a system level effort
allocation graph. This graph is depicted in Figure 2-4.

Effort Allocation
Planned

0

5

10

15

20

25

30

35

40

Jul 94 Jan 95 Jul 95 Jan 96 Jul 96 Jan 97 Jul 97
Date

S
ta

ff
 M

o
n

th
s

Requirements and
Preliminary Design

Increment 1 Increment 2

SSR PDR CDR (1) CDR (2)
End of

OAT (1)
End of

OAT (2)

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 2-3. Planned Effort Allocation by Increment

When Lt. Col. Thompson looked at the total system effort profile,
which aggregated the individual effort requirements, several things
became apparent. It was clear that the number of people currently
assigned to the development team was not adequate to meet the
peak staffing requirements which would occur in 1996. Even more
important, the level staffing profile of 40 people did not meet the
needs of the program. The development had been inefficiently
overstaffed through 1995, and was then projected to experience
shortfalls as both Increments 1 and 2 were under development in
1996.

Part 5 - Software Measurement Case Studies

Page 352

Effort Allocation

0

10

20

30

40

50

60

70

Jul 94 Jan 95 Jul 95 Jan 96 Jul 96 Jan 97 Jul 97
Date

S
ta

ff
 M

o
n

th
s

Plan
Actual

SSR PDR CDR (1) CDR (2)
End of

OAT (1)
End of

OAT (2)

Ridgway AFB: MAPS Data as of 31 Dec 95

Figure 2-4. System Level Effort Allocation

Lt. Col. Thompson used the measurement results to brief senior
management about some of the issues impacting the development
of the MAPS software. They agreed with his overall assessment
and agreed to add four months to the current development
schedule. They also agreed to allocate additional funding to
support the 1996 staffing requirements. The plan was to use
qualified Air Force personnel from other projects, and to hire
outside contractors to help with detailed design, coding, and
software integration and test for the MAPS Increment 2
development.

2.3 Tracking Performance Against the Revised Plan

Once the new schedule and staffing plans were in place, Lt. Col.
Thompson’s concerns shifted from evaluating the feasibility of the
plans to assessing performance against the plans. Although the
milestone data continued to be useful in addressing the schedule
and progress issues, more detailed information was required to
track the degree of completion of the key development activities
and products. The need for this information was clear as Lt. Col.
Thompson reviewed the information in the Gantt chart which
represented the revised program schedule (Figure 2-2 refers). The
milestone schedule indicated that detailed design for Increment 1
had been completed and software implementation was well
underway. Based on the schedule, about two-thirds of the time

Part 5 - Software Measurement Case Studies

Page 353

allocated for coding had already elapsed. This didn’t mean
however, that two-thirds of the Increment 1 software had been
coded. To get the information about the degree of activity and
product completion that they needed, Lt. Col. Thompson and
Jennifer Cooper decided to implement several work unit progress
measures.

Work unit progress measures compare the actual completion of
associated work units for software products and activities against a
pre-established plan. If objective completion criteria for each type
of work unit are defined and adhered to, work unit progress
measures provide for a clear determination of software
development progress. For each of the MAPS CSCI's, Jennifer
recommended that the program use counts of the number of design
units implemented as the work unit progress measure. The design
units represented the lowest practical level of measurement, and
the data could easily be collected from the configuration
management system. In this case, an implemented design unit was
defined as passing unit test and being entered into the program
library.

To generate the CSCI work unit progress indicators, Jennifer first
defined the planned rate of unit completion. Without detailed
planning data available, Jennifer generated a straight line completion
plan beginning with CDR and ending with the scheduled
completion of the Increment 1 coding activity. In Jennifer's
previous experience with work unit progress measures, she had
found that the more accurate plans often looked more like an S-
shaped curve than a straight line. This was due to the fact that the
first few units tended to be completed slowly, followed by a faster
rate of completion rate as the activity progressed. Nearing the end
of the software activity, the completion rates tended to slow again
as the more difficult units tended to be completed last. For the
MAPS work unit progress measures, the straight line plan was not
perfect, but was seen as a useful approximation. Everyone
understood that they would not be too alarmed if progress lagged
behind the straight-line plan at the beginning of the development
activity.

Once Jennifer had established the plan, she accessed the
configuration management library to obtain a count of units
completed to date. Specifically, she counted the number of units
that had been entered into the library each week over the course of

Part 5 - Software Measurement Case Studies

Page 354

Increment 1 implementation. The resulting graph is shown in
Figure 2-5. The graph indicated that the CSCI implementation was
progressing in accordance with the revised development plan.

Implementation Progress
Increment 1

0

50

100

150

200

250

300

350

400

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

N
u

m
b

er
 o

f
U

n
it

s
Im

p
le

m
en

te
d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-5. Unit Implementation Progress

Jennifer knew that Lt. Col. Thompson wanted to emphasize
software measures related to the schedule and progress issue. As
such, she decided to track progress for the two items on the critical
path very closely. These were the development of the Personnel
Information CSCI and development of the data conversion
software. The Personnel Information CSCI was scheduled to be
completed by March, 1996. Jennifer constructed a plan to track
work unit progress for the single CSCI the same way she did it for
the aggregate of the CSCIs in Increment 1. Again, the plan was
derived by drawing a straight line between CDR and the scheduled
end of the coding activity. The resulting indicator was graphed and
is depicted in Figure 2-6. When the actual number of design units
were compared to the plan, it became immediately clear that
progress on this critical CSCI was lagging significantly.

Jennifer then decided to try and identify the source of the progress
problem in the Personnel Information CSCI. She defined two new
work unit progress indicators using a somewhat different
perspective. She graphed the development progress data for the
screens and reports separately from the units which performed
internal processing. The screens and reports were being

Part 5 - Software Measurement Case Studies

Page 355

implemented using a 4GL while the internal processing code was
being written in Ada.

Implementation Progress
Increment 1

CSCI - Personnel Information (BPI)

0

20

40

60

80

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

N
u

m
b

er
 o

f
U

n
it

s
Im

p
le

m
en

te
d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-6. BPI Unit Implementation Progress

The results are shown respectively in Figures 2-7 and 2-8. The
measurement data showed that the screen and report development
was on track and indicated that the problem was confined to the
Ada code. When Lt. Col. Thompson investigated, he found out
that the Ada developers were having difficulty with interfacing
their respective CSCIs to the COTS relational database. The
problem was not critical from a technical perspective, but the
workarounds were taking quite a bit of time to implement using
SQL. Lt. Col. Thompson did several things to correct the interface
problems. The first thing that he did was to bring in
representatives from the COTS vendors to work on-site with the
Ada developers to provide real-time support in resolving interface
problems. Secondly, he had the development team conduct a one-
time in-depth inspection of the CSCI’s design and completed code.
This inspection identified some design structures which were
inefficient, but which could be corrected. Col. Thompson also
assigned several of his most experienced Ada programmers to work
on the Personnel Information CSCI in an attempt to correct the
problem.

The other portion of the Increment 1 work that was on the critical
path was the data conversion software for the base-level databases.
In tracking work unit progress for this software, Jennifer decided to

Part 5 - Software Measurement Case Studies

Page 356

count of lines of code that had been entered into the configuration
management library rather than counting the number of completed
units.

Implementation Progress
Increment 1

Screens and Reports

0

5

10

15

20

25

30

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

N
u

m
b

er
 o

f
S

cr
ee

n
s

an
d

 R
ep

o
rt

s
Im

p
le

m
e

n
te

d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-7. Screens and Reports Implemented

Implementation Progress
Increment 1
Ada Code

0

5

10

15

20

25

30

35

40

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

N
u

m
b

er
 o

f
U

n
it

s
Im

p
le

m
en

te
d

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-8. Ada Unit Implementation Progress

She decided that completed lines of code was a better measure of
progress than a count of units because the data conversion software
was divided up into relatively few units and they varied drastically
in size. The units were not equivalent and using them to track

Part 5 - Software Measurement Case Studies

Page 357

progress would have been misleading. Jennifer generated the plan
and actuals for the data conversion software and graphed the
indicator as shown in Figure 2-9.

The results showed that the data conversion software development
progress was reasonably on track.

Implementation Progress
Increment 1

Data Conversion Programs

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 Nov 95 22 Nov 13 Dec 3 Jan 96 24 Jan 14 Feb 6 Mar 27 Mar

Date

S
o

u
rc

e
L

in
es

 o
f

C
o

d
e

Plan
Actual

Ridgway AFB: MAPS Data as of 31 Jan 96

Figure 2-9. Data Conversion Implementation Progress

Part 5 - Software Measurement Case Studies

Page 358

Part 5 - Software Measurement Case Studies

Page 359

CHAPTER 3 - EVALUATING READINESS FOR

TEST

During 1996, the MAPS measurement process was effective in
helping to manage software development effort. Progress against
the revised plan was sufficient enough to allow for the resolution
of the problem reports that were previously backlogged.
Additional personnel which were earlier added to the development
team allowed for the concurrent development of both the Base and
Headquarters level MAPS increments. The progress measures
showed that Increment 1 was nearing the completion of integration
and test, and some system level testing had already been
conducted. The primary issue had shifted from schedule and
progress to the quality of the software. The key question was the
readiness of the software for Operational Test and Evaluation.

3.1 Increment 1

As the initial 1997 delivery dates grew closer, Lt. Col. Thompson
wanted to know if Increment 1 was ready to begin Operational
Test. To help answer this question Jennifer defined a set of related
indicators and graphed them as shown in Figure 3-1.

When Jennifer first joined the MAPS program, the program had
not been collecting effort data at the level of detail required to show
how much effort was being applied to software rework. As an
organic development activity it was difficult to get the staff to
record on their timecards how they actually applied their effort
during the week. Since the emphasis had been on generating new
code to meet the existing schedule, the development team didn’t see
a need for the information anyway. As such, only development
effort was collected as part of the time-reporting system. To get
the data that she needed, Jennifer asked one of the programmers to
modify the problem reporting system to collect the “re-
development” and “retesting” effort data related to software
rework on a problem by problem basis.

Part 5 - Software Measurement Case Studies

Page 360

R
ea

d
in

es
s

fo
r

T
es

t
In

cr
em

en
t

1
F

ig
u

re
 3

-1

a)
b

)

c)
d

)

P
ro

b
le

m
 R

ep
o

rt
 S

ta
tu

s

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00 29

 J
an

25
 M

ar
20

 M
ay

15
 J

ul
9

S
ep

4
N

ov

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t

S
ta

rt
 o

f S
ys

In
t &

 T
es

t
E

nd
 o

f
O

A
T

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
12

 A
u

g
 9

6

P
ro

b
le

m
 R

ep
o

rt
s

D
is

co
ve

re
d

0

50

10
0

15
0

20
0

25
0

30
0

35
0

40
0 29

 J
an

25
 M

ar
20

 M
ay

15
 J

ul
9

S
ep

4
N

ov

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

p
er

 P
er

io
d

S
ta

rt
 o

f

O
A

T
E

nd
 o

f
O

A
T

S
ta

rt
 o

fS
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
12

 A
u

g
 9

6

E
ff

o
rt

 A
llo

ca
ti

o
n

0

102030405060708090

10
0 29

 J
an

25
 M

ar
20

 M
ay

15
 J

ul
9

S
ep

4
N

ov
D

at
e

Staff Months

R
ew

o
rk

D
ev

el
o

p
m

en
t

S
ta

rt
 o

f

O
A

T
S

ta
rt

 o
f S

/W

In
t &

 T
es

t

S
ta

rt
 o

f S
ys

In
t &

 T
es

t

E
nd

 o
f

O
A

T

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
12

 A
u

g
 9

6

T
es

t
P

ro
g

re
ss

0

50
0

10
00

15
00

20
00

25
00

30
00

29
 J

an
25

 M
ar

20
 M

ay
15

 J
ul

9
S

ep
4

N
ov

D
at

e

Number of Test Cases

P
la

n

A
tt

em
p

te
d

P
as

se
d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys

In
t &

 T
es

t

E
nd

 o
f

O
A

T

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
12

 A
u

g
 9

6

Part 5 - Software Measurement Case Studies

Page 361

The change in the process was briefed to the developers, and
Jennifer began to collect the data she needed to compare the
amount of effort spent in rework vs. new development. The data
was graphed and is presented in the lower-right hand chart in
Figure 3-1.

Jennifer combined the rework effort data (Figure 3-1d) with a work
unit progress graph for cumulative problem reports (Figure 3-1a),
and a graph of the number of problem reports being opened on a
weekly basis (Figure 3-1b). She also included a graph of test case
progress (Figure 3-1c). This combination of measurement
indicators suggested that Increment 1 was not yet ready to begin
Operational Test. Lt. Col. Thompson wanted to see the open and
closed problem report trends converging, the number of new
problems being discovered declining, the number of test cases
passed equal to the number planned, and the amount effort being
applied for rework decreasing. The results indicated that the
development staff was increasingly spending time correcting new
Increment 1 problems. This was of concern because they should
have been transitioning to the development of the code for
Increment 2. He met with Jennifer and asked her for more
information in order to identify what needed to be done to improve
the situation. Specifically, he wanted information about the types
of problems that were being reported. He was hoping that there
was a common type of problem that could be dealt with
effectively.

Jennifer spent the better part of a week with several of the testing
personnel reviewing the problem reports and classifying them as
being related to performance, logic, interfaces, or other. She
decided to implement this classification scheme as a permanent
part of the problem reporting system so that the information
would be readily available to support future analysis. The results
of the classification effort were graphed and are depicted in Figure
3-2. By far, the greatest number of the Increment 1 problems were
related to performance deficiencies.

Jennifer further classified the performance problems according to
their source. The results are shown in Figure 3-3. The most
common type of performance problem was due to the incorrect use
of SQL by the developers.

Part 5 - Software Measurement Case Studies

Page 362

Problem Report Classification
Increment 1

70%

13%

7%
10%

0

250

500

750

1000

1250

1500

1750

2000

2250

Performance Logic Interfaces Other

Category

N
u

m
b

er
 o

f
P

ro
b

le
m

 R
ep

o
rt

s

Ridgway AFB: MAPS Data as of 19 Aug 96

Figure 3-2. Increment 1 Problem Report Classification

Problem Report Classification
Performance Category

Increment 1

51%

29%

20%

0

200

400

600

800

1000

1200

SQL Usage DB Design LAN Tuning

Performance Category

N
u

m
b

er
 o

f
P

ro
b

le
m

 R
ep

o
rt

s

Ridgway AFB: MAPS Data as of 19 Aug 96

Figure 3-3. Source of Performance Problems

Jennifer discussed the results of her analysis with Lt. Col.
Thompson and pointed out that the MAPS development
represented the first time that many of the people on the
development team had used a relational database and SQL. The
staff’s previous experience had been with hierarchical databases
and COBOL. This probably should not have been a surprise since
the SQL issue was part of the reason for the previous Personnel
Information CSCI development problems. Lt. Col. Thompson
again decided to bring in some additional expertise to address the

Part 5 - Software Measurement Case Studies

Page 363

SQL issue. Although it wasn’t the best approach this late in the
program, the problems needed to be fixed quickly.

3.2 Increment 2

Increment 2 was scheduled for delivery early in 1997. According
to the development schedule, Increment 2 should have been nearing
the completion of System Test by the end of February, 1997. To
assess the Increment 2 readiness for test status, Jennifer generated
the same combination of graphs using the same indicators as she
had done for Increment 1. The results are shown in Figure 3-4.

This time the situation was much more encouraging. The trends for
open and closed problem reports were converging, the discovery
rate for new problems was declining rapidly, and the amount of
rework was relatively low and stable. In addition, a comparison
between the number of test cases planned, executed, and passed
provided further evidence that testing was being completed in
accordance with the schedule. Jennifer wondered why the number
of newly discovered problems was declining so rapidly. Was the
software that much better? Were discovered problems not being
reported? Had the testing stopped? The test progress results
helped Jennifer answer part of her question. Since testing was
proceeding as scheduled, the lower number of new problem reports
were not a result of reduced testing efforts. Jennifer looked into
the reporting process and found that the identified problems were
still being consistently documented.

Jennifer had continued to track the classes of problems being
reported as shown in Figure 3-5. In contrast to the results for
Increment 1, which had a high proportion of problems related to
performance, the problems for Increment 2 were much more evenly
distributed. In all the measurement data for Increment 2 indicated
that the issues and problems that were experienced in Increment 1
had been successfully addressed. Lt. Col. Thompson’s decisions
with respect to focusing the right resources where they were
needed had helped.

Part 5 - Software Measurement Case Studies

Page 364

R
ea

d
in

es
s

fo
r

T
es

t
In

cr
em

en
t

2

F
ig

u
re

 3
-4

a)
b

)

c)
d

)

P
ro

b
le

m
 R

ep
o

rt
 S

ta
tu

s

0

25
0

50
0

75
0

10
00

12
50

15
00 19

 A
ug

 9
6

14
 O

ct
9

D
ec

3
F

eb
31

 M
ar

26
 M

ay
21

 J
ul

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

C
lo

se
d

S
ta

rt
 o

f

O
A

T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys

In
t &

 T
es

t

E
nd

 o
f

O
A

T

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
17

 F
eb

 9
7

P
ro

b
le

m
 R

ep
o

rt
s

D
is

co
ve

re
d

0

50

10
0

15
0

20
0

25
0

19
 A

ug
 9

6
14

 O
ct

9
D

ec
3

F
eb

31
 M

ar
26

 M
ay

21
 J

ul

D
at

e

Number of Problem Reports

D
is

co
ve

re
d

p
er

 P
er

io
d

S
ta

rt
 o

f

O
A

T

E
nd

 o
f

O
A

T
S

ta
rt

 o
fS

/W

In
t &

 T
es

t

S
ta

rt
 o

f S
ys

In
t &

 T
es

t

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
17

 F
eb

 9
7

E
ff

o
rt

 A
llo

ca
ti

o
n

01020304050607080

19
 A

ug
 9

6
14

 O
ct

9
D

ec
3

F
eb

31
 M

ar
26

 M
ay

21
 J

ul

D
at

e

Staff Months

R
ew

o
rk

D
ev

el
o

p
m

en
t

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t

S
ta

rt
 o

f S
ys

In
t &

 T
es

t
E

nd
 o

f
O

A
T

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
17

 F
eb

 9
7

T
es

t
P

ro
g

re
ss

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00 19

 A
ug

 9
6

14
 O

ct
9

D
ec

3
F

eb
31

 M
ar

26
 M

ay
21

 J
ul

D
at

e

Number of Test Cases

P
la

n
A

tt
em

p
te

d
P

as
se

d

S
ta

rt
 o

f
O

A
T

S
ta

rt
 o

f S
/W

In
t &

 T
es

t
S

ta
rt

 o
f S

ys
In

t &
 T

es
t

E
nd

 o
f

O
A

T

R
id

g
w

ay
 A

F
B

:
M

A
P

S
D

at
a

as
 o

f
17

 F
eb

 9
7

Part 5 - Software Measurement Case Studies

Page 365

Problem Report Classification
Increment 2

29%

34%

23%

14%

0

50

100

150

200

250

300

350

400

450

500

Performance Logic Interfaces Other

Category

N
u

m
b

er
 o

f
P

ro
b

le
m

 R
ep

o
rt

s

Ridgway AFB: MAPS Data as of 17 Feb 97

Figure 3-5. Increment Problem Report Classification

Part 5 - Software Measurement Case Studies

Page 366

Part 5 - Software Measurement Case Studies

Page 367

CHAPTER 4 - INSTALLATION AND SOFTWARE

SUPPORT

With the development of the MAPS software proceeding according
to plan, Lt. Col. Thompson asked Jennifer to extend the
measurement process to track the progress of the fielding of the
Increment 1 Base-level systems at the various bases. This was
scheduled to occur throughout 1997, from January through
October, with delivery of the systems occurring at a relatively
constant rate.

To support the installation process, a total of ten people were
assigned and divided into five teams. Each team was scheduled to
spend two weeks installing MAPS at each of the 100 base-level
sites. The work during the two week installation period included
data conversion, software installation, user training and user
support. After installation the MAPS development team would
provide support via a 24-hour help line. The plan called for each
site to run the existing military personnel system concurrently with
the newly installed MAPS for one week before shutting down the
old system completely. The 100 base-level sites included all Air
Force bases in the United States and overseas, Air Force Reserve
commands, and selected Air National Guard units.

4.1 Increment 1 Installation

To address the installation progress question, Jennifer defined and
graphed a simple work unit progress indicator as depicted in Figure
4-1.

It is clear from the graph that the installations were behind schedule
almost from the start. Jennifer investigated and contacted each of
the installation teams to try and identify the causes for the delays.
She heard a consistent story. The old base-level system that
MAPS was replacing had very loose edit requirements.

Part 5 - Software Measurement Case Studies

Page 368

Installation Progress
Increment 1

0

20

40

60

80

100

120

1 Jan 97 26 Feb 23 Apr 18 Jun 13 Aug 8 Oct 3 Dec 28 Jan 98 25 Mar

Date

N
u

m
b

er
 o

f
B

as
e

In
st

al
la

ti
o

n
s

Plan
Actual

Ridgway AFB: MAPS Data as of 26 Feb 97

Figure 4-1. Increment 1 Installation Progress

It would accept almost any personnel data that was entered. The
result was that the data conversion software, which was written to
the MAPS data specifications, kept rejecting data that was in a
different format from what was expected. This was not an easy
problem to fix because each of the existing base-level databases was
different from the others. Jennifer showed Lt. Col. Thompson a
linear extrapolation of the actual installation data points. This is
shown in Figure 4-2. Based on the actual rate of progress, a total
of fifteen months was required to complete the installations, not
ten months as originally planned. The rate of base installation was
limited by the availability of teams. Based on the projection, Lt.
Col. Thompson decided to extend the installation schedule. He
also asked Jennifer to provide an update to the projection as more
data became available.

4.2 Software Support

By November of 1997, sixty-eight of the 100 base-level sites had
been installed. As part of the measurement process, Jennifer had
been tracking and categorizing problem reports from the field.
Given the previous problems on the program, it was important to
Lt. Col. Thompson to address the user’s concerns.

Part 5 - Software Measurement Case Studies

Page 369

Installation Progress
Increment 1

0

20

40

60

80

100

120

1 Jan 97 26 Feb 23 Apr 18 Jun 13 Aug 8 Oct 3 Dec 28 Jan 98 25 Mar
Date

N
u

m
b

er
 o

f
B

as
e

In
st

al
la

ti
o

n
s

Plan
Actual
Linear (Actual)

Ridgway AFB: MAPS Data as of 26 Feb 97

Figure 4-2. Increment 1 Projected Installation Completion

At the highest level, Jennifer classified the problem reports as being
related to hardware, software, or user error. She analyzed the
software-related problem reports in more detail by focusing on
those that were the result of defects in the design or the code. She
classified the problems as related to performance, logic, interfaces
with other systems, and other. The data coming in from the field
showed that the most frequent type of problem was related to logic
defects. This is shown in Figure 4-3.

Problem Report Classification
User Reported Problems

0

20

40

60

80

100

120

Performance Logic Interfaces Other

Category

N
u

m
b

er
 o

f
P

ro
b

le
m

 R
ep

o
rt

s

Ridgway AFB: MAPS Data as of 19 Nov 97

Figure 4-3. User Reported Problems

Part 5 - Software Measurement Case Studies

Page 370

Jennifer also decided to classify the problems according to their
source by identifying the CSCI which had to be changed in order to
correct the problem. She graphed the ratio of problem reports to
function points for each CSCI. The results were graphed as shown
in Figure 4-4. Jennifer found that the Unit Mobilization (BUM)
CSCI accounted for a disproportionate number of the logic defects.
Clearly there was a problem with this particular CSCI.

Problem Report Density
Increment 1

0.0

0.1

0.2

0.3

0.4

0.5

BPI BAS BAV BUT BUS BSC BPE BPR BUM BUR BCR BUP BPD

CSCI

P
ro

b
le

m
 R

ep
o

rt
s

p
er

 F
u

n
ct

io
n

 P
o

in
t

Ridgway AFB: MAPS Data as of 19 Nov 97

Figure 4-4. Problem Report Density by CSCI

Lt. Col. Thompson asked Jennifer to compare how much effort
was being applied to correcting the problems, with what it would
cost to redesign and redevelop the Unit Mobilization CSCI.
Jennifer generated the graph shown in Figure 4-5, which reflected
the effort that was applied over a two-month period.

Jennifer noted that the Unit Mobilization CSCI required the
equivalent of three full-time staff members to support problem
resolution. She was surprised that there continued to be such a
high rate of newly discovered problems, particularly considering
that the Unit Mobilization CSCI had been in operational use for
almost a year. In talking with the lead programmer responsible for
maintaining the CSCI, she found that as existing problems were
corrected, new ones were being introduced. She decided to
compare the cost of continuing to maintain the CSCI as currently
implemented over a projected ten year period with the cost of
reengineering and maintaining a more reliable version of the CSCI.

Part 5 - Software Measurement Case Studies

Page 371

(The screen and report generation functions did not need to be
changed).

Rework Effort
By CSCI

Increment 1

0

1

2

3

4

5

6

BPI BAS BAV BUT BUS BSC BPE BPR BUM BUR BCR BUP BPD

CSCI

S
ta

ff
 M

o
n

th
s

Ridgway AFB: MAPS Data as of 19 Nov 97

Figure 4-5. Rework Effort by CSCI

Jennifer estimated that the cost of reengineering would be $1.2
million over a 10-month period, with estimated software support
costs of $800k over the remaining nine year period. This $2.0
million was compared to an estimated $3.0 million cost to maintain
the existing CSCI over the same ten year time frame. This
comparison was based on an average $100K cost per person year.

Lt. Col. Thompson decided to redesign the Unit Mobilization
CSCI and planned to release it in the next MAPS update scheduled
for late 1998.

4.3 Epilogue

The MAPS development turned out to be a good example of
implementing a measurement process on an existing program. As
the program progressed, the data required to manage the key issues
was identified, collected, and analyzed. The measurement activity
was focused on the primary software issues. As such, a smaller
number of measures were actually implemented, to address
progress, cost, and quality concerns.

Part 5 - Software Measurement Case Studies

Page 372

The measurement process was adapted to the specific
characteristics of the MAPS program. Measures better suited to
AIS software, such as Function Points, were implemented. New
measures were also defined to support the installation process. By
the end of the MAPS development, the entire program team had
seen how measurement was useful in identifying and resolving both
management and technical problems.

Issues

Measures

Indicators

Analysis

Information

A Guide to Objective Program Insight

Action

PRACTICAL

MEASUREMENT

SOFTWARE

SUPPLEMENTAL

INFORMATION

PART 6

Part 6 - Supplemental Information

Page 374

Part 6 - Supplemental Information

Page 375

SUPPLEMENTAL INFORMATION

This part of Practical Software Measurement: A Guide to
Objective Program Insight provides supplemental information that
will assist you in locating specific topics within the Guide. It
provides additional information about Practical Software
Measurement, including its applicability to DoD policies.

The selections in this part of the Guide include:

• Glossary - This section provides definitions of terms used
throughout the Guide.

• List of Acronyms - Acronyms used throughout the Guide
are defined in this section.

• Bibliography - References related to PSM and software
measurement are provided in this section.

• PSM Relationship to Specific DoD Policies - This section
describes how PSM relates to key DoD measurement
related policies and initiatives.

• PSM Project Information Summary - A brief discussion of
the PSM project is provided in this section.

• Version Description Summary - This section provides the
version history of the PSM Guide and the changes that have
been made in each release of the document.

• Index - This section provides a comprehensive index for the
Guide.

• Comment Form - Comments and suggestions concerning
the PSM Guide may be submitted using this form.

Part 6 - Supplemental Information

Page 376

Part 6 - Supplemental Information

Page 377

TABLE OF CONTENTS

SUPPLEMENTAL INFORMATION... 375

GLOSSARY ... 379

LIST OF ACRONYMS.. 387

BIBLIOGRAPHY... 389

Software Measurement References.. 389

Government Agency Software Measurement References 394

PSM RELATIONSHIP TO SPECIFIC DOD POLICIES ... 397

PROJECT INFORMATION SUMMARY.. 401

Use of Practical Software Measurement.. 402

Project Contact Information.. 402

VERSION DESCRIPTION SUMMARY.. 405

INDEX... 407

COMMENT FORM... 413

Part 6 - Supplemental Information

Page 378

Part 6 - Supplemental Information

Page 379

GLOSSARY

actual measure - See measured value.

aggregation level - The level at which measurement data is
combined for data reporting and analysis purposes. For example,
to analyze the amount of work effort expended over time, work
effort hours might be summed at the CSCI, build, or system levels.
In general, aggregations are related to either the software design
structure or to software activities. Aggregating data requires the
definition of the hierarchical relationships among the measured
items, such as is provided by a WBS.

application - In PSM, this term is used to refer to one of the two
basic measurement activities which comprise the software
measurement process. The application activity involves collecting,
analyzing, and acting upon the measurement data. See also
tailoring.

application software - Software specifically produced for the
functional use of a computer system, as opposed to system
software. Examples include software for navigation, fire control,
payroll, or general ledger.

attribute - A characteristic of a product or process.

Automated Information System (AIS) - A combination of
computer hardware and software, data, or telecommunications, that
performs functions such as collecting, processing, transmitting, and
displaying information. Excluded are computer resources, both
hardware and software, that are physically part of, dedicated to, or
essential in real time to the mission performance of weapon
systems.

Commercial Off The Shelf (COTS) - Commercial items that
require no unique government modifications or maintenance over
the life cycle of the product to meet the needs of the procuring
agency.

common issue - An issue that is basic or common to almost all
programs. PSM defines six common issues. See issue.

Part 6 - Supplemental Information

Page 380

Computer Software Configuration Item (CSCI) - An
aggregation of software that satisfies an end use function and is
designated for separate configuration management by the acquirer.
CSCIs are selected based on tradeoffs among software function,
size, host or target computers, support concept, plans for reuse,
criticality, interface considerations, need to be separately
documented and controlled, and other factors.

Cost/Schedule Control System Criteria (C/SCSC) - A set of
DoD requirements which defines what a contractor’s management
control system must have to qualify for bidding on selected
military program acquisitions. The criteria include: requirements
for integrating cost, schedule and technical performance
measurements using the Work Breakdown Structure (WBS); use of
accrual accounting methods to facilitate the analysis of variances
from planned activities; and having a means to estimate the cost of
the contract at completion.

customer - The organization that procures software products for
itself or another organization. PSM generally considers the
customer to be the DoD Program Manager/program office.

cyclomatic complexity - A measure of the logical complexity of a
program module, based on the number of linearly independent
paths in the module. Used to evaluate code quality and to predict
testing effort.

defect - A product’s nonconformance with its specification; any
error in documentation, requirements, design, code, test plans, or
any other work product. Defects are uncovered during reviews,
testing, and during operation.

developer - An organization that develops software products
(“develop” may include new development, modification, reuse,
reengineering, maintenance, or any other activity that results in
software products). The developer may be a contractor or a
Government agency.

development - The set of activities that result in software
products, including requirements analysis, design, implementation,
and integration and test. This term is used throughout PSM to
describe the second of three phases in the software life cycle.

Part 6 - Supplemental Information

Page 381

expected (or planned) value - Planned or historical measurement
data such as planned milestone dates, target level of reliability, or
required productivity. See also measured value.

failure - 1) Termination of the ability of a functional unit to
perform its required function; 2) an event in which the system or
system component does not perform a required function within
specified limits.

function points - A software size measure. They measure the
amount of information processing functionality contained within a
software product. They are derived early in the software life cycle
from requirements or design specifications, and are applied across
diverse application domains and technology platforms.

implementation - In PSM, this term is used to refer to the
activities required to establish a measurement process within an
organization.

indicator - A measure or combination of measures that provides
insight into a software issue or concept. PSM makes frequent use
of indicators that are comparisons, such as planned versus actual
measures. These are generally presented as graphs or tables.

Indicators are used in two ways:

current indicator - An indicator that describes the current
situation with respect to an issue. For example, staffing level
reflects the variance between the number of personnel currently
assigned to the program and the number of personnel allocated
in the plan. Contrast with leading indicator.

leading indicator - An indicator that predicts the future
situation with respect to an issue. For example, requirement
changes may be a leading indicator for developer effort.
Changes in requirements usually result in a need for increased
effort. Contrast with current indicator.

There are two types of indicators:

limit-based indicator - An indicator whose expected or
planned value remains relatively constant. For example, actual
software size may be collected throughout a program and
compared to a planned limit (initial estimate plus acceptable
variation). Contrast with trend-based indicator.

Part 6 - Supplemental Information

Page 382

trend-based indicator - An indicator whose expected or
planned value changes over time. For example, progress might
be tracked using work units completed. A different goal for the
number of units completed would be set for each week and
compared to actual units completed over time. Contrast with
limit-based indicator.

instrumentation - Instructions inserted into software to monitor
the operation of a system or component or to collect measurement
data.

issue - A risk, constraint, objective or concern, often associated
with resources, progress, quality, or performance. Issues represent
current or potential problem areas that should be monitored.

low level data - Software measurement data collected and reported
at a level of detail which allows for the isolation of problems and
for overall analysis flexibility. This is commonly at the software
activity (requirements, analysis, design, etc.) and the software unit
level as respectively defined by the program WBS and the software
architecture.

masking - When a problem that should show up in one issue area
is disguised by an accommodation made in another issue area. For
example, an increase in applied effort is masked by concurrent
schedule slips so that increased effort does not result in a
detectable increase in staff level. Masking makes it harder for
management to recognize a problem.

measure - The result of counting or otherwise quantifying an
attribute of a process or product. Measures are numerical values
assigned to software attributes according to defined criteria.

measured (or actual) value - Actual, current measurement data
such as hours of effort expended or lines of code produced. See
also expected value.

measurement - The process of assigning numerical values to
software attributes according to defined criteria. This process can
be based on estimation or direct measurement. Estimation results
in planned or expected measures. Direct measurement results in
actual measures.

Part 6 - Supplemental Information

Page 383

measurement analysis - The use of measurement data to identify
problems, assess problem impact, project outcomes, and evaluate
alternatives related to software issues.

feasibility analysis - Analysis conducted to determine
whether plans and targets are realistic or achievable; should be
conducted during the initial planning activity and at all
subsequent replans. Contrast with performance analysis.

performance analysis - Analysis conducted to determine
whether software development is meeting the plans,
assumptions, and targets; should be conducted continuously
once a program has committed to a plan. Contrast with
feasibility analysis.

measurement analyst - The person(s) responsible for tailoring
and applying software measures for a given program or
organization.

measurement category - A set of related measures. Each
common issue defined in PSM has one or more corresponding
measurement categories. Software measures which provide the
same type of information are grouped under each measurement
category. Each category answers different types of software
related questions.

measurement data - A collection of measures.

measurement information - Knowledge derived from the
analysis of measurement data and measurement indicators.

metric - See indicator.

milestone - A scheduled event for which some project member or
manager is held accountable. A milestone is often used to measure
progress.

normalization - Combining or comparing measures from different
activities, different programs, or with different units of production.
For example, to compare the quality of work produced in two
programs, it would be necessary look at defect counts in relation to
the amount or size of the work produced. This often requires the
definition and validation of conversion rules and/or models.

Part 6 - Supplemental Information

Page 384

problem report - A documented description of a defect, unusual
occurrence, observation, or failure that requires investigation and
may involve software modifications.

Program Manager - The government official responsible for
acquiring or supporting a system that meets technical, cost,
schedule, and quality requirements. Acquisition and support
includes both internal and contracted tasks.

program planning - The set of activities involving the assessment
and selection of software developer(s) and the development of
program plans. This term is used throughout PSM to describe the
first of three phases in the software life cycle.

repeatability - The ability of two analysts, performing the same
measurement analysis, to arrive at the same set of conclusions and
recommendations.

rework - Any effort invested in reaccomplishing work already
deemed complete. Rework effort begins once a defect is found and
continues until all of the work required to obtain acceptance of the
rework is complete. Rework can also be measured in terms of size
changes.

rippling - When a problem that arises in one issue area has an
effect on another issue. For example, software size growth may
cause effort overruns. Rippling multiplies the effect of an issue.

risk - A subjective assessment made regarding the likelihood or
probability of not achieving a specific objective by the time
established with the resources provided or requested.

software activity - In PSM, this term is used to refer to the four
key subprocesses of the overall software process; requirements
analysis, design, implementation, and integration and test.
Individual software activities can take place at any point in the
software life cycle in any phase.

software component - A general term used to refer to a software
system or an element, such as unit, CSCI, object, or screen.

Software Engineering Process Group (SEPG) - The group of
specialists who facilitate the definition, maintenance, and
improvement of the software process used by an organization.

Part 6 - Supplemental Information

Page 385

software manager - The person responsible for making the
decisions relating to the software issues. This could be the DoD
Program Manager or the developer’s program or technical manager.

software program - The people, processes, and organizations
responsible for developing or supporting a software product as a
stand-alone item or as part of a larger system.

software support - The set of activities that takes place to ensure
that software installed for operational use continues to perform as
intended and fulfill its intended role in system operations. This
term is used throughout PSM to describe the third of three phases
in the software life cycle. Software development can take place
during the software support phase.

tailoring - In PSM, this term is used to refer to one of the two
basic measurement activities which comprise the software
measurement process. The tailoring activity includes the
identification and prioritization of program issues, selection and
specification of appropriate software measures, and integration of
the measurement requirements into the developer’s software
process. See also application.

traceability - The ability to link conclusions and recommendations
to the software measures using a defined sequence of activities.

weapon system - Items that can be used directly or indirectly by
the armed forces to carry out combat missions.

work breakdown structure (WBS) - A work breakdown structure
for software defines the software-related elements associated with
program activities and products. Many measures are aggregated
and analyzed at various WBS levels.

Part 6 - Supplemental Information

Page 386

Part 6 - Supplemental Information

Page 387

LIST OF ACRONYMS

A&T Acquisition and Technology

AIS Automated Information System

C/SCSC Cost/Schedule Control System Criteria

C/SSR Cost/Schedule Status Reports

C4I Command, Control, Communications, Computer, and
Intelligence

CMM Capability Maturity Model

COCOMO COnstructive COst MOdel

COTS Commercial Off The Shelf

CPR Cost Performance Report

CSCI Computer Software Configuration Item

DAB Defense Acquisition Board

DSMC Defense Systems Management College

DT&E Development, Test, and Evaluation

E&MD Engineering and Manufacturing Development

GAO General Accounting Office

GOTS Government Off The Shelf

IFPUG International Function Point Users Group

IPPD Integrated Product and Process Development

IPT Integrated Product Team

ISSA Inter Service Support Agreement

JGSE Joint Group on Systems Engineering

JLC Joint Logistics Commanders

LAN Local Area Network

MAISAP Major Automated Information System Acquisition
Program

Part 6 - Supplemental Information

Page 388

MAISRC Major Automated Information System Review
Council

MDAP Major Defense Acquisition Program

MIS Management Information System

MOA Memorandum of Agreement

MOU Memorandum of Understanding

NDI Non-Developed Item

OSA Open Systems Architecture

OSD Office of the Secretary of Defense

OT&E Operational Test and Evaluation

OUSD Office of the Under Secretary of Defense

PSM Practical Software Measurement

RFP Request for Proposal

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SISMA Streamlined Integrated Software Metrics Approach

SPC Software Productivity Consortium

STEP Software Test and Evaluation Panel

WBS Work Breakdown Structure

Part 6 - Supplemental Information

Page 389

BIBLIOGRAPHY

This bibliography lists measurement references which augment or
support the guidance included in Practical Software Measurement.
Readers may wish to consult these resources for additional
information. The first section includes published measurement-
related books and reference manuals. Brief annotations are
provided that describe each reference. The second section includes
government agency-specific directives, instructions, reports, and
standards which address software measurement. The books are
generally available through most technical publishers and
bookstores. Government documents are available through the
National Technical Information Service, Springfield, VA 22161.

Software Measurement References

Baumert, John H., and Mark S. McWhinney, September 1992,
Software Measures and the Capability Maturity Model,
CMU/SEI-92-TR-25, ESC-TR-92-025, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

A reference that identifies which software measures can reasonably be
expected at the various levels of SEI software process maturity. It includes
example graphs and advice on how to report specific measures.

Boehm, Barry W., 1981, Software Engineering Economics,
Englewood Cliffs, NJ: Prentice-Hall.

A primary reference in the field of software estimation and measurement.
This book provides detailed information on the COCOMO software
estimation model.

Brooks, Frederick O., Jr., 1975, The Mythical Man Month: Essays
on Software Engineering, Reading, MA: Addison-Wesley
Publishing Company.

A primary reference in the field of software engineering. This book relates
key lessons learned in managing a large software program, and provides
an overall perspective for the DoD Program Manager.

Part 6 - Supplemental Information

Page 390

Carleton, Anita D., Robert E. Park, Wolfhart B. Goethert, William
A. Florac, Elizabeth K. Bailey, and Shari Lawrence Pfleeger,
September 1992, Software Measurement for DoD Systems:
Recommendations for Initial Core Measures, CMU/SEI-92-TR-
19, ESC-TR-92-019, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

This reference provides recommendations and a rationale for the SEI
defined Core Measures. The Core Measures include size, effort, schedule,
and quality (measured in terms of defects and problem reports) and
address issues common to almost all software programs.

DeMarco, Tom, 1982, Controlling Software Projects:
Management, Measurement, and Estimation, New York:
Yourdon Press.

This book provides practical guidance for collecting and analyzing
software measures.

Deming, W. Edwards, 1986, Out of the Crisis, Cambridge, MA:
Massachusetts Institute of Technology Center for Advanced
Engineering Study.

This book describes the quality crisis across a number of industries and
relates effective strategies for dealing with them. It focuses on the use of
Statistical Process Control techniques.

Dumke, Reiner R., 1993, Software Metrics: A Subdivided
Bibliography, Magdeburg, Germany: Technical University “Otto
von Guricke” of Magdeburg.

This bibliography provides a comprehensive guide to both research and
practical publications in software measurement. Entries are grouped by
topic.

Fenton, Norman E., 1991, Software Metrics: A Rigorous
Approach, London: Chapman & Hall.

This book advocates a rigorous approach to software measurement that is
based on fundamental measurement theory. It argues that much of modern
software measurement is flawed because it ignores measurement
fundamentals. This book gives the reader specific tools to overcome these
deficiencies and put a measurement program on solid theoretical ground.
This book is for the reader who desires a more theoretical treatment of
software measurement than is found in PSM.

Part 6 - Supplemental Information

Page 391

Florac, William A., with the Quality Subgroup of the Software
Metrics Definition Working Group and the Software Process
Measurement Project Team, September 1992, Software Quality
Measurement: A Framework for Counting Problems and Defects,
CMU/SEI-92-TR-22, ESC-TR-92-022, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

This reference provides a framework for counting problems and defects in
software and using them to assess quality, which is one of the SEI Core
Measures. It includes checklists that allow the reader to define how
defects are actually defined and counted.

Goethert, Wolfhart B., Elizabeth K. Bailey, Mary B. Busby, with
the Effort and Schedule Subgroup of the Software Metrics
Definition Working Group and the Software Process Measurement
Project Team, September 1992, Software Effort and Schedule
Measurement: A Framework for Counting Staff-Hours and
Reporting Schedule Information, CMU/SEI-92-TR-21, ESC-TR-
92-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

This reference provides frameworks for counting software staff-hours and
schedule, both of which are SEI Core Measures. It includes checklists that
allow the reader to define how staff-hours and schedule data are actually
defined and counted.

Grady, Robert B., and Deborah L. Caswell, 1987, Software
Metrics: Establishing a Company-Wide Program, Englewood
Cliffs, NJ: Prentice-Hall.

This book describes how Hewlett-Packard’s corporate measurement,
program was implemented. It includes information on topics which range
from how to compute specific measures to how to sell a measurement
program to senior management.

Grady, Robert B., 1992, Practical Software Metrics for Project
Management and Process Improvement, Englewood Cliffs, NJ:
Prentice-Hall, Inc.

This book examines more detailed issues with respect to software
measurement, and more specifically relates measurement to software
process improvement. It builds on information from the previous
reference.

Part 6 - Supplemental Information

Page 392

Hetzel, Bill, 1993, Making Software Measurement Work:
Building an Effective Measurement Program, Boston, MA: QED
Publishing Group.

This book addresses how to get measurement implemented in an
organization. It emphasizes fundamentals, explains how to begin, and
includes a list of measurement tools and services available at the time of
publication.

Humphrey, Watts, 1989, Managing the Software Process,
Addison Wesley, New York.

This book describes the software process maturity levels developed by the
Software Engineering Institute at Carnegie Mellon University. It defines
each maturity level (e.g., Ad Hoc, Repeatable, Defined, etc.), and outlines
the criteria for determining each one. This book contains the basis for
SEI’s Capability Maturity Model.

The Institute of Electrical and Electronics Engineers, Inc., 1992,
IEEE Standard for Software Productivity Metrics, IEEE Std 1045-
1992, New York, NY.

This IEEE standard describes a variety of software measures that can be
used to consistently define software productivity. Detailed information is
provided for each of the more than thirty measures it contains.

International Function Points Users Group, 1994, Function Points
Counting Practices Manual, Westerville, OH.

This industry-established standard defines the rules for counting function
points. The document is updated periodically to account for advances in
function point technology.

International Function Points Users Group, 1994, Guidelines to
Software Measurement, Westerville, OH.

This guidebook introduces the basic concepts of software measurement. It
describes how the measurement process fits into other software activities,
and provides guidance on implementing a measurement program. It
reviews product and process measures, discusses indicators, and examines
ways to use measurement results.

Jones, T. Capers, 1991, Applied Software Measurement, McGraw
Hill, New York.

This book describes various methods for measuring the schedule, cost, and
quality of software programs. It discusses the major functional size

Part 6 - Supplemental Information

Page 393

metrics, including DeMarco’s “Bang” metrics, function points, and
feature points, but focuses primarily on the use of function points.
Productivity and quality averages from Jones’ historical data base are
included.

Musa, John D., Anthony Iannino, and Kazuhira Okumoto, 1987,
Software Reliability: Measurement, Prediction, Application,
New York, NY: McGraw-Hill Book Company.

This book discusses the theoretical and practical applications of software
reliability measurement. It defines software reliability, reviews and
compares the various reliability models, and describes how reliability
measurement can be used in systems engineering, program management,
and in the management of the operational phase of the software life cycle.

Park, Robert E., with the Size Subgroup of the Software Metrics
Definition Working Group and the Software Process Measurement
Project Team, September 1992, Software Size Measurement: A
Framework for Counting Source Statements, CMU/SEI-92-TR-
20, ESC-TR-92-020, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA.

This reference provides a framework for counting source lines of code
(SLOC) and using it to assess software size, which is one of the SEI Core
Measures. It includes checklists that allow the reader to define how SLOC
are actually defined and counted.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V.
Weber, 1993, Capability Maturity Model for Software, Version
1.1, CMU/SEI-93-TR-24, ESC-TR-93-177, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA.

This reference describes a software process maturity framework which
forms the basis for assessing the capability of a software organization.
Five maturity levels and the key practices within each level are described.

Putnam, Lawrence H. and Ware Myers, 1992, Measures for
Excellence: Reliable Software on Time, within Budget,
Englewood Cliffs, NJ: Prentice-Hall.

This book focuses primarily on using tools for automated size estimation
and project tracking, and also discusses life cycle models, life cycle
management, and productivity analysis. It includes observations about
patterns of software behavior based on Putnam’s historical data base of
software projects.

Part 6 - Supplemental Information

Page 394

Schultz, Herman P., May 1988, Software Management Metrics,
M88-1, ESD-TR-88-001, The MITRE Corporation, Bedford, MA.

This reference is a relatively early work from a military software
measurement viewpoint. It provides an initial overview of selected
software management indicators.

Software Productivity Consortium, Software Measurement
Guidebook, SPC-91060-CMC, Version 02.01.00, August 1994,
Software Productivity Consortium, Herndon, VA and International
Thompson Computer Press, 1995.

This reference provides detailed information which helps to define and
interpret a software measurement process. It contains detailed guidance
on a number of software measures.

Government Agency Software Measurement References

Department of the Air Force. Acquisition Management:
Software Management Indicators, AFP800-48, Washington, DC.
June 1992.

Department of the Air Force. Software Technology Support
Center. Guidelines for Successful Acquisition and Management
of Software Intensive Systems: Weapon Systems, Command and
Control Systems, Management Information Systems, U.S. Air
Force STSC, Hill AFB, UT. February 1995.

Department of the Army. Communications-Electronics Command,
Research, Development and Engineering Center, Software
Engineering Directorate. Streamlined Integrated Software Metrics
Approach (SISMA) Guidebook: Application of STEP Metrics,
U.S. Army CECOM SED, Ft. Monmouth, NJ. July 1993.

Department of the Army. “Software Test and Evaluation
Guidelines” Test and Evaluation Procedures and Guidelines, DA
Pamphlet 73-7, Washington, DC. January 1996.

Department of the Navy. Naval Aviation Systems Team.
Software Metrics Program Handbook, AVDEP-HDBK-7, U.S.
Navy, Naval Aviation Systems Team, Arlington, VA. November
1995.

Part 6 - Supplemental Information

Page 395

Department of the Navy. Cruise Missile Project and Unmanned
Aerial Vehicles Joint Project. Software Metric Utilization
Guidance, PEO(CU)P 5234/2, June 1994.

Federal Aviation Administration. Software Engineering Specialty
Group. National Airspace System (NAS) Software Management
Indicators Handbook, FAA-SESG-HDBK-93.01, FAA SESG,
Washington, DC. November 1993.

Part 6 - Supplemental Information

Page 396

Part 6 - Supplemental Information

Page 397

PSM RELATIONSHIP TO SPECIFIC DOD POLICIES

Practical Software Measurement: A Guide to Objective Program
Insight was developed to help DoD Program Managers address
key software issues related to planning and implementing a
software intensive program. PSM is based on the measurement
experience of many DoD and Industry organizations, many of
which are responsible for measurement policy and related
programs. The participation of these organizations in the
development of PSM helped to shape the guidance so that it
complements existing DoD measurement policies and initiatives.

The guidance contained in PSM focuses on defining and
implementing a practical measurement process. It explains how to
tailor software measures to address the specific issues of each
program, and how to apply the measures to support informed
software decision making. One of the primary goals in the
development of the PSM guidance was to ensure that it supported
the objectives and intent of current DoD policy. Since the PSM
guidance was developed using current measurement best practices,
it is important that it support the measurement initiatives which
have become accepted within the DoD software engineering
community.

PSM’s relationship to key DoD software measurement related
policies and initiatives is described as follows:

DoD Directive 5000.1, “Defense Acquisition” and DoD
Regulation 5000.2, “Mandatory Procedures for Major Defense
Acquisition Programs (MDAPs) and Major Automated
Information System Acquisition Programs (MAISAPs)”, 1996.

These DoD policies establish the requirement for DoD Program
Managers to provide periodic reports on the cost, schedule and
performance of their systems throughout the life cycle. PSM helps
the Program Manager to implement a process for collecting and
reporting this information for software intensive systems.

Part 6 - Supplemental Information

Page 398

Secretary of Defense Memorandum of 10 May 1995, “Use of
Integrated Product and Process Development and Integrated
Product Teams in DoD Acquisition.”

This memorandum from the Secretary of Defense requires the use
of Integrated Product and Process Development (IPPD) and
Integrated Product Teams (IPTs) throughout the acquisition
process. The IPPD/IPT management approach emphasizes the use
of objective information and associated measures within a
cooperative framework which involves all program participants. It
also stresses open communications within the program team to
identify and resolve problems. Within the IPT structure, PSM
helps the Program Manager to objectively identify and resolve
program issues using objective software information. The overall
characteristics of the PSM measurement process, including
independent analysis, continuous feedback, communications within
the program team, and the integration of measurement requirements
into the developer’s process, directly support the IPPD/IPT
requirements.

OUSD/A&T Memorandum of 23 May 1994, “Development Test
and Evaluation (DT&E) Policy Guidance for Software-Intensive
Systems in Support of Recommendations from the General
Accounting Office (GAO)” and OSD/OT&E Memorandum of 31
May 1994, “Software Maturity Criteria for Dedicated Operational
Test and Evaluation of Software-Intensive Systems.”

These policy memoranda require that every program define and
implement a set of software measures early in the program to help
determine when the system is ready for Operational Test and
Evaluation (OT&E). Commonly referred to by OUSD as
“maturity” measures, those addressed in the policy include fault
profile, cost, schedule, requirements traceability, requirements
stability, deficiency tracking, and breath and depth of testing. The
PSM guidance defines how to implement a measurement process
which will provide the required maturity information. The PSM
measurement selection guidance includes measures which satisfy
the maturity assessment requirements.

Part 6 - Supplemental Information

Page 399

Department of the Army Pamphlet 73-7, “Software Test and
Evaluation Guidelines”, 2 January 1996.

This Army policy memorandum defines a set of software measures
which must be applied to all Army software-intensive systems.
This policy resulted from the recommendations of the Army
Software Test and Evaluation Panel (STEP), which required the
implementation of twelve specific measures. These measures were
not intended to be tailored for each program. The original Army
policy was revised in 1994. Although the twelve measures were
still required, the revised policy allowed the data elements to be
tailored. The revised policy is implemented in the current Army
Metrics System. PSM is complimentary with current Army
measurement policy. The PSM guidance helps Army Program
Managers implement a measurement process to support the use of
the twelve required measures. PSM helps to select additional
measures that the Guide may require, and addresses associated
analysis techniques. The twelve Army measures are included in
those listed in the PSM measurement selection guidance.

Department of the Air Force Software Metrics Implementation
Policy (93M-017) of 17 February 1994.

The Air Force measurement policy addresses the implementation
of a software measurement process to support overall program
management requirements. The policy also identifies five “core
metrics” which are aligned with issues common to all Air Force
programs. The five metrics include size, effort, schedule, quality,
and rework. The policy requires that each program measure all
five, but does not prescribe the actual measures to be used or
associated measurement methodologies. These five measures are
addressed in the PSM guidance. PSM also addresses the definition
and implementation of the software measurement process required
by Air Force policy.

Software Engineering Institute “Software Measurement for DoD
Systems: Recommendations for Initial Core Measures”, 1992.

In 1992 the Software Engineering Institute (SEI) published a series
of documents focused on the definition and use of four core

Part 6 - Supplemental Information

Page 400

software measures. These measures include effort/staff hours,
problems/ defects, size, and schedule. The SEI documents provide
a detailed framework for defining and describing each measure, as
well as implementation and interpretation guidance. The core
measures have been widely adopted within DoD and industry.
The SEI documents can be used in conjunction with the PSM
guidance, especially with respect to integrating the core measures
into the software process. The SEI documents help to explicitly
define how each of the measures will be implemented.

Figure 6-1 provides a summary of how Practical Software
Measurement adds value to the above policies and initiatives.

PSM Guidance
5000.1
5000.2

IPPD
IPT OSD Army

Air
Force SEI

Identify Program Specific
Issues

A A N N N A

Define Measures to be
Collected

P P A N A N

Integrate Measurement into
Software Process

P P P P P P

Put Measures on Contract P P P A P P

Provide Systematic Analysis
Process

P P P A P A

Provide Implementation
Guidance

P P P P P A

Established by specific policy = N
PSM fulfills a requirement established by policy = P
PSM augments policy or guidance = A

Figure 6-1. PSM’s Relationship to DoD Measurement Policies and Initiatives

Part 6 - Supplemental Information

Page 401

PROJECT INFORMATION SUMMARY

The development of Practical Software Measurement: A Guide to
Objective Program Insight was sponsored by the Joint Logistics
Commanders (JLC) Joint Group on Systems Engineering (JGSE).
PSM was developed by a technical working group that includes
representatives from across the DoD and Industry. PSM
represents the consensus of that community on the best practices
for software measurement.

The authors of PSM have benefited from the published research
and practical experience of many people outside of the technical
working group. However, the Guide is a “user’s manual” for
software measurement, not a survey of the research literature.
Consult the bibliography for more background on the theory and
origin of the basic measurement concepts integrated into PSM.

The Guide is the centerpiece of a family of products intended to
help transition software measurement into practice within the
DoD. PSM products currently available, or scheduled for delivery
this year, include the following:

• PSM Management Summary - a short synopsis of the
PSM approach intended to motivate managers to adopt
software measurement.

• PSM Guide (Version 2.1) - the Guide explains the basic
concepts of the software measurement process, offers
detailed implementation guidance, and provides realistic
case studies of software measurement use.

• PSM Insight - a Microsoft Access-based tool for tailoring
and applying software measures for a specific program.
The automated functions follow the PSM defined
measurement process.

• PSM Overview Course - a one-day course that introduces
the PSM principles and approach, and explains how to use
the PSM Guide. A half-day version of the overview course
is also available.

Part 6 - Supplemental Information

Page 402

• PSM Advanced Measurement Course - a three-day
course that explains how to actually implement PSM on a
program, how to teach the PSM Overview Course, and
how to use PSM Insight.

• PSM Orientation - a one-hour overview presentation of
PSM principles and concepts.

In addition to these products, the PSM development team is also
available to assist in applying PSM to actual programs and
projects.

The PSM Technical Working Group (TWG) is developing guidance
that will address the application of software measurement to
process improvement and product engineering. Participation in the
TWG is open to all. We encourage you to join and share your
experience.

Use of Practical Software Measurement

One of the primary purposes of Practical Software Measurement:
A Guide to Objective Program Insight, is to encourage the
widespread implementation of software measurement throughout
the DoD and Industry. The information included in the Guide was
developed by a group of measurement professionals who gave
much of their own time and effort to help meet this objective.

We encourage you to make direct use of the material contained in
Practical Software Measurement. We ask that you acknowledge
the source of the information as:

Practical Software Measurement: A Guide to Objective Program
Insight, Version 2.1, March 27, 1996.

Additional copies of this Guide are available in hard cover and
electronic formats. Reproducible master copies are also available.

Project Contact Information

Practical Software Measurement: A Guide to Objective Program
Insight, is intended for those DoD acquisition and development

Part 6 - Supplemental Information

Page 403

organizations who need to more objectively plan, implement,
control, and evaluate their software programs.

If you would like more information on using Practical Software
Measurement, please contact:

John McGarry
Naval Undersea Warfare Center
Code 2252
1176 Howell Street
Newport, RI 02841

(401) 841-4581 (Voice)
(401) 841-2130 (FAX)
DSN Prefix 948
mcgarry@ada.npt.nuwc.navy.mil

Part 6 - Supplemental Information

Page 404

Part 6 - Supplemental Information

Page 405

VERSION DESCRIPTION SUMMARY

Date PSM Version Change Description or
Comments

April 12,
1995

1.0 Initial coordination draft.

June 30,
1995

1.1 Editorial update.

January 26,
1996

2.0 Additional detail added
throughout the Guide; AIS Case
Study added to Part 5.

March 27,
1996

2.1 Editorial Update.

Part 6 - Supplemental Information

Page 406

Part 6 - Supplemental Information

Page 407

INDEX

— A —

Aggregation -- see Data normalization and aggregation
Analysis process 16, 54-62, 205, 207
Analysis technique 11, 56, 77, 100

definition of 206
Analyst, measurement 20

— B —

Benefits of measurement 8, 10, 28, 73

— C —

Capability Maturity Model 179, 180, 246
Capability Maturity Model Level measure 98, 179, 180
Changes Implemented measure 98, 119, 129, 262
Collection level 34-35
Common issue 26-28, 94-97, 138

definition of 26
table 98

Components Designed measure 98, 119, 120, 218
Components Implemented measure 98, 119, 121
Components Integrated and Tested measure 98, 119, 122, 197
Contract see also RFP
negotiating the 312

putting measurement on 37, 267, 271-273, 275, 312, 316
Cost Profile measure 98, 143,145, 215, 228, 229
Cost Variance measure 98, 143, 144
CPU Throughput measure 98, 159, 161
CPU Utilization measure 98, 159, 160, 255
Current indicator

definition of 50
Cyclomatic Complexity 57, 98, 126, 174, 175, 206, 244

— D —

Data see also Measures
historical 43, 46, 59, 65, 151, 248, 271, 272, 277, 278, 307, 311
sources of 23, 40, 41
verification 46, 47

Data collection 33-35, 36, 38, 42-46, 57, 79, 81, 156, 184, 276, 279
level 112, 275, 282
periodicity 193, 282

Data normalization and aggregation 34, 42, 43, 46, 103, 206

Part 6 - Supplemental Information

Page 408

Database Size measure 98, 151, 155
Defect Density measure 98, 113, 169, 172, 242, 243
Defining measurement data 102, 193
Development Performance issue 14, 26, 32, 113, 138, 177, 179-186, 197, 246,

248, 250, 315

— E —

Efficiency -- see Target Computer Resource Utilization category
Effort measure 98, 113, 137, 138, 140, 182, 183, 197, 224, 225, 313, 321,

351, 352
Error -- see Defect
Evaluation of performance -- see Performance analysis
Evaluation of plans -- see Feasibility analysis
Expected values 53, 207, 209

definition of 206

— F —

Failure Interval measure 98, 169, 173
Fault -- see Defect
Feasibility analysis 59, 213, 271, 278

definition of 54
Function Points measure 98, 153, 156, 158, 172, 183, 371
Functional Size/Effort Ratio measure 98, 181, 183

— G —

Growth and Stability issue 14, 26, 32, 105, 113, 149, 151-166, 197, 215, 232,
234, 236

— H —

Historical data -- see Data, historical
Host computer resource utilization -- see Measurement Category, Environment

Availability

— I —

I/O Throughput measure 98, 159, 163
I/O Utilization measure 98, 159, 162
Indicator 17, 36, 38, 43, 47-54, 56-58, 60, 61, 65, 95, 109, 201, 205-207,

209, 210
case study examples 316-329, 351-371
definition of 48
integrated examples 255-263
single examples 213-215, 216-253
types of indicators 51-53

Issue
Development Performance 14, 26, 32, 113, 138, 177, 179-186, 197, 246,
248, 250, 315

Part 6 - Supplemental Information

Page 409

Growth and Stability 14, 26, 32, 105, 113, 149, 151-166, 197, 215, 232,
234, 236
Product Quality 14, 26, 32, 105, 113, 167, 169-175, 197, 238, 240, 242,
244, 345
Resources and Cost 14, 26, 32, 98, 105, 113, 135, 137-148, 197, 215, 224,
226, 228, 230
Schedule and Progress 14, 26, 32, 97, 98, 105, 115, 117-134, 138, 197,
215, 216, 218, 220, 222, 345
Technical Adequacy 14, 26, 32, 113, 187, 189, 197, 252

Issues
common issues defined 26
prioritizing 29, 93, 95, 346

— L —

Leading indicator 50, 51, 234
definition of 50

Lines of Code (LOC) measure 30, 45, 47, 49, 67, 98, 100, 102, 105, 151-154,
172, 182, 185, 197, 206, 232, 233, 248, 252, 304, 311, 313, 316, 317, 322,
347, 348, 356

— M —

Measure
Capability Maturity Model Level 98, 179, 180
Changes Implemented 98, 119, 129, 262
Components Designed 98, 119, 120, 218
Components Implemented 98, 119, 121
Components Integrated and Tested 98, 119, 122, 197
Cost Profile 98, 143, 145, 215, 228, 229
Cost Variance 98, 143, 144
CPU Throughput 98, 159, 161
CPU Utilization 98, 159, 160, 255
Cyclomatic Complexity 57, 98, 126, 174, 175, 206, 244
Database Size 98, 151, 155
Defect Density 98, 113, 169, 172, 242, 243
Effort 98, 113, 137, 138, 140, 182, 183, 197, 224, 225, 313, 321, 351, 352
Failure Interval 98, 169, 173
Function Points 98, 153, 156, 158, 172, 183, 371
Functional Size/Effort Ratio 98, 181, 183
I/O Throughput 98, 159, 163
I/O Utilization 98, 159, 162
Lines of Code (LOC) 30, 45, 47, 49, 67, 98, 100, 102, 105, 151-154, 172,
182, 185, 197, 206, 232, 233, 248, 252, 304, 311, 313, 316, 317, 322, 347,
348, 356
Memory Utilization 98, 164
Milestone Dates 98, 100, 117, 118, 196, 197, 216, 278
Number of Components 98, 151, 153
Paths Tested 98, 119, 126
Problem Report Aging 98, 169, 171, 197, 198, 240, 241
Problem Report Trends 98, 169, 170, 197, 198, 238
Problem Reports Resolved 98, 119, 127, 197
Product Size/Effort Ratio 98, 181, 182, 197, 248
Program Defined Measures 98, 189
Requirements Allocated 98, 119, 123, 197
Requirements Tested 98, 119, 124, 125, 197
Requirements 98, 156-157, 234

Part 6 - Supplemental Information

Page 410

Resource Availability Dates 98, 146, 147
Resource Utilization 98, 146, 148, 159, 160-166, 215, 230, 231, 236
Response Time 98, 166, 215, 236, 237
Reviews Completed 98, 119, 128
Rework Effort 98, 184, 186, 250, 251, 371
Rework Size 98, 184, 185
Schedule Variance 98, 130, 131, 215, 220, 221
Staff Experience 98, 139, 141, 142, 215, 226, 227
Staff Level 98, 139, 140, 255
Staff Turnover 98, 139, 142
Storage Utilization 98, 165
Test Cases Completed 98, 119, 125, 328

Measurement
benefits of 8, 10, 28, 73
requirements 11, 13, 18, 20, 23, 29, 33, 36-39, 41, 42, 57, 77, 85, 104,
267, 271-273
tools 77-79

Measurement analyst 20
Measurement Category 30-32, 95-101, 107-114, 197, 201, 213

Complexity 32, 98, 174, 175, 244, 245
Cost Performance 32, 98, 105, 143-145, 228
Defect Profile 32, 98, 105, 169-173, 197, 238, 240, 242
Effort Profile 32, 98, 135, 137, 138, 182, 183, 197, 224
Environment Availability 32, 98, 146-148, 230
Functional Size and Stability 32, 98, 119, 151, 156-158, 183, 197, 198, 234
Incremental Capability 32, 97, 98, 132-134, 197, 222
Milestone Performance 32, 97, 98, 105, 115, 117-119, 197, 216
Process Maturity 32, 98, 179, 180, 246, 247
Product Size and Stability 32, 98, 105, 119, 149, 151-155, 169, 182, 197,
232
Productivity 17, 26, 35, 46, 49, 53, 59, 66, 67, 98, 100, 102, 103, 113,
114, 137, 142, 151, 152, 158, 181-183, 197, 206, 226, 232, 248, 249, 278,
291, 304, 307, 310, 311, 324, 326, 328, 329, 347, 351
Rework 32, 98, 169, 184-186, 250, 251, 371
Schedule Performance 32, 97, 98, 105, 130, 131, 220
Staff Profile 31, 32, 98, 139, 140-142, 147, 226
Target Computer Resource Utilization 32, 98, 159-166, 236
Technology Impacts 32, 98, 189, 197, 252
Work Unit Progress 31, 32, 97, 98, 119, 120-129, 151, 169, 197, 218

Measurement categories
questions addressed by 32
table mapping categories to measures 98

Measurement definitions 102, 193
Measurement plan 40, 277, 279, 282
Measurement process 3-4, 7, 10, 71, 72, 81
Measurement results 82, 86
Measurement tables 99, 107, 114, 115, 135, 149, 167, 177, 187, 196
Measures see also Data

collecting -- see Data collection
definition of term 50
selecting 31, 89, 94, 95, 107, 196
table mapping issues to measures 98

Memory Utilization measure 98, 164
Metric -- see Indicator
Milestone Dates measure 98, 100, 117, 118, 196, 197, 216, 278

Part 6 - Supplemental Information

Page 411

— N —

Non-Developed Items (NDI) 152, 153, 158, 172, 304, 310
Normalization -- see Data normalization and aggregation
Number of Components measure 98, 151, 153

— P —

Paths Tested measure 98, 119, 126
Performance Analysis 55, 60, 213, 216, 218, 220, 222, 224, 226, 228, 230,

232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252
Planned values -- see Expected values
Plans, evaluation of -- see Feasibility analysis
Principles, software measurement 11-20
Problem Report Aging measure 98, 169, 171, 197, 198, 240, 241
Problem Report Trends measure 98, 169, 170, 197, 198, 238
Problem Reports Resolved measure 98, 119, 127, 197
Product Quality issue 14, 26, 32, 105, 113, 167, 169-175, 197, 238, 240, 242,

244, 345
Product Size/Effort Ratio measure 98, 181, 182, 197, 248
Program Defined Measures measure 98, 189
Program objectives 7, 9, 10, 13, 15, 20, 24, 25, 28, 32, 73, 84, 86, 282, 294,

303, 307, 310

— R —

Reporting level 34-35, 112, 272, 275, 282
Requirements Allocated measure 98, 119, 123, 197
Requirements Tested measure 98, 119, 124, 125, 197
Requirements measure 98, 156-157, 234
Resource Availability Dates measure 98, 146, 147
Resource Utilization measure 98, 146, 148, 159, 160-166, 215, 230, 231, 236
Resources and Cost issue 14, 26, 32, 98, 105, 113, 135, 137-148, 197, 215,

224, 226, 228, 230
Response Time measure 98, 166, 215, 236, 237
Reviews Completed measure 98, 119, 128
Rework Effort measure 98, 184, 186, 250, 251, 371
Rework Size measure 98, 184, 185
RFP, including measurement in 267, 271, 275-278, 306-309
Risk analysis 25, 27, 96

— S —

Schedule and Progress issue 14, 26, 32, 97, 98, 105, 115, 117-134, 138, 197,
215, 216, 218, 220, 222, 345

Schedule Variance measure 98, 130, 131, 215, 220, 221
SEI Capability Maturity Model 179, 180, 246
Staff Experience measure 98, 139, 141, 142, 215, 226, 227
Staff Level measure 98, 139, 140, 255

Part 6 - Supplemental Information

Page 412

Staff Turnover measure 98, 139, 142
Storage Utilization measure 98, 165

— T —

Tailoring the measurement process 3, 23, 24
Technical Adequacy issue 14, 26, 32, 113, 187, 189, 197, 252
Test Cases Completed measure 98, 119, 125, 328

— W —

Work Breakdown Structure (WBS) 38, 41, 76, 220, 267, 301, 307, 316, 346
and aggregation 46
reporting effort data 138, 186
reporting cost and schedule data 130-131, 143-145
samples 279-281
use in data collection 34-35

Practical Software Measurement Guide
Evaluation and Comment Form

We welcome any comments that will help us improve Practical Software Measurement. Please provide your
inputs via hardcopy or email using the information format provided below.

Holly G. Mills Phone: (407) 984-3370
Software Productivity Solutions, Inc. FAX: (407) 728-3957
122 4th Avenue email: hmills@sps.com
Indialantic, FL 32903

Name Date
Organization
Street Address

E-mail Address
Telephone Fax

Version of PSM Reviewed 2.1

Part Commented On:
() The Software Measurement Process () Acquisition and Contract Implementation Guidance
() Selecting and Specifying Program Measures () Software Measurement Case Studies
() Analysis Techniques and Examples () Supplemental Information

() Check here if you want to receive updates to the Guide

Overall value: Explanation:
() Excellent
() Good
() Fair
() Not Useful

General Comments:
 _

 __

Specific Comments on Sections:

 Section: Page # Comments :

Use additional sheets if more space is needed.

	FOREWARD
	ACKNOWLEDGEMENTS
	SCOPE AND STRUCTURE OF THE GUIDE
	TABLE OF CONTENTS
	PART 1 - THE SOFTWARE MEASUREMENT PROCESS
	CHAPTER 1 - PROGRAM MANAGEMENT ANDTHE MEASUREMENT PROCESS
	1.1 Managing a Software Intensive Program
	1.2 Overview of the Software Measurement Process
	1.3 Software Measurement Principles
	1.3.1 Program Issues and Objectives
	1.3.2 Developer’s Software Process
	1.3.3 Low Level Data
	1.3.4 Independent Analysis Capability
	1.3.5 Structured Analysis Process
	1.3.6 Program Context
	1.3.7 Life Cycle Integration
	1.3.8 Objective Communications
	1.3.9 Single Program Analysis

	1.4 Measurement Implementation Considerations

	CHAPTER 2 - TAILORING SOFTWARE MEASURES
	2.1 Measurement Tailoring Overview
	2.2 Identify and Prioritize Program Issues
	2.2.1 Program-Specific Issues
	2.2.2 Common Software Issues
	2.2.3 Identifying Program Issues
	2.2.4 Prioritizing Program Issues

	2.3 Select and Specify Program Measures
	2.3.1 Measurement Category Selection
	2.3.2 Measurement Selection Criteria
	2.3.3 Specifying Data and Implementation Requirements

	2.4 Integrate Measures into the Developer's Process
	2.4.1 Characterizing the Software Environment
	2.4.2 Identifying Measurement Opportunities
	2.4.3 Developing a Software Measurement Plan

	CHAPTER 3 - APPLYING SOFTWARE MEASURES
	3.1 Measurement Application Overview
	3.2 Collect and Process Data
	3.2.1 Data Sources
	3.2.2 Reporting and Processing
	3.2.3 Normalization and Aggregation
	3.2.4 Data Verification

	3.3 Define and Generate Indicators
	3.3.1 Basic Indicator Concepts
	3.3.2 Types of Indicators
	3.3.2.1 Trend-Based Indicators
	3.3.2.2 Limit-Based Indicators

	3.4 Analyze Issues
	3.4.1 Basic Analysis Process
	3.4.1.1 Identification of Problems
	3.4.1.2 Assessment of Problem Impact
	3.4.1.3 Projection of Outcome
	3.4.1.4 Evaluation of Alternatives

	3.4.2 Feasibility Analysis
	3.4.3 Performance Analysis

	3.5 Report Results
	3.6 Take Action
	3.7 Life Cycle Application
	3.7.1 Program Planning
	3.7.2 Development
	3.7.3 Software Support

	CHAPTER 4 - IMPLEMENTING AMEASUREMENT PROCESS
	4.1 Measurement Implementation Overview
	4.2 Measurement Implementation Activities
	4.2.1 Obtain Organizational Support
	4.2.2 Define Measurement Responsibilities
	4.2.3 Provide Measurement Resources
	4.2.3.1 Measurement Tools
	4.2.3.2 Measurement Training

	4.2.4 Initiate the Measurement Process

	4.3 Using the Measurement Results
	4.3.1 Program Development Viewpoint
	4.3.2 DoD Executive Management Viewpoint
	4.3.3 Process Improvement Viewpoint
	4.3.4 Lessons Learned

	PART 2 - SELECTING AND SPECIFYING PROGRAM MEASURES
	CHAPTER 1 - HOW TO SELECT AND SPECIFY PROGRAM MEASURES
	1.1 Introduction
	1.2 Mapping Program Issues to Common Issues
	1.3 Selecting the Appropriate Measurement Categories
	1.4 Selecting the Applicable Measures
	1.5 Specifying Measurement Data and Implementation Requirements
	1.6 Selecting and Specifying Measures for Existing Programs

	CHAPTER 2 - DETAILED MEASUREMENT SELECTION AND SPECIFICATION TABLES
	2.1 Introduction
	2.2 How To Use the Measurement Tables
	2.2.1 Measurement Category Tables
	2.2.2 Measurement Description Tables
	2.2.2.1 Selection Guidance
	2.2.2.2 Specification Guidance

	2.2.3 General Measurement Specification Table
	2.2.4 Additional Guidance
	2.2.5 Measurement Table Structure

	SCHEDULE AND PROGRESS MEASUREMENT TABLES
	RESOURCES AND COST MEASUREMENT TABLES
	GROWTH AND STABILITY MEASUREMENT TABLES
	PRODUCT QUALITY MEASUREMENT TABLES
	DEVELOPMENT PERFORMANCE MEASUREMENT TABLES
	TECHNICAL ADEQUACY MEASUREMENT TABLES
	GENERAL MEASUREMENT SPECIFICATION TABLE

	CHAPTER 3 - MEASUREMENT SELECTION ANDSPECIFICATION EXAMPLE
	3.1 Program Scenario
	3.2 Measurement Selection Summary

	PART 3 - ANALYSIS TECHNIQUES AND EXAMPLES
	CHAPTER 1 - MEASUREMENT APPLICATION OVERVIEW
	1.1 Collect and Process Data
	1.2 Define and Generate Indicators
	1.3 Analyze Issues
	1.4 Report Results
	1.5 Take Action

	CHAPTER 2 - INDICATOR DEFINITION
	CHAPTER 3 - SINGLE INDICATOR EXAMPLES
	3.1 Milestone Progress Indicator
	3.2 Design Progress Indicator
	3.3 Schedule Variance Indicator
	3.4 Incremental Build Content Indicator
	3.5 Effort Allocation Indicator
	3.6 Staff Experience Indicator
	3.7 Cost Profile Indicator
	3.8 Resource Utilization Indicator
	3.9 Software Size Indicator
	3.10 Requirements Stability Indicator
	3.11 Response Time Indicator
	3.12 Problem Report Status Indicator
	3.13 Problem Report Aging Indicator
	3.14 Defect Density Indicator
	3.15 Software Complexity Indicator
	3.16 Software Process Maturity Indicator
	3.17 Software Productivity Indicator
	3.18 Rework Effort Indicator
	3.19 Software Origin Indicator

	CHAPTER 4 - INTEGRATED INDICATOR EXAMPLES
	4.1 Design Completion Analysis
	4.2 Test Completion Analysis
	4.3 Readiness for Delivery Analysis
	4.4 Maintenance Analysis

	PART 4 - ACQUISITION AND CONTRACT IMPLEMENTATION
	CHAPTER 1 - CONTRACT IMPLEMENTATION GUIDANCE
	1.1 Contract Planning and Preparation
	1.2 Proposal Evaluation
	1.3 Negotiation
	1.4 Contract Modifications

	CHAPTER 2 - SAMPLE RFP WORDING
	2.1 Requirements for Software Measures
	2.2 Developer Access
	2.3 Data Alternatives
	2.4 Draft Measurement Plan
	2.5 Proposal Evaluation Data

	CHAPTER 3 - ADDITIONAL MATERIAL

	PART 5 - SOFTWARE MEASUREMENT CASE STUDIES
	PART 5A - WEAPONS SYSTEM CASE STUDY
	CHAPTER 1 - PROGRAM OVERVIEW
	1.1 Introduction
	1.2 Program Technical Approach
	1.2.1 System Requirements Definition and Design Analysis
	1.2.2 DDG 51 C 4 I Baseline System Description
	1.2.3 System Requirements and Design Recommendations

	1.3 Program Management Approach

	CHAPTER 2 - PROGRAM PLANNING ANDACQUISITION
	2.1 Software Program Planning
	2.2 Software Acquisition
	2.2.1 Request for Proposal
	2.2.2 Proposal Evaluation
	2.2.3 Award
	2.2.4 Negotiations

	CHAPTER 3 - SOFTWARE DEVELOPMENT
	3.1 Tracking Development Performance
	3.1.1 Software Measurement Overview
	3.1.2 Software Issue Identification and Analysis

	3.2 Revising The Development Plan
	3.3 Software Delivery
	3.4 Epilogue

	PART 5B - AUTOMATED INFORMATION SYSTEM CASE STUDY
	CHAPTER 1 - PROGRAM OVERVIEW
	1.1 Introduction
	1.2 Air Force Business Process Modernization Initiative
	1.3 Program Description
	1.4 System Architecture and Functionality
	1.4.1 Current Personnel System
	1.4.2 Military Automated Personnel System (MAPS)

	CHAPTER 2 - GETTING THE PROGRAM UNDER CONTROL
	2.1 Evaluating the Software Development Plan
	2.2 Revising the Software Development Plan
	2.3 Tracking Performance Against the Revised Plan

	CHAPTER 3 - EVALUATING READINESS FOR TEST
	3.1 Increment 1
	3.2 Increment 2

	CHAPTER 4 - INSTALLATION AND SOFTWARE SUPPORT
	4.1 Increment 1 Installation
	4.2 Software Support
	4.3 Epilogue

	PART 6 - SUPPLEMENTAL INFORMATION
	GLOSSARY
	LIST OF ACRONYMS
	BIBLIOGRAPHY
	Software Measurement References
	Government Agency Software Measurement References

	PSM RELATIONSHIP TO SPECIFIC DOD POLICIES
	PROJECT INFORMATION SUMMARY
	Use of Practical Software Measurement
	Project Contact Information

	VERSION DESCRIPTION SUMMARY
	INDEX
	EVALUATION AND COMMENT FORM

