23 May 2005

POINT PAPER ON

SOFTWARE REUSE
(Submitted by the Software Engineering Institute
)
PROBLEM

The Navy can no longer afford to develop redundant capabilities in a stovepiped manner. 
Current fleet computing systems are performance-limited and expensive to upgrade because of their platform-centered development approach. In the open architecture (OA) approach to solving these problems, software reuse is an important element of the approach, with its promise of reduced duplication, cost, and development time.
BACKGROUND

Software reuse is all about implementing or updating a software-intensive system by using existing software assets (e.g., requirements, domain models, software architecture, test cases, components) rather than developing the entire system from scratch. By building systems from reusable assets it is possible to achieve benefits in the form of increased productivity, higher quality, shorter time-to-field, and reduced development and maintenance costs. Having common and reusable functions and services across a battle force family of warfare systems is part of the Navy OA strategy to reduce total cost of ownership.
DISCUSSION

Successful software reuse involves the planned application of business and technical practices. It should be viewed as a strategic decision undertaken for sound business reasons. Often, this is not the case. Reuse strategies that have proven to be ineffective in the past include
· Fortuitous small-grained reuse: Also known as opportunistic reuse, this strategy often results in the creation of a reuse library or repository containing algorithms, modules, objects, or components. Any benefits from such an approach depend on an individual software engineer’s predisposition to use what is in the library, the suitability of the library contents for particular needs, and successful adaptation and integration of library units into the rest of the system. Reuse is not planned, enabled, or enforced, and results are not predictable

· Just component-based development: This approach relies on selecting components from an in-house library or the marketplace, but lacks a well-conceived architecture, a production plan, and a management infrastructure.
· Just a configurable architecture: This involves the use of a reference architecture or application framework, but does not involve the planned reuse of other assets.
· Just a set of technical standards: Here the goal is to promote interoperability, and to decrease the cost associated with maintaining and supporting commercial components. This approach does not provide reusable assets and a production capability to assemble products from them.
Finally, note that “reusable” does not imply that a reusable asset can be reused anywhere. The reusability will depend on the contexts into which the asset is imported and the extent to which such contexts were anticipated by the asset’s creators. The reusability contexts for OA span multiple programs within multiple domains (surface, sub-surface, air, C4I, and space). The degree to which assets can be reused cost-effectively within and across these domains depends on how the OA concept of a family of warfare systems is realized. To exploit commonality and manage variability, the family concept must anticipate the reusability contexts and provide an economically viable set of assets.
RECOMMENDATIONS
1. Develop a business case for software reuse within OA. Provide realistic estimates of the expected costs to institutionalize software reuse, the expected payoffs, and the time frame in which the payoffs are likely to be realized.
2. Develop a reuse vision and strategy for OA. Identify the types of assets to be reused, and the reusable asset producers and consumers. Identify likely existing assets and potential future assets based on an analysis of common and variant functional features and quality attributes. Clarify the mission and scope of the OA and the extent to which it prescribes the artifacts or processes to be used by the developers of the reusable assets and the organizational units building systems from those assets.
3. Provide stakeholder training early to lay the foundation for the cultural changes that OA will bring about. This is particularly important for the stakeholders from the domains who need to understand the implications of the OA reuse strategy for their particular programs.
4. Consider a pilot project to explore the effectiveness of the OA reuse strategy.
AUTHOR
Patrick Donohoe

Senior Member Technical Staff

Software Engineering Institute

Carnegie Mellon University

412-268-7616

pd@sei.cmu.edu
� Copyright 2005 by Carnegie Mellon University. The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.





