August 24, 2005
POINT PAPER ON

INTEROPERABILITY
(Submitted by the Software Engineering Institute
)
PROBLEM

Neither an open architecture nor common components will achieve interoperability without additional commitments between programs and systems.

BACKGROUND
The goal of the Naval Open Architecture (NOA) program is to encourage and support the acceptance of open standards in order to improve war fighting capability and interoperability, while reducing lifecycle costs and time to deliver systems
. Open standards are being developed and accepted in many portions of Navy systems, including in the physical computing infrastructure (platforms, networks and protocols), operating systems (e.g., POSIX), middleware capabilities (e.g., CORBA), information management, and programming languages. These standards are being incorporated into “open” architectures that are intended to allow rapid and transparent upgrade as infrastructure evolves.
DISCUSSION
While we encourage the NOA program in its efforts to move the enterprise toward open architectures, we take issue with the unstated but evident belief that establishing open architectures by embracing such standards across the enterprise will necessarily lead to improved interoperability across Navy systems.

Open architectures provide a basis for syntactic – but not semantic – connectivity between systems. Syntactic connectivity here refers to the ability to share bits and bytes of data between applications. With closed systems, this is often accomplished via custom interfaces that, while effective, are specific to a given situation and often must change as new parties wish to share information. Open architectures can facilitate syntactic connectivity by providing common pathways and interfaces for all interested parties to access. For example, a CORBA-based program from almost any vendor, on almost any computer, operating system, programming language, and network, can share data with a CORBA-based program from another vendor, on almost any other computer, operating system, programming language, and network. Likewise, a common component (e.g., an Oracle database) will provide consistent interfaces to store and retrieve data to all applications employing it.
Semantic connectivity refers to the ability to understand the intent of communications between connected systems, and perform actions consistent with that intent. This is clearly not the same as syntactic connectivity. For example, a CORBA-based program may communicate something that is completely nonsensical to another CORBA-based program. For semantic connectivity (often called interoperability) to be achieved, several additional commitments beyond those provided by open architectures must be met:
1. A capability (e.g., an application or service) must provide an appropriate interface, including parameters that are conveniently available to the invoking party and outputs that are usable without undue post-invocation processing. This latter condition reflects that it may not be acceptable for the receiving application to be forced to parse megabytes worth of information to extract several bytes.
2. Ontologies (an exhaustive and rigorous conceptual schema about a domain) must be constructed and reflected in applications. Where information is to be shared across domains, common ontologies must be constructed.
3. Qualities of service appropriate to the needs of other interacting systems must be built into systems, along with mechanisms for conveying the qualities desired and provided.
Concurrent with the movement to an open standards basis for systems is the emphasis on the development of common, open components. One example of such common components is the single, cost-effective track manager that the Navy is building to be incorporated into many Navy systems. However, the use of common components also does not ensure interoperability. Different systems using the same component can make use of the components in different ways, store data at different times, and even apply different meanings to the data. For example, just because two systems use Oracle databases for data storage does not mean they can interact in any meaningful manner if they use unrelated schemas.

In short, no Navy system – open architected or otherwise – will exhibit interoperability with other Navy systems unless the desired qualities are built into it. If NOA is to achieve its goal to facilitate interoperability among Navy systems, then it must develop and transition appropriate processes and techniques, particularly those that are necessary to achieve interoperability cross domain boundaries.

RECOMMENDATION

A first step in developing these processes and techniques involves defining relative responsibilities among individual application domains, FORCENET, and NOA – all of which claim a stake in achieving interoperability. A second step involves defining additional requirements beyond an “open architecture” that programs must implement in order to achieve interoperability. A third step involves defining how the interoperability achieved among systems will be sustained as they continue to develop (and change) with independent rates and directions.
Authors:

Patricia Oberndorf

Edwin Morris

Software Engineering Institute

Software Engineering Institute

Carnegie Mellon University

Carnegie Mellon University

412-268-6138

412-268-5754

po@sei.cmu.edu

ejm@sei.cmu.edu
� Copyright 2005 by Carnegie Mellon University. The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

� Paraphrased from draft OAET charter – June 05

