
U.S. Air Force

Software Management Guidebook

[image: image1.emf]
Version 0.9, 17 December 2004

Table of Contents

11.0 Introduction

22.0 Roadmap for Software Process Improvement

32.1
Tracing Section 804 Requirements

42.2
PEO / Acquisition Center Expectations

53.0 Software Process Guidelines for Air Force Acquisition Organizations

63.1
Software Aspects of Acquisition Program Planning

93.2
High Confidence Software Estimates

123.3
Software Development and Realistic Program Baselines

133.4
Management of Software Related Risks

143.5
Source Selection Support

173.6
Applying Earned Value Management to Software

183.7
Establish and Manage Software Requirements

213.8
Acquisition Insight and Involvement

233.9
Safety Critical and High-Assurance Systems

243.10
Application and Sustainment of Non-Developmental Software

253.11
Software Security Assurance

273.12
Configuration Management

283.13
Life Cycle Support

323.14
Lessons Learned

33Appendices

34Appendix A:
Software in the Integrated Master Plan

37Appendix B:
Software-Related Content for the Statement of Objectives (SOO) / Statement of Work (SOW)

39Appendix C:
Suggested Software Content for Request for Proposal (RFP) Section L, “Instructions, Conditions, and Notices to Offerors”

49Appendix D:
Suggested Software Content for Request for Proposal (RFP) Section M, “Evaluation Factors for Award”

53Appendix E:
Contracting Considerations for Software

57Appendix F:
Computer Systems and Software Criteria for Technical Reviews

73Appendix G:
Process Considerations for Safety Critical / High Assurance Systems

1.0 Introduction

A Weapon System Software Sustainment Study completed by AFMC in 2001 identified lack of guidance as a major concern for Air Force organizations involved in the acquisition and sustainment of software-intensive weapon systems. As the software contribution to overall weapon system functionality continues to rise, almost all software intensive system development efforts are challenged to satisfy established cost, schedule, and performance baselines. We are expected to be responsive to Air Force Agile Acquisition objectives of decreasing acquisition cycle times and improving credibility. Managers are expected to accept and manage risk as they attempt to satisfy these objectives, and we are all expected to apply innovation, continuous improvement, and lessons learned in the acquisition process. The challenges are significant.

Additionally, Section 804 of the FY03 Defense Authorization Act (now Public Law 07-314) places a new emphasis on software acquisition process improvement. The focus of this improvement activity is on acquisition planning, requirements development and management, project management and oversight, and risk management. Furthermore, the Act requires metrics for performance measurement and process improvement, a process to ensure acquisition personnel have appropriate experience or training, and a process to ensure adherence to acquisition processes and requirements.

The development of software for weapon systems cannot be viewed as a stovepipe activity. Weapon system software acquisition engineering is an integral part of the system acquisition and systems engineering processes. The Air Force approach builds on this relationship, and while this guidebook is devoted to software, efforts will continue to more closely link software with revitalized systems engineering processes.

Dr. Marvin Sambur, Assistant Secretary of the Air Force (Acquisition) and Dr. Peter Teets, Undersecretary of the Air Force jointly released a policy memorandum to emphasize the importance of high confidence estimates, realistic program baselines, risk management, developer capability, developer processes, program office processes, earned value management, metrics, life cycle support, and lessons learned. Proper attention to the software aspects of these focus areas is critical to achieving well managed and technically sound Air Force programs. Our expectation is that we can improve and more rapidly acquire systems by learning from the past, establishing a realistic and executable plan, applying systems engineering processes in a disciplined manner, and engineering systems right the first time.

The processes described herein are intended for use within all Air Force system program offices (SPOs) within the aeronautical, electronics, weapons, and space domains.

Please forward recommendations for changes or improvements to this document to Mike Nicol, ASC/EN, (Michael.Nicol@wpafb.af.mil), Ernie Gonzalez, SAF/AQRE, (Ernesto.Gonzalez@pentagon.af.mil), or Maj Mark Davis, SAF/USAL, (Mark.Davis2@pentagon.af.mil).

2.0 Roadmap for Software Process Improvement
In response to Public Law 107-314 Section 804, Improvement of Software Acquisition Processes, OSD established a Software Acquisition Process Improvement Program Integrating Integrated Product Team (SAPIP IIPT). This IIPT assumed the responsibility for monitoring software process improvement activities across the services and several DoD agencies.

OSD Focus

The focus of the OSD IIPT has evolved to a focus of:

· Documenting progress the applicable DoD components (services and agencies) have made related to software acquisition process improvement

· Addressing compliance with the law, but in the context of the broader systems engineering revitalization effort across DoD

· Taking credit for activities already in place or in development, including

--
New OSD policy and guidance on systems engineering revitalization

--
Systems Engineering Plans (SEPs) as an implementation tool

--
Best practices clearinghouse

--
Previous/ongoing efforts by components and sub-components

It is expected that the OSD SAPIP IIPT will complete its work in early calendar year 2005, and the OSD oversight of software process improvement will be absorbed into the OSD Systems Engineering Forum. This forum is intended to ensure the proper senior-level focus on Systems Engineering concerns in the areas of policy, best practices, and education and training among the acquisition community, industry, and academia.

Air Force Approach

In January 2004, the Air Force established the Air Force Software Intensive Systems Strategic Improvement Program (AFSSIP). The purpose of this program is to evaluate the efficiency and effectiveness of Air Force software management and processes that are part of the systems engineering and capability acquisition, and to identify changes that may be needed to improve them. AFSSIP is intended to address existing concerns over software process improvement training and education, metrics, technology transition, and integration with systems engineering.

An AFSSIP working group was established, consisting of a core team responsible for accomplishing analyses and developing AFSSIP products, assisted by a large working group intended to integrate the concerns of acquisition practitioners and developers.

The first product of the AFSSIP working group was joint SAF/AQ and SAF/US Policy Memo 04A-003, “Revitalizing the Software Aspects of Systems Engineering”, dated September 20, 2004. The memo identifies ten software focus areas to be addressed by acquisition programs, and is available at http://www.safaq.hq.af.mil/acq_pol/documents/SofwareAspectsofSysEng.pdf.

This guidebook is the second product of the AFSSIP working group, and provides the next level of definition in setting Air Force acquisition expectations for systems that have significant software content or software-driven functionality. This guidebook will be followed by training intended to reach all acquisition personnel involved in planning and/or executing acquisition programs where those expectations must be satisfied.

Figure 2-1 shows the roadmap for software process improvement within the Air Force.

[image: image2.emf]Software Process Improvement Roadmap

Public Law

107-314,

Section 804

OSD Software

Acquisition

Process

Improvement

IIPT

Air Force Software

Intensive Systems

Strategic

Improvement

Program (AFSSIP)

Tailored

Application by

PEOs/Centers

Policy

Guidance

Training

AFSSIP

Products

Figure 2-1: Roadmap for Air Force Software Process Improvement

2.1 Tracing Section 804 Requirements

AFSSIP products are responsive to Section 804 requirements, although the memo and guidebook content do not map one-to-one, nor in sequential order, to the specific requirements of Public Law 107-314. The following mapping may be helpful in tracing Section 804 requirements to the applicable sections of the AFSSIP policy memo and Air Force Software Guidebook:

Process Area – Acquisition Planning

-
Policy memo focus areas: 1, 2, 4, 5, 7, 8, 10

-
Guidebook section: 3.1

Process Area – Requirements Development and Management

-
Policy memo focus areas: 5, 6, 8

-
Guidebook section: 3.7 and all appendices

Process Area – Project Management and Oversight

-
Policy memo focus areas: All

-
Guidebook sections: All

Process Area – Risk Management

-
Policy memo focus area: 3

-
Guidebook section: 3.4

Appropriate metrics for performance measurement and continual process improvement:

-
Policy memo focus area: 8

-
Guidebook sections: 2.2, 3.8

Trained and Experienced Personnel:

-
Policy memo focus area: 6

-
Guidebook sections: 3.1, 3.8, Appendix F

Implementing and adhering to established processes and requirements:

-
Policy memo focus area: 6

-
Guidebook section: 2.2

2.2 PEO / Acquisition Center Expectations

With the publication of this guidebook, PEOs are expected to develop tailored approaches for use within the acquisition programs at their centers. The Section 804 requirements for improvement in the four listed process areas as well as training and experience are straightforward and are addressed adequately in the AFSSIP memo and this guidebook. The requirements for “metrics for performance measurement and continual process improvement” and “implementing and adhering to established processes and requirements” are more subjective, and are not addressed in detail in this version of the guidebook. The means of implementing these Section 804 requirements is left to PEO discretion.

For measurement and continuous process improvement, it should be noted that the policy memo and guidebook both address the typical metrics used to provide insight into development program status. Neither addresses the Section 804 focus on continuous improvement and measurement of the effectiveness and efficiency of processes employed by the acquisition organization. Acquisition organization process improvement activities can range from simply identifying, documenting, executing and measuring the effect of key processes (such as those documented in this guidebook), to applying a capability maturity model such as the Capability Maturity Model Integration Acquisition Module (CMMI-AM). More information is available on the CMMI-AM at http://www.sei.cmu.edu/publications/documents/04.reports/04tr001.html. Note that the CMMI-AM covers the complete range of acquisition processes, and is not limited to those that focus on software.

The means of ensuring established processes and requirements are implemented and adhered to is also left to the PEO. The intent of AFSSIP in this area is to encourage process improvement internal to the PEO portfolios and individual programs. The overall objective of acquisition process improvement is to ensure processes are documented, applied in a disciplined manner, and improved where necessary. A range of possible solutions is available, but as a minimum program offices should adopt or establish acquisition processes at the start of a program, and should review those processes periodically during development, implementing changes where warranted. The Air Force does not intend to collect or require reporting of this information in any centralized manner.

3.0 Software Process Guidelines for Air Force Acquisition Organizations

As described in the previous sections, the purpose of this document is to provide top-level guidance for organizations that are acquiring systems that require significant software development and/or integration, or that provide significant functionality through software. This section contains specific process requirements and guidance that focus on areas that have historically contributed to software-related problems.

Air Force product centers and program offices are expected to tailor the application of these processes to their specific needs, consistent with the responsibilities and capabilities of the acquirer/developer team. Tailoring includes developing and implementing additional guidance where appropriate.

Note that several of the focus areas addressed below are early yet critical steps in program planning. Once an acquisition program baseline has been established, it is extremely difficult, if not impossible, to recover when that baseline is not adequate to support the development of the volume of software needed, the typical growth in software size as the requirements and design evolve, and the disciplined application of effective development processes.
3.1
Software Aspects of Acquisition Program Planning

Since software plays a significant role in the majority of today’s acquisition programs and too often fails to satisfy performance, cost, and schedule baselines, it is prudent to carefully plan the software aspects of each acquisition program. The top-level objectives of software planning are the same as those for planning the program in general:

· Ensure an executable acquisition program is defined and required resources are available

· Establish a yardstick by which to measure progress

Program planning should accommodate the software focus areas identified in Memorandum 04A-003, Revitalizing the Software Aspects of Systems Engineering, Sep 20 2004 (Memo available at http://www.safaq.hq.af.mil/acq_pol/documents/SofwareAspectsofSysEng.pdf). The software focus areas are: High-Confidence Estimates, Realistic Program Baselines, Risk Management, Capable Developer, Developer Processes, Program Office Processes, Earned Value Management, Metrics, Life Cycle Support, and Lessons Learned. Specific considerations for addressing these focus areas are provided throughout this document.

In order to plan the software aspects of the program, all software to be developed, reused (used-as-is), modified, integrated or otherwise used in the system, must be identified. This includes operational software, and tools for software development, integration, test, and data reduction. It also includes firmware, databases, and software for mission planning, training, automated test and other support equipment/functions.

In general, the software element of acquisition planning ensures each component of the software identified in the previous step is incorporated in acquisition program planning and control tools such as the Work Breakdown Structure (WBS), Integrated Master Plan (IMP), and Integrated Master Schedule (IMS). In order to satisfy the objective of defining an executable acquisition program, this planning should consider all required software-related acquisition, development, and sustainment activities. It should also address performance and other related requirements; required resources in terms of trained and experienced personnel (acquisition and development), processes, and tools; associated effort (cost) and schedule; and software-related risks.

See Appendix A, “Software in the Integrated Master Plan”, for guidance for recommended software content in the IMP.

Planning for Project Start/Source Selection

Software planning during the project planning phase, including project start-up and/or source selection, should include the following:

-
Development of computer system and software inputs to the Request for Proposal (RFP)

-
Application of evolutionary acquisition strategies during software development

-
An estimate of expected software size, prior to receipt and independent of offeror proposals

-
During source selection, an evaluation of the offerors' software development capability and capacity

-
During source selection, a determination that the proposed software development effort and schedule is compatible with the disciplined application of the proposed software development processes

Planning for System Development and Demonstration

Software planning for the System Development and Demonstration phase should be documented and maintained over the life of the program, and should include:

-
Ensuring consistent treatment of project planning through the WBS, estimates of the work products, all defined life-cycle phases, and associated cost and schedule estimates

-
Formulating budgets and schedules; continuously identifying, analyzing and mitigating risks; and addressing data management, resource planning, and stakeholder involvement

-
Establishing commitment by documenting responsibilities, reconciling resources and planning, and obtaining stakeholder commitment

-
Identifying and obtaining human resources with the necessary skills, training, and experience to manage and execute the software acquisition

-
Addressing contracting considerations for software, including:

--
government furnished software

--
commercial off the shelf (COTS) software

--
contract types for software development

--
software-related contract clauses

--
software contract line items (CLINs)

--
software-related performance incentives appropriate to the program's challenges and life cycle phase (addressed through Award Fee and Incentive Fee structures)

--
coordination with Defense Contract Management Agency (DCMA)

-
A plan for managing and maintaining software project data, including estimates, changes, and actuals to software size, effort (cost), and schedule; software productivity; defects; etc. over the life of the project, to support both program execution and transfer of lessons learned

-
The program approach to address system and software requirements definition and management, including the use of collaborative communications and methods to control software size growth due to derived requirements and design evolution

-
The program approach to maintaining effective technical insight into and control over the software development effort, to include:

--
Establishing, obtaining commitment to, and executing the program through the disciplined application of effective systems and software development processes, including establishing and monitoring commitment to developer software processes as documented in the Software Development Plan (SDP)

--
Maintaining appropriate insight to ensure the processes being employed are effective in achieving the desired result

--
Measuring progress relative to a planned profile of discrete, measurable events and work products

--
Recognizing that there are cost and schedule consequences to changing requirements, development processes, or the size of the software to be developed and integrated
-
The program approach to fully develop and integrate software within the program’s systems engineering process, including technical reviews, engineering data and documentation, etc.

-
The program approach for software security assurance (see section 3.11), including:

--
Identification of critical software technologies and protection techniques including strategies to comply with the Anti-Tamper and Software Protection Initiatives

--
Development of an information assurance strategy and requirements for Certification & Accreditation

The critical elements of planning for the software aspects of the acquisition program, including the software focus areas identified in memo 04A-003, should be incorporated as appropriate in the program Systems Engineering Plan (SEP), Integrated Program Summary, or other acquisition plans.

Planning for Operations and Support

Planning for the Operations and Support phase may be accomplished in a separate software or computer resources life cycle management plan. This plan can be developed to establish and document the buy-in of all stakeholders, including the end customer (e.g., Air Combat Command, Air Mobility Command), operational testers, and system sustainers. Items appropriate to be addressed in this plan include:

-
Identification of responsibilities of the acquisition, developer, support, test, and user organizations in planning and implementing the software sustainment capability

-
Planned source of life cycle (post-deployment) software support and identification of the life cycle support infrastructure

-
Identification of computer systems hardware, software, documentation, and software engineering environment (as applicable) that will be delivered

-
Human resources required for software support with supporting assumptions and rationale

-
Intellectual property rights

-
Software test and integration considerations, including responsibilities for various levels of test and integration of software, location and fidelity of test and integration laboratories, required test assets, etc.

-
Transition (if applicable) of all operational software and support tools from the developer to the post deployment support organization

-
Interim support (if applicable) subsequent to the completion of system development but prior to the availability of the permanent post-deployment support capability

-
Security classification, certification, and accreditation considerations

-
Required facilities including buildings, integration labs, and test ranges

Planning is essential in order to satisfy our agile acquisition objectives. Planning is the basis for successful execution, which is realized through an adequate level of insight, open communication, trust, and credibility.

“The common failing of programming groups is that there is too little management control, not too much.”

Frederick P. Brooks

“The Mythical Man-Month”

3.2
High Confidence Software Estimates

Air Force policy is to estimate and fund programs to a high (80-90%) confidence. That is to say, programs are to be estimated and funded so that the total program costs for any given program would be less than the budget 80-90% of the time. Also, program milestones and program completion should meet the planned schedule 80-90% of the time.

Accurate, dependable, and convincing estimates must be developed to facilitate realistic program planning and to set reasonable expectations. This is best accomplished as a joint effort between the government and industry at the earliest possible time, starting prior to RFP release through discussions at pre-solicitation meetings (e.g., industry days). The government must make clear to all potential offerors its intent to develop and apply realistic estimates. During source selection, every effort should be made (through discussions if necessary) to obtain the information required to support a comprehensive software development estimate.

The OSD Cost Analysis Improvement Group (CAIG) requires certain data collection and reporting in the form of a Software Resources Data Report (SRDR) for ACAT IA, ACAT IC or ACAT ID programs containing software effort with a projected value greater than $25M (FY 2002 dollars). The data collection and reporting applies to developments and upgrades whether performed under a commercial contract or internally by a government Central Design Activity (CDA) under the terms of a memorandum of understanding (MOU). The program office data collection effort should support both the CAIG SRDR and the program office comprehensive software development estimate.

In addition to estimates at program start, as a program matures, occasionally an estimate to complete (ETC) is needed in order to support an independent program evaluation. Much of the process described herein can also be applied to determining the content remaining in a program in order to formulate an ETC.

For this process, the software development period is defined as starting with a baseline (complete) set of software requirements in a formal specification format and ending with a fully integrated and tested subsystem / functional software product ready for software / hardware integration and test. This convention is used because most of the estimating models provide estimates based on empirical data for only these phases. Additional effort is required to develop, allocate, and analyze the subsystem and software requirements; perform software to hardware (subsystem) integration and test; and perform system integration and test.

Considerations For Establishing 80-90% High Confidence Software Estimates

The 20 Sept 04 SAF/AQ/US Memorandum addressing revitalization of the software aspects of systems engineering includes a focus area related to high confidence estimates. In the context of this policy, “high confidence” means estimates should be more conservative so that programs account for and plan to accommodate the various risks that routinely affect software development. These risks include but are not limited to:

· ability to properly size the software development/integration effort

· ability to account for growth due to developer derived requirements and design evolution

· ability/discipline to change effort/schedule estimates in response to software size growth

Estimating software development at high confidence is a multi-faceted process which includes assessment of the characteristics of the program, requirements maturity and stability, program schedule constraints, level of known historical performance data, and many other attributes of the development program. The development of a high confidence estimate considers the following factors:

-
The estimate is based on well defined, stable requirements. The estimate should reflect a level of requirements coordination and stability including spiral development strategies, acknowledging less firmness in requirements for follow-on spirals

-
The estimate incorporates the confidence in the program’s ability to accurately estimate software Source Lines of Code (SLOCS) given the known state of requirements during the estimate timeframe

-
The estimate does not apply optimistic (i.e., not yet realized) productivity rates resulting from software estimating model environment parameter settings that may not be sustained throughout the development period, such as developer capabilities (A-team), new productivity tools, or new, more effective processes

-
The estimate includes appropriate factors for historical program experience on code growth and ability to achieve planned levels of reuse

-
The estimate includes costs associated with modifying and integrating any planned COTS software

-
The estimate considers the ability to accurately characterize the developer’s capability and program environment which significantly affects cost and schedule estimates.

-
Actual cost/productivity/SLOC data is available on the same program or very analogous program at the same contractor facility

-
The estimating techniques used are appropriate to the program situation and comprehensiveness of available data (e.g., point estimates vs. Monte Carlo methods)

-
The cost estimate is developed within the framework of a comprehensive, detailed, realistic and well documented software development schedule. The program and the cost estimate must apply expectation management to balance cost (effort) with a realistic development schedule and set of program performance requirements)

-
The content of the software estimate (phases/activities included in estimate) is consistent with other program component estimate approaches and content. The estimate includes software support to system engineering, system and sub-system requirements definition, system integration and system test as appropriate)

Elements of the Software Estimation Process

The software development estimating process consists of a series of activities that are grouped into the following process steps:

a.
Identify and structure all software to be developed

b.
Determine software size, itemized by source language and complexity and adjusted for requirements maturity, historical growth experience, growth potential and reuse degradation

c.
Assess Commercial Off-The-Shelf (COTS) software and other reuse candidates for risk

d.
Determine that software development has been appropriately and consistently addressed throughout the proposal and chart the software development plan

e.
Estimate development effort and schedule for each software component using consistent input parameters and documented assumptions

f.
Crosscheck estimate results with other methods

g.
Estimate the front-end systems engineering effort & schedule and the back-end systems integration and test

h.
Assess software schedule risk in the context of a well constructed Integrated Master Schedule (IMS)

i.
Validate the estimate against the contractor’s productivity on similar efforts and review the estimate at the aggregate level with senior staff

j.
Accomplish Monte Carlo based risk assessment at 90% cumulative probability value* considering size growth and other specific risks along with reasonable ranges of model parameters, and ensure the budget is allocated through the FYDP to support the estimate

* This however, does not equate to 90% confidence that the cost will be equal to or less than the predicted value. Typical limitations on the number and fidelity of data points supporting the analysis impacts the ability to state with certainty a 90% confidence.

“Another two-cultures problem is that customers and users have little feel for the difficulty of developing a given quantity of software within budget and on schedule. This leads to unrealistic expectations by customers that can be reinforced by developers’ desire-to-please or desire-to-sell tendencies, leading to frequent budget and schedule overruns.”

Barry Boehm

“The Art of Expectations Management”
IEEE Computer, January 2000
“Accept only one independent variable. One clear message from software cost and schedule models is that larger amounts of developed software require larger amounts of budget and schedule. … It’s better to tell your customers that they can expect either a “fixed amount of software” or a “fixed cost or schedule”, but not both.”

Barry Boehm

“The Art of Expectations Management”
IEEE Computer, January 2000
3.3
Software Development and Realistic Program Baselines

Nothing has done more to undermine our acquisition credibility and complicate effective management of the acquisition of software intensive systems than our inability to establish realistic software development cost and schedule baselines. Without a realistic estimate of the required effort and schedule, tied to specific requirements during program formulation, there is a high probability that the initial overall program estimate will not accommodate the software development. Likewise, if an estimate is not available when proposals are evaluated in source selection, there is no basis from which to judge the feasibility of the offerors’ proposed effort and schedule. Programs established with unexecutable cost and schedule baselines will inevitably be forced to cut corners along the way; and under these conditions successful outcomes are virtually impossible.

The challenge in building realistic cost and schedule baselines early comes from the fact that up-front estimates are based on numerous assumptions and uncertainties. Several iterations of cost and schedule estimation may be necessary to converge on a more accurate estimate as the software product matures. The engineering role is to provide the most accurate technical information (both assumptions and facts) available in order to create a realistic program software development baseline.

Steps to arrive at a realistic cost and schedule baseline include the following:

-
Develop and refine estimates of software size for all software to be developed and integrated. Include expected reuse and integration of legacy software, subcontractor efforts, COTS, and GFE. Base these estimates on similar past programs when possible. See section 3.2.
-
Use estimated size to establish the associated software development effort and schedule (this may include defining appropriate software estimating model input parameters). Collaborate with other government organizations in creating and maintaining program estimates

 -
During source selection, ensure the proposed effort and schedule are compatible with disciplined application of the proposed software development processes. Also be cognizant of the effort (hours and dollars) and schedule (time) impacts of the proposed processes.

-
Ensure the proposed software development effort and schedule accommodates the required system performance (relates to software size), fits with the program cost and schedule baselines, and has the capacity to accommodate problems the program encounters

-
Identify and manage software-related risks (see Section 3.4).
3.4
Management of Software Related Risks

The program risk management approach should include Computer Systems & Software (CS&S) issues. It is recommended that programs use AFMC Pamphlet 63-101 (Risk Management), and DoD guidance found at http://www.dau.mil/pubs/gdbks/risk_management.asp in order to identify, track, manage, and resolve CS&S risks.

Risk management should include the following basic steps:

-
Risk planning

-
Risk assessment, i.e., identify, analyze and document risks to determine their relative importance by assessing impact and probability of occurrence. Define risk parameters, and establish and maintain a risk management strategy

-
Risk handling, i.e., identify methods to reduce adverse impacts on achieving objectives or the probabilities of risks occurring

-
Risk monitoring, i.e., review risks periodically for change in status and/or assessment of any new risks and implement risk mitigation plan(s)

-
Risk budgeting, i.e., fund to manage and mitigate risks

Specific CS&S risks that programs should consider and manage include:

-
Inability to accurately estimate software development size

-
Incompatible software development performance, effort, and schedule baselines

-
Inability to achieve planned levels of reuse

-
COTS/GOTS suitability, integration, and sustainment

-
Integration-heavy effort (significant integration effort for existing components)

- Concurrent hardware/software development where requirements allocation methodology is unclear

-
New and unprecedented requirements that drive the use of unproven technology, such as:

--
Domains and applications where the requirements are poorly defined or unstable

--
Extensive CS&S security requirements, such as multi-level security

--
Computer system / software architectures which are complex, highly integrated, or unproven; and which rely on shared use of computing elements in real-time critical applications

- Long duration system development timelines and technical obsolescence of underlying computing architectures and hardware

- Safety critical requirements

- Acquisition strategies and approaches which rely on:

--
Government furnished equipment (GFE) which has an unknown performance capability

--
Tools and technologies that are still under development

--
The use of tools, methods, and technologies with which the developer has no experience and capability, and therefore must go through a learning curve.

-
Multiple developers and subcontractors teaming to develop complex software intensive systems which must be tailored and integrated into a total system capability

-
Uncontrolled sources of software (foreign developers, open source, etc.)
3.5
Source Selection Support

Computer Systems and Software (CS&S) support for source selection includes instrumenting the Request for Proposal (RFP) with appropriate CS&S content and performing the actual Source Selection evaluation against the RFP requirements. RFP sections of interest include Instructions, Conditions, and Notices to Offerors (Section L) and Evaluation Factors for Award (Section M). Each offeror’s proposal is evaluated against Section M to identify and document software-related strengths, weaknesses, and risks. The evaluation process must ensure consistency across all proposal sections relevant to software development.

Accurate, dependable, and high confidence software effort and schedule estimates must be developed to evaluate the offeror’s proposed software development planning. During source selection, every effort should be made (through discussions if necessary) to obtain the information required to support a comprehensive software development (most probable) estimate for each offeror. Program office personnel faced with this need should contact their center ACE offices or their functional Engineering, Finance, and Contracting organizations for assistance.
3.5.1 Software-Related Content in the Request for Proposal

Software is addressed in the RFP in order to solicit proposals that provide the information to support an effective government evaluation and identification of strengths, weaknesses, and risks related to software. The following software-related content is suggested for the various sections of the RFP.

The Statement of Objectives (SOO) should include requirements to:

-
Develop, maintain, and comply with the offeror developed SDP

-
Support program office integrated product teams and working groups

The System Requirements Document, draft specification, or equivalent, should incorporate unique software requirements which are evidenced at the system level. This should include any user sourced requirements as well as typical computing system reserve capacity, growth, and architecture requirements.

RFP Section L should require:

-
Submittal of a draft Software Development Plan (SDP) which defines the offeror’s proposed software development processes for this program, including key processes which formed a basis for any assessed CMMI capability profile or maturity level

-
Software size information, software size definitions, and re-use estimates with rationale to support software estimation

-
Technical definition of the proposed computer hardware and software architecture (processors, buses, languages, object oriented design, open systems, etc), sizing, throughput, growth capacity, and technology update/refresh strategy

-
Data and information needed to conduct system/software capability appraisals during source selection

Section M should define criteria for evaluating the offeror proposals including:

-
Proposed software processes consistent with the proposal draft SDP, Integrated Master Plan (IMP), and Integrated Master Schedule (IMS)

- Software development process commitment (SOW or equivalent)

- A proposed CS&S technical solution that satisfies the system and software performance requirements (open systems architecture, spare and growth, for example)

- Proposed software development effort and schedule consistent with the proposed technical content as well as SPO estimates of the overall program effort and development schedule baseline

- System/software development capability

See the following Appendices for associated guidance

· Appendix B: Software-Related Content for the Statement of Objectives (SOO) / Statement of Work (SOW)

· Appendix C: Suggested Software Content for Request for Proposal (RFP) Section L, Instructions, Conditions, and Notices to Offerors”

· Appendix D: Suggested Software Content for Request for Proposal (RFP) Section M, Evaluation Factors for Award”

· Appendix E: Contracting Considerations for Software
3.5.2 Activities During Source Selection

During source selection, programs should:

-
Evaluate the proposed technical approach for computer systems and software

-
Determine that the software development effort has been consistently addressed throughout the proposal

-
Determine the software development size and expected growth during the proposed development period, and factor this into the evaluation of the offeror’s proposal

-
Develop most probable software effort (cost) and schedule estimates, and factor into the offeror’s risk ratings (estimates should be accomplished at the 80-90% confidence level)

- Assess proposed software development processes, including subcontractor oversight and management, and evaluate the compatibility of the proposed processes with the proposed program plan’s effort, schedule, and performance requirements

-
Account for planned concurrent development efforts by ensuring that adequate personnel, development stations, integration labs, etc. are available to support the plan

-
Evaluate software development capability for each offeror, and identify associated strengths, weaknesses, and risks
3.5.3 Due Diligence in Selecting a Capable Developer

Offerors have varying degrees of inherent development capability (strengths, weaknesses, and risks) by technical area, including software. Without specific effort to address known weaknesses and risks, the same weaknesses and risks will likely manifest themselves in new programs. Program offices need to identify each offeror’s specific capabilities and past performance and factor that into the source selection decision. During program execution, these identified strengths, weaknesses, and risks should be considered when defining the approach used to manage and oversee the offeror’s development efforts.

Suggested program office actions and considerations include:

- Incorporating software development past performance into the source selection past performance evaluation process

- Incorporating offeror system/software development capabilities evaluation into the source selection process

· If process maturity as defined by the Software Engineering Institute’s Capability Maturity Model Integration (CMMI) is used as a factor in the evaluation, take the following actions:

· Solicit in the RFP existing capability information for all members of the development team

· Include in Section L the proposal content instructions supporting submittal and evaluation of CMMI capability information

· Include a requirement to submit the Appraisal Disclosure Statement to identify and clarify relevant appraisal conditions and factors described below

· Include in Section M the evaluation criteria for evaluating CMMI capability information

· Accomplish the following in evaluating submitted CMMI capability information:

· Assess the scope of the submitted CMMI appraisal for:

· Organization coverage including location of proposed program execution within the organization scope of the submitted appraisal results

· Process Area coverage (inclusion) in the submitted appraisal results. Consider Process Areas excluded from the appraisal and the relevance to the program in source selection

· Relevance of the projects included in the submitted appraisal to the program in source selection

· Functional scope (e.g., System Engineering, Software, IPPD etc) of the submittal appraisal and the relevance to the program in source selection

· Consider the fidelity of the submitted appraisal (Standard CMMI Appraisal Method for Process Improvement (SCAMPI) Class A, B or C))

· Verify the SEI authorization status of the Appraisal Team Leader (refer to the SEI CMMI web site at http://www.sei.cmu.edu/managing/app.directory.html)

· Understand the level of independence of the Appraisal Team Leader from the proposed development team organization

· Consider the timeframe of the submitted appraisal information and relevance to current development capability

· Review the proposed SDP for inclusion of processes consistent with the submitted appraisal

· Review the proposed SOW for requirements to apply the proposed SDP processes consistent with the submitted appraisal

· Incorporate submitted CMMI capability information in the Source Selection evaluation results consistent with the Section M criteria and in the form of strengths, weaknesses, and risks

Note: Material in Section 3.5.3 is adapted from “Choosing a Supplier: Due Diligence and CMMI”, News@SEI 2004 Number 3, CMMI in Focus, David M. Phillips.
3.6
Applying Earned Value Management to Software

Earned value is an essential indicator of program health, and serves as a powerful tool to gain insight into program status. Software development earned value status can be monitored in the same manner as other program development activities.

In order to facilitate the implementation of Earned Value Management for software, engineering should:

- Collaborate with Program Management and Financial Management to ensure the WBS is defined with appropriate software visibility. The objective is to establish a program WBS which mirrors the actual work/product to be developed. Place software elements in the WBS at appropriate levels which are consistent with the developed product architecture and hierarchy. That is, do not create artificial “software-only” WBS elements for the purpose of facilitating easy collection and roll up of “software-only” data.

- Collaborate with Program Management and Financial Management to assess and understand the impacts or limitations of selected earned value reports (CPR vs. CSSR) and establish reporting requirements which facilitate the level of software insight desired. If the software elements, appropriately placed in the WBS to reflect the to-be built product design, do not facilitate the desired identification and reporting of software status (e.g. system reporting at level 3 only and software elements are at lower levels), then special reporting requirements should be implemented to achieve the desired software earned value reporting. This special reporting could, for example, require collection and amalgamation of software earned value data from across the numerous WBS elements containing software for reporting as a single software report, or alternately, reporting of software earned value status could be required at the subsystem level to provide more detailed software insight. It is important to establish reporting levels with enough granularity such that visibility into significant software development problems at the lower level components is not lost (washed out) in the reporting roll-up.

- Assure the program cost accounts and work packages reflect the WBS structure and are consistent with the software effort and schedule estimates for the program.

- Assure the work package schedules integrate into and are consistent with the program IMS.

- Collect and review earned value data to determined actual software effort and schedule status against the budgeted effort and schedule for the software components (Schedule and cost variances).

 - Use the software earned value reporting to identify specific or systemic software development problem areas for focused monitoring or resolution.

- Consider use of on-line collaborative (real or near-real-time) access to earned value data to provide timely insight into software development status.

For more information on EVMS, refer to http://www.acq.osd.mil/pm/, or the Defense Acquisition Deskbook at http://acc.dau.mil/simplify/ev.php?ID=1435_201&ID2=DO_TOPIC.

3.7
Establish and Manage Software Requirements

The purpose of establishing and managing requirements is to ensure they are defined, complete, stable, and verifiable prior to designing and developing the software. Requirements, at any level, must be both consistent and traceable to applicable higher level (e.g. system and subsystem) requirements and lower level (e.g. subsystem and software) design and implementation, and must also be traceable to the verification methodology. Modern acquisition and evolutionary development approaches allow for the gradual maturation of requirements at the system level. However, once the development of a particular spiral or increment of capability is started, any change to the requirements will impact the near-term product. Requirements identification, allocation and verification is often a shared responsibility between the acquisition Program Office and the development contractor. The Program Office will normally focus on the higher system or subsystem level requirements identification and allocation and the contractor will focus on the subsystem tiers (down to hardware/software or hardware/software sub components) for which they are responsible.

3.7.1 Requirements Basics

Establishment and management of software requirements includes the following steps:

-
Gather top level CS&S requirements from identified users of the system. Assess each top-level requirement for feasibility of implementation and consistency within program constraints. If the requirement is impossible to implement within cost and schedule constraints, identify this as an expectation management issue.

-
Allocate all system, subsystem, and interface requirements to appropriate hardware and software configuration items. Ensure each requirement:

--
is written as a single definitive statement

--
has a unique identification number for tracking purposes

--
can be traced to a higher level source requirement or analysis (if a derived requirement)

--
has been allocated to a specific computer software configuration item (CSCI)

-
Ensure that for each performance requirement there is a corresponding verification requirement. The specification section 4 verification requirement should define a means of objective measurement (Note: This goes beyond identifying the category and method of verification in the section 4 verification matrix. This is not a set of test procedures but rather a short statement of the method and conditions for demonstrating the requirement has been satisfied. This has two major benefits to the program. It establishes a set of test requirements upon which to build a test plan, and it forces ambiguity out of the section 3 performance requirements.)
-
Identify analyses, trade studies, prototyping, and demonstration efforts for risk reduction. Consider the following:

-- Completeness (Are all higher level requirements allocated?)

-- Consistency (Is the content, format, and notation from requirement to requirement, and from specification to specification, similar?)

-- Feasibility (Can the requirements be met?)

-- Verifiability/testability (Can the requirement be objectively verified?)

-- Human factors (Is the design consistent with sound human factors principles?)

-
Complete the definition of derived software requirements and examine them for consistency with system requirements, feasibility, and the effects of various implementation strategies (Note: derived requirements are often a significant source of software size growth.)

-
Apply early aggressive activities to verify that software intended for reuse satisfies requirements and will not lead to additional growth

-
Verify developers flow top level requirements down to lower level specifications and to lower-tier suppliers, including software configuration item specifications

-
Verify CSCI-to-CSCI and CSCI-to-HWCI interface requirements identification and definition

-
Verify that an adequate and compatible set of tools are in place to capture multi-level requirements (systems down through software) and design evolution

3.7.2 Requirements and Incremental Software Development

Incremental software development is an approach that allows complex systems to be built via several increments delivered over time. Incremental development reduces risk in developing the total capability, facilitates the development of basic capability first, allows verification of basic capabilities prior to developing more complex features, accommodates design refinement, and with sufficient staff, can shorten the overall development timeline to initial operational capability. Incremental development is now the norm for complex software systems.

In addition to having adequate staff and other development resources, the key to incremental development is to properly manage the associated requirements. Incremental requirements definition has not worked well on some past programs. Proceeding into design and implementation with incomplete requirements is a high risk approach, particularly in unprecedented software development.

In order to best ensure success with incremental software development, the following should be considered:

· Complete the software and interface requirements specifications and baseline them prior to developing incremental software builds

· Map/allocate the requirements into all planned builds. Failure to do this introduces the likelihood that functionality will migrate to later builds, the initial delivery will not meet user expectations, unplanned builds will become necessary, and the delivery of full functionality will be delayed.).

3.7.3 Software Size Control

Design understanding and evolution is an inherent part of the development process for complex systems. As each level of requirements and design is developed and understood, a better picture of the supporting requirements and design for subcomponents evolves. For systems implemented in software, this process often results to a growth in software size due to growth in derived requirements at the lower system tiers. A typical challenge for acquisition programs is that this software size is often accepted and allowed by default to grow unconstrained, unmanaged, and unattended as if it were for free with no adverse program baseline impact. In order to combat this situation, consider establishing a software size control program.

The objectives of software size control are to:

-
Prevent uncontrolled growth in the amount of software that must be developed

- Validate that newly defined derived requirements which are driving software growth are, in fact, necessary to meet overall system performance requirements

-
Avoid related growth in the requirement for computer processing resources

-
Prevent the adverse impact on program schedule and resources

Size control is implemented by establishing a process to control baselines. The process should begin by utilizing the proposal baselines from source selection, or software size estimates otherwise available at the start of a project.

The elements of software size control include:

-
Formal size estimating methods, based on actuals from the developer’s experience

-
Integration with the system/software/hardware engineering process

-
Rigorous software size baseline control

--
Control requirements creep

--
Establish a verification requirement for each performance requirement

--
Use formal ECPs with adjustment to cost and schedule

--
Defer “growth” requirements to a follow-on release

-
Cultural change to eliminate software which is not essential to meeting requirements

--
Beware of design decisions that eliminate planned reuse

-
Working groups or control boards responsible to manage requirements

-
System/software architecture designed to accommodate growth

-
Prototypes or demonstrations of unprecedented, high risk areas

-
Incentives for software size containment

“The hardest single part of building a software system is deciding precisely what to build. No other part of the conceptual work is as difficult as establishing the detailed technical requirements, including all the interfaces to people, to machines, and to other software systems. No other part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later.”

Frederick P. Brooks, Jr.

“Essence and Accidents of Software Engineering”

IEEE Computer, April 1987

3.8
Acquisition Insight and Involvement

Program offices need to maintain continuous insight into software design, development, and verification activities via metrics, formal technical review meetings, and other less formal means of communications. Armed with this insight, a program can measure performance, proactively manage risks, and address problems which inevitably arise during acquisition.

3.8.1 Software Metrics

Program offices and developers should mutually agree on and implement selected software metrics to provide management visibility into the software development process. The agreed-to metrics should:

· be integral to the developer’s processes

· clearly portray variances between planned and actual performance and risks

· provide early detection or prediction of situations that require management attention, and

· should support the assessment of the impact of proposed changes on the program.

SAF/AQ Memorandum 04A-003, Revitalizing the Software Aspects of Systems Engineering, Sep 20 2004 (available at http://www.safaq.hq.af.mil/acq_pol/documents/SofwareAspectsofSysEng.pdf) identifies and provides guidance on the Air Force core software metrics. The Air Force core metrics are:

-
Software Size

-
Software Development Effort

-
Software Development Schedule

-
Software Defects

-
Software Requirements Definition and Stability

-
Software Development Staffing

-
Software Progress (Design, Coding, and Testing)

-
Computer Resources Utilization

Program offices and developers should consider additional metrics or methods of insight to address software issues deemed critical or unique to the program. Useful information on implementation of software metrics is available from the following sources:

· Practical Software and Systems Measurement: Practical Software and Systems Measurement (PSM) is a DoD sponsored activity and was developed to meet today's software and system technical and management challenges. It is an information-driven measurement process that addresses the unique technical and business goals of an organization. The guidance in PSM represents best practices used by measurement professionals within the software and system acquisition and engineering communities. Additional information is available at http://www.psmsc.com.

· Software Engineering Institute (SEI): The SEI offers an array of courses, presentations, and publications related to software metrics and measurement as part of their Software Engineering Measurement and Analysis (SEMA) initiative. SEMA is intended to help organizations develop and evolve useful measurement and analysis practices. SEMA information, including SEI recommendations for Core Software Measures, is available at http://www.sei.cmu.edu/sema/.

Regardless of the metrics chosen for use, they should be tailored and implemented consistent with the developer’s internal tools and processes. At the bare minimum, the Program Office and contractor must agree on how the information will be made available. It is recommended that the program office have continuous on-line access to metrics and other program management information.

3.8.2 Program Reviews

Gathering and evaluating metrics and earned value data provides program quantitative information and helps foster a collaborative environment between the Program Office and contractor. Obtaining qualitative insight into the program is also important, and a primary source of qualitative insight is involvement in program reviews. Any disconnects between qualitative and quantitative indicators need to be scrutinized to determine the reasons for the differences.

See Appendix F, “Computer Systems and Software Criteria for Technical Reviews”, for more information on software-related content in technical reviews.

Additional opportunities for obtaining insight include:

- Participating in Integrated Baseline Reviews as tasked by Program Management

- Monitoring ongoing work

-
Evaluating change proposals (ECPs and CCPs) for impact to software effort and schedule

- Supporting contractual fact-finding

3.8.3 Involvement in Development Activities

The program office should define the role and activities of program office personnel in the detailed software development activities. This includes, for example, the program office role and involvement in:

· Approval of software requirements specifications
· Detailed design activities such as peer reviews and technical reviews
· Witnessing of lab integration/test and formal test activities
· Monitoring and reviewing in-place development processes, comparing with SDP requirements, and recommending improvements
· Configuration control of development and product specifications and design documents

· Disposition of critical problem reports
· Determination of fitness for intended use of software products
Program office personnel should plan and coordinate their activities with those of on-site Defense Contract Management Agency (DCMA) personnel to ensure they maintain the proper level of insight and involvement into developer activities without interfering with the developer’s responsibilities.

3.9
Safety Critical and High-Assurance Systems

Safety-critical and high-assurance systems require additional emphasis and discipline in the system and software development process. As a minimum, the program should take the following actions:

-
Identify the safety critical functions and understand the implications to the architecture, system, subsystems, hardware, and software through the system level safety analysis.

-
Perform architecture trade studies to define and understand the capability of the architecture
-
Determine the developers’ capability, capacity, and experience to develop, integrate, and test safety critical system architectures and software

-
Ensure Failure Modes and Effects Analysis (FMEA) is performed at all levels to address failure scenarios

-
Ensure safety critical requirements at all levels are baselined early in the development phase

-
Validate planned software reuse in safety critical systems

-
Define the means for mitigating safety risks through the architecture design

-
Develop extensive Failure Modes Effects Testing (FMET) test cases tied to the FMEA at all levels of testing

-
Establish a software test process which accounts for testing at all structural levels

-
Extensively test the safety-critical hardware and software components with the level of rigor required by the safety analysis

-
Establish and properly apply core and regression test processes

-
Develop and follow a certification process

See Appendix G, “Process Considerations for Safety Critical / High Assurance Systems”, for more information.

“Human beings are not accustomed to being perfect, and few areas of human activity demand it. Adjusting to the requirement for perfection is, I think, the most difficult part of learning to program.”

Frederick P. Brooks

"The Mythical Man-Month: Essays on Software Engineering” (2nd Edition)"
3.10
Application and Sustainment of Non-Developmental Software

Increasingly, programs procure commercial “off-the-shelf” and other non-developmental software (NDS). Often, this software has risk, and contractual and long-term support implications, particularly when programs find they need to modify the software.

3.10.1 General Considerations

When using commercial NDS, the government may or may not have the rights to modify the software. NDS also may contain software defects, both known and unknown, to the original developer. Known defects may or may not be fixed by the developer in the future, but they may also be addressed using workarounds and other management techniques. In order to deal with unknown defects, the developer must comprehensively test (consuming program resources – time and money) the NDS to ensure it performs the desired functions in the target environment. Last but not least, as problems are fixed, the NDS functionality may change, in turn driving related changes to other software within the acquisition program.

Software may also be considered NDS due to being developed outside of the current contract (e.g., IR&D). The availability of this software may be outside of the control of the program and may cause considerable negative impacts if not available when needed.

If considering NDS software, address the following recommended activities:

-
Include and evaluate all proposed NDS during source selection

-
Assess suitability and manage technical risk inherent in NDS during the System Design and Development (SD&D) phase

-
Recognize ramifications of:

 -- Attempting to modify NDS to meet program needs

 -- Changed NDS functionality when the original developer decides to fix problems

 -- Unavailability of NDS when needed or at all

-- Limited or no access to source code (locking you into a particular vendor for continued use and support)

-
Implement necessary contractual clauses to address NDS issues

-
Plan NDS integration activities in the program IMP/IMS

-- Thoroughly test and evaluate NDS

 -- Consider a plan to accommodate NDS updates or replacement during development

- Address NDS maintenance and technology refresh during development and in Post Deployment Software Support (PDSS) planning

- Contractually address NDS issues involving licensing, data rights, development cost, and warranty/support

3.10.2 Government Furnished Software

Special considerations apply when the program plans to use Government Furnished Software (GFS). If the use of GFS is determined to be in the best interest of the Government, the contract should be structured to ensure the Government is not held responsible for the performance, support, or maintenance of the GFS. Refer to Appendix E, “Contracting Considerations for Software”.

3.11
Software Security Assurance

Software security assurance includes computer system security certification and accreditation, as well as the computer system and software aspects of Anti-Tamper.

3.11.1 System Security Certification and Accreditation

Computer security Certification and Accreditation (C&A) is the process of verifying a computer system (information system) can operate in the intended environment while ensuring the information being processed by the system is not compromised. The two elements of C&A are defined as follows:

-
Certification: The comprehensive evaluation of the technical and non-technical security features of an information system and other safeguards, made in support of the accreditation process, to establish the extent to which a particular design and implementation meets a set of specified security requirements
-
Accreditation: The formal declaration by a Designated Approving Authority (DAA) that an information system is approved to operate in a particular security mode using a prescribed set of safeguards at an acceptable level of risk.

When C&A is required for a weapon system, significant resources must be applied. Since much of the existing C&A guidance has been established for the automated information systems domain, ASC/EN has developed a process that is more applicable to weapon systems. This guidance is available at: https://www.en.wpafb.af.mil/software/software_c&a.asp. The weapon system C&A process includes the following steps:

· Review user requirements documents and security CONOPS to identify security requirements

· Identify a Certifying Official (CO) and Designated Approval Authority (DAA) for the system

· Ensure C&A-related system architecture, design, and development activities required of the developer are included in the program requirements (SOW, specifications, etc)

· Evaluate threats (attack scenarios) & risk analysis.

· Perform vulnerability and risk assessments

· Determine security requirements and the feasibility of technical solutions

· Develop the Security Test and Evaluation (ST&E) document and validate/verify the security requirements implementation

· Decide whether the security safeguards and residual risks are acceptable

· Provide a recommendation for or against certification

· Document results in the System Security Authorization Agreement (SSAA)

· Evaluate operational & support needs (site accreditation)

· Identify COTS software components and determine security risks before and after system integration

· Identify software source code pedigree and risks

· Evaluate system network interconnections risks with other systems (GIG network) that are outside of C&A accreditation boundary

· Recommend a security risk mitigation approach and/or reach agreement with the user on the level of security risk the user is willing to accept

3.11.2 Anti-Tamper

Anti-Tamper (AT) encompasses the system engineering activities intended to prevent and/or delay exploitation of critical technologies. Anti-tamper contains a significant software component, including the following important steps:

· Identify critical technologies and available protection techniques

· Identify threats/vulnerabilities

· Perform risk analysis

· Determine appropriate solutions to meet the needs

· Develop an approved AT plan

-
Verify and validate the AT approach
3.12
Configuration Management

Configuration Management (CM) is a management process for establishing and maintaining consistency of a product’s performance, functional, and physical attributes with its requirements, and design and operational information throughout its life. At a minimum, CM for software should be conducted in accordance with guidance provided in MIL-HDBK-61A, Configuration Management Guidance, and EIA-649, “National Consensus Standard for Configuration Management”.

Program office CM processes should ensure certain activities are accomplished. The division of CM responsibilities for these activities between the program office and the developer is at the discretion of the program. A key aspect of CM activities for software is determining the division of software into Computer Software Configuration Items (CSCIs) which provide the proper level of visibility, management, and control of cost, schedule and performance for software products. CM processes should accomplish the following:

-
Establish baselines of identified work products:

--
Identify the configuration items, components, and related work products, to include baseline documentation, that will be placed under configuration control

--
Establish and maintain a configuration management and change control system for controlling configuration items, components, and work products

--
Identify, track and ensure approval of change requests (as appropriate and including those changes intended to resolve identified problems) for the configuration items

--
Control configuration item and supporting documentation changes to the baselines

--
Create or release baselines for internal and operational use

-
Establish and maintain the integrity of baselines:

--
Establish and maintain records describing configuration items

--
Perform configuration audits to maintain integrity of the configuration baselines

--
Establish a configuration status accounting system to track baselines and product modifications throughout the life cycle

3.13
Life Cycle Support

This section addresses several elements related to planning for life cycle computer systems and software support.

3.13.1 Software Support Planning

It is important to plan during the development phase for the support of fielded computer systems and software. The planning process should begin early in the acquisition effort, and should be documented and coordinated with all relevant stakeholders. The planning should address the following activities:
- Determine and recommend a support concept and a source of post-deployment software support, based on analyses of the preliminary systems operational concept, other operational and support requirements, and Source of Repair Assignment Process (SORAP), as appropriate

- Identify and assign responsibilities of the acquisition, development, support, test, and user organizations in planning and implementing the support capability

- Identify all computer systems hardware, software, and engineering data that require support or are required to support the system

- Establish a strategy to respond to Diminishing Manufacturing Sources (DMS) issues

- Identify training requirements based on the selected life cycle support approach, including specific training requirements for the system’s computer hardware and software components, and addressing the needs of both operational and support personnel

- Identify human resources required to support the software, along with supporting rationale / assumptions

- Identify security requirements and address their impact on system support

- Define the required computer resources support procedures, processes, and methods

- Establish criteria for transition of software sustainment responsibility from the developer to the post deployment support organization, and include consideration of government/contractor partnering opportunities for life cycle support

- If applicable, provide for interim support subsequent to the completion of system development but prior to the availability of the permanent post-deployment software support organization

- In order to form a baseline for future integration, document initial software verification activities, including level of integration, fidelity of integration laboratories, and required flight test assets

- Procure (as required) and deliver all facilities, equipment, and data required to support the software

3.13.2 Software Product Engineering Data

Program offices should ensure that the minimum essential set of software product engineering data (documentation) is developed, acquired or escrowed, and maintained so that it is available to support sustainment needs for the full weapon system life cycle. Software product engineering data includes specifications, architectural design, detailed design, interfaces, database design, software code, test procedures and test cases, and related information such as change requests and problem reports. Lack of quality product engineering data can lead to inefficiencies or re-work during sustainment, resulting in increased life-cycle costs. This problem can occur whether the product is maintained organically, through the original developer, or through an alternate support contractor.

Steps to ensure the availability of appropriate software product engineering data include:

- Plan, program and budget the development and test of the System/Software Engineering Environments (S/SEEs) and development and integration labs consistent with the needs of the weapon system development program, and consider transferability of assets from development to sustainment at the outset

- Determining and contracting for the Software Product Engineering Data of sufficient quality to support operation and sustainment needs throughout the system life-cycle
- Ensuring the developer’s process defines and captures the required Software Product Engineering Data

- Ensuring the Software Product Engineering Data is delivered and/or escrowed to enable effective and efficient long-term system support

- Establishing appropriate government data rights consistent with the identified support concept
3.13.3 Establish System/Software Engineering Environments and Associated Facilities

Adequate planning with regard to the software tools and facilities required to design, develop, integrate, test, and support the CS&S is critical to the successful delivery of software driven capability. The following key steps should be considered:

-
In the RFP, solicit the offerors' approach to develop and support the System/Software Engineering Environment (S/SEE) and development and integration labs with the needed capability and capacity

-
Ensure the developer identifies the complete set of S/SEE development and test tools necessary to accomplish the software effort. The developer should apply the following planning / implementation process for the required development and test tools:

--
Identify the specific development and test tool requirements, the required level of tool integration, the need dates for each of the tools relative to the program schedule, the required performance/quality criteria for each tool, and an alternate management strategy if moderate to high risk is associated with the acquisition or development of the desired tool.

--
Analyze the program requirements and the development and test methodology and establish the appropriate software toolset for the development effort. Tools may be commercially acquired, selected from available in-house resources, or developed specifically for the program. However, the resources and lead-time associated with either purchasing or developing a new tool should be factored into the overall software development plan. Ensure adequate communication and coordination of the tool supplier schedules and the schedule of the development activity requiring the tool.

--
Demonstrate that newly acquired or developed (first-use) tools conform to established performance and quality criteria and that the staff is proficient in the use of these tools. Use of the tools for prototype development is encouraged as a means for demonstrating both software performance and staff proficiency.

-
Plan and budget the development and test of the S/SEEs and development and integration labs consistent with the needs of the weapon systems development program

- Consider transferability of assets from development to sustainment, and budget accordingly

-
Analyze requirements and plan/budget for adequate spares for any flight-worthy or representative LRUs needed to support ground-based development and integration labs

-
Analyze requirements and plan/budget for security requirements for S/SEE and all associated ground based development and test environments. Ensure that the contract reflects appropriate security requirements.

3.13.4 Viable Life-Cycle Computer Systems and Software

It is an acquisition objective to develop and deliver computer systems and software that will provide capable, timely, and affordable functionality throughout all life cycle phases. This is accomplished through attention to planning for the following:
-
The ability of the proposed computer system architecture to enable efficient and affordable design change/technology insertion (user capability requirements & technology refresh) over the life phases of the program (system development and demonstration, production and deployment, and operations and support)

-
The ability to efficiently and affordably produce and maintain a specification compliant system over the planned production schedule

-
The ability to efficiently and affordably meet user requirements (e.g., availability, mission capable rate) for the economic life of the system as affected by product durability and technology obsolescence

Some approaches that support this objective include:

· Selecting architectures which permit ease of change of underlying tools, languages, and hardware processing platforms

· Addressing hardware and software as system, not isolated entities

· Focusing on ease of changing the technology base, ease of verification, and ease to expand for future capability growth

· Exploring cross-cutting solutions to minimize proliferation of new architectures, components, and software

For legacy systems:

· Migrate them over time toward more affordable and sustainable architectures and support environments

· Address initial architecture/design as well as planning, funding, and implementation of updates over the life-cycle

3.13.5 Computer Programming Language Selection

When a programming language decision must be made, programs should conduct a trade study to determine the best computer programming language, or mix of programming languages, to be used to satisfy system life cycle requirements. Suggested areas to be addressed include:

-
System / software requirements, including performance, interoperability, reliability, safety, security, architecture, partitioning, advanced functionality, and interface requirements

-
Expected software size & complexity, system life-cycle change rate, and sustainment needs
-
Reuse of existing systems / software (i.e., programming languages already being used within the system or within components from other sources that may be reused or adapted)

-
Language capabilities of the developer

-
Commercial viability of candidate languages, including current and future availability of compilers, tools, general-purpose development computer system equipment, training, and skilled software engineers

-
Extent of compatibility with and impact of other related direction (e.g. use of standards such as the Joint Technical Architecture, open systems, etc.)

-
Languages defined by standards from organizations such as American National Standards Institute (ANSI) or International Standards Organization (ISO)

3.14
Lessons Learned

In order to avoid repeating software problems from legacy programs, each program office should contribute to a software lessons learned repository at their center. During the System Development and Demonstration (SD&D) phase, program offices should:

-
Note processes that work well, processes that do not work well, processes that add no value, areas where new processes need to be developed, and processes that could not be addressed due to resource constraints

- Record the reasons for any changes to required performance, increases in required resources, schedule extensions, changes in required or actual manpower, or any other factors or events that affect program outcome (cost, schedule, performance)

Centers are expected to facilitate the collection of lessons learned and to share lessons learned between programs and with new programs.

Appendices

Appendix A:
Software in the Integrated Master Plan

Appendix B:
Software-Related Content for the Statement of Objectives (SOO) / Statement of Work (SOW)

Appendix C:
Suggested Software Content for Request for Proposal (RFP) Section L, “Instructions, Conditions, and Notices to Offerors
Appendix D:
Suggested Software Content for Request for Proposal (RFP) Section M, “Evaluation Factors for Award”
Appendix E:
Contracting Considerations for Software
Appendix F:
Computer Systems and Software Criteria for Technical Reviews

Appendix G:
Process Considerations for Safety Critical / High Assurance Systems

Appendix A:
Software in the Integrated Master Plan

This section provides examples of what a world class contractor might propose for software related content in the Integrated Master Plan (IMP), associated with various system level reviews. This is not mandatory - the contractor may or may not include these reviews as part of his development process. The source selection team should perform an analysis of the specific software-related IMP content.

	IMP Event
	Criteria

	Alternative Systems Review (ASR): Preferred alternative system concepts established
	Exit Criteria:
· Computer System & Software (CS&S) architectural trade off analyses identified, including architectural alternatives

· Hardware vis-à-vis software functional trade-off analyses identified

· Software demonstration and prototyping requirements identified

· Key software technologies to be exploited defined

· CS&S risks identified with effective risk management strategy defined

· Concept and Technology Development (C&TD) software development requirements defined

· C&TD software development processes defined (contractors' plans)

	System Requirements Review (SRR: System requirements established
	Entry Criteria:

· C&TD software development requirements defined

· C&TD software development processes defined (contractors plan)

Exit Criteria:
· CS&S requirements defined in the System Specification

· CS&S demonstrations and prototyping plans are defined

· Preliminary software development process defined and documented

· Initial software development size estimates defined

· Software trade-offs addressing COTS, reuse, development risks, and architectures are identified and planned

· Initial allocation of functional requirements to hardware and software defined

· Initial System/Software Engineering Environment (S/SEE) integrated software development tool requirements defined

· Software development training requirements identified

· Preliminary SD&D phase software development estimates established with effort, schedule, and cost analysis

· Programming languages and architectures, security requirements and, operational and support concepts have been identified

· Preliminary software support data defined

	System Functional Review (SFR): Functional and performance requirements established
	Exit Criteria:
· CS&S requirements in the System Specification are complete

· Draft Preliminary Software Requirements Specifications defined, including complete verification requirements

· Initial CS&S architecture design is defined

· System/segment design approach defined, including the software architecture

· Software development process defined and reflected in IMP

· Specification tree is defined through subsystem development specifications, including interface specifications

· Draft subsystem/allocated functional specifications, including CS&S requirements, are complete
· Preliminary identification of the System/Software Engineering Environment tools and configuration is defined

· CS&S design/development approach confirmed through analyses, demonstrations, and prototyping

	IMP Event
	Criteria

	System Functional Review (SFR): (continued)

	Exit Criteria (continued):
· Software process IMP/IMS events, schedule, task definitions, and metrics defined for the next phase

· Software requirements traceability defined through the higher tier specifications to the system/subsystem requirements

· Preliminary software risk management process defined

· Contract work breakdown structure defines all necessary software development work, consistent with the defined software development processes for the SD&D phase

· All necessary software development work consistent with the contractors defined software development process for the EMD phase is defined in the CWBS

· Software development estimates for EMD phase completed

	Software Specification Review (SSR): software requirements established [internal contractor baseline]
	Entry Criteria:

· Complete Software Requirements Specification (SRS) for each CSCI

· Complete Interface Requirements Specifications (IRSs)

Exit Criteria:
· Software development risk management process defined

· Software and interface requirements established in internal baselines

· Requirements allocation for first spiral or for all planned increments (blocks/builds) defined (as applicable)

· Software and interface requirements allocated to CSCI’s and CSC’s

· Software requirements traceability between system/subsystem specifications and software requirements specification defined

· Software development schedules reflecting contractor selected processes and IMP/IMS events defined

· Software metrics defined

· Prototypes and demonstrations identified and planned

· Life-cycle software support requirements defined

· Software development test facilities defined

· Software size control program defined

· Software development estimates updated

· CS&S architecture requirements defined

· S/SEE tools and configuration requirements defined

	Preliminary Design Review (PDR): software architectural design established [internal contractor baseline]
	Entry Criteria:

· SRS is internally (developmental) baselined

· Software development process definition baselined and linked to IMP/IMS

· Software Specification Review (SSR) has been successfully completed

Exit Criteria:
· Software risk management process defined and implemented

· Software architectural level design established

· S/SEE requirements and configuration are defined and internally controlled

· Preliminary software design is defined and documented

· Software requirements baseline verified to satisfy system/subsystem functional requirements baseline

· Software increments (blocks and builds) defined and allocated

· Preliminary ICDs defined

· Software metrics defined and implemented

· Software test plan defined and documented

· COTS and reusable software identified and verified to meet requirements

· Life-cycle software support requirements updated

· Software development process defined and implemented

· Software development estimates updated

	IMP Event
	Criteria

	Critical Design Review (CDR): detailed software design established [internal contractor baseline]
	Entry Criteria:

· Software detailed design is complete

Exit Criteria:
· Software detailed level design established

· Software test descriptions complete

· Draft software test procedures complete

· Detailed software design and interface descriptions complete

· Software metrics defined and implemented

· Software development files established and maintained current

· Software development estimates updated

	Test Readiness Review (TRR): test readiness established [internal contractor baseline]
	Entry Criteria:

· Software design and code is internally baselined

· Software requirements, design, and code traceability is established

· Software test plan complete

· Software test descriptions and procedures are defined, verified, baselined, and compliant with plan

· Software test procedures are adequate to verify specified requirements

· Test facilities and resources are complete and sufficient to support software testing within the defined schedule

Exit Criteria:
· Planned testing is consistent with defined spiral / incremental approach including regression testing

· Software unit and CSC testing is complete and documented in the software development files (SDFs)

· Software metrics show readiness for testing

· Software problem report system is defined and implemented

· Software test baseline is established

· Software development estimates are updated

	Functional Configuration Audit (FCA): system / software performance and functional requirements verified
	Entry Criteria:

· CSCIs are verified through all levels of hardware / software integration and test, and through subsystem integration and test

· Software product specification is complete

· CSCI test results are documented and CSCIs are acceptable for intended use

Exit Criteria:

· Software product specifications are baselined (including source code listings)

· Software requirements, design, and code traceability are established

· Software test reports are approved

· Software development files are complete

· CS&S functional and performance requirements have been verified against the specified system requirements through analysis of test results

· Required operational and support manuals / documents are complete

· All required software completion criteria are satisfied

	Physical Configuration Audit (PCA): product baseline established
	Entry Criteria:

· All software documentation is complete and available for audit

Exit Criteria:

· Software product specification is verified against the as-built product

· Software support and operational data is complete and verified for accuracy

· Version description documents are completed and verified for accuracy

· Software metrics are complete

Appendix B:
Software-Related Content for the Statement of Objectives (SOO) / Statement of Work (SOW)
This section provides language related to the acquisition of software intensive systems that can be applied to the SOO or SOW, as appropriate.

General Software Acquisition Language

Suggested RFP Language for section L, “Instructions, Conditions, and Notices to Offerors”: "The contractor shall generate a Specification, Statement of Work (SOW), Contractor Data Requirements List (CDRL), Integrated Master Plan (IMP), Integrated Master Schedule (IMS), and Software Development Plan (SDP) with sufficient detail to describe the software development processes to be employed on the program."

-
The Procuring Contracting Officer (PCO), and the Legal officer should be consulted concerning guidance on Rights in Computer Software and Computer Software Documentation. The guidance regarding these two important subjects is substantial. Intellectual property rights is another hot topic that ideally should be thought through by PK, EN and the JAG to draft a model contract that will include terms and conditions to provide adequate access for Engineering (and Program) Management.

For rights in commercial computer software and commercial computer software documentation, see DFARS 227.7202-1. For noncommercial computer software and noncommercial computer software documentation, see DFARS 227.7203-1.

Also note DFARS 227.7203-5(c) which provides that the Government obtains restricted rights in noncommercial computer software required to be delivered or otherwise provided to the Government under a contract that were developed exclusively at private expense. If the Government needs additional rights, it must negotiate with the contractor. The Government obtains Government purpose rights in computer software developed with mixed funding.

Before finalizing the above section, suggest consultation with the base technology transfer coordinator. Of course the T&C will also include identification of the computer hardware/ software to be delivered under the contract(s). The model contract will also identify any other deliverables associated with the software development effort.
Suggested SOO Language: This language is an example of what the government would use in a SOO when asking the offerors to propose a SOW. It would be included under a general heading of general or specific “Objectives”.

-
Develop software to meet SRD requirements by using sound, documented, systems engineering processes.
Suggested SOW Language: The following is a menu of some potential language to be applied to the development of software intensive systems:

· "The contractor shall develop software as required to satisfy program requirements."

· "The contractor shall implement and maintain the development processes defined in the SDP, and shall ensure that those processes are integrated and consistent with the IMP and IMS."

· "The contractor shall use the earned value management system (EVMS) to manage, determine the status of, and report on the software development effort."

· "The contractor shall implement selected software metrics to provide management visibility into the software development process and progress. The metrics shall clearly portray variances between actual and planned performance, shall provide early detection or prediction of situations that require management attention, and shall support the assessment of the impact of proposed changes on the program. The contractor shall provide the program office routine insight into these metrics."

· "The contractor shall support the system Computer Resources Working Group (CRWG)."

· "The contractor shall implement and maintain a Computer Resources Support management process that satisfies overall program objectives and is integrated with the logistics support and systems engineering processes."

Appendix C:
Suggested Software Content for Request for Proposal (RFP) Section L, “Instructions, Conditions, and Notices to Offerors”
Introduction

It is the Air Force’s objective to select offerors with domain experience in the development of software-intensive systems, with successful and relevant past performance, and with proven program management, systems engineering, and software engineering processes. Therefore, the Air Force source selection strategy for embedded computer systems and software (CS&S) is to evaluate offerors' proposals with a focus on the following areas:

a.
Offeror process capability in terms of strengths, weaknesses, and risks, as defined by internal process standards that form the foundation for program-specific processes, as well as evidence that the processes are part of the company culture

b.
Evidence of past application of the processes by the offeror, as defined by past performance information as well as objective evidence / artifacts of the process application

c.
Offeror commitment to program-specific processes, as defined by the SDP, IMP, and IMS as well as evidence that the proposed cost, schedule, and technical baselines are compatible with the application of the proposed processes

d.
Achievable program effort and schedule baselines that are compatible with the estimated effort and schedule and that accommodate the application of the proposed processes, tools, and other resources

General Guidance

To support this strategy, offerors are expected to propose their software development approach and processes in lieu of mandates for specific process standards. Offerors should submit the following information for evaluation, which should reflect the systems and software engineering processes being proposed for the development program:

a.
A copy of the company software-related procedures, processes, standards, and practices relevant to (proposed to be used on) the development program

b.
Copies of selected documents that provide evidence of previous use of the proposed processes (e.g., development schedules, software development plans, software requirements specifications, test and integration plans, and procedures)

c.
The proposal SDP, including descriptions of the software engineering processes the offeror is committing to employ on the program. This is essential to clarify the offeror’s intent to apply the processes and discipline to this program.

d.
The proposed IMP and IMS, clearly indicating the temporal relationships (both sequential and parallel) of the system and software functions, and showing that adequate time has been allocated to apply the proposed development processes. Completion criteria for events should include system and software engineering process step completions.

e.
Responses to the tailored questions from "Suggested Software Acquisition Content for Section L" below. The responses to the questions should reference applicable sections or tasks in the standard company processes, SDP, and/or IMP/IMS, and should clearly explain how the processes are being committed to for the program.

Offerors are also expected to provide evidence of their team commitment to software development process capability and maturity. The evidence requested herein must be provided not only for the prime developer, but also for any suppliers and/or subcontractors that will perform significant software development, integration, or test activities. This commitment can be demonstrated in one of two ways:

a.
Offerors may submit the results of an independently-led Capability Maturity Model Integration (CMMI) appraisal that has been accomplished within the last two years. In this context, "independently-led" means the lead appraiser was at the time of the appraisal an SEI-Authorized SCAMPI Lead AppraiserSM, free of “conflict of interest” and separate from the appraised organizational entity. Appraisal team members must also be independent from / external to the offeror's business unit, division, or site that is proposing to perform the work. It is understood that such an appraisal does not guarantee the past or future performance of the appraised organizational entity. It is also noted that the Government may determine that the "shelf life" of such an appraisal expires sooner than two years, subject to events such as reorganizations of the organizational entity that was appraised. The Government retains the right to independently verify all appraisal results.

b.
Alternatively, offerors may undergo a focused development process capability / maturity appraisal led by the government acquisition organization. This evaluation will be based on the SDCE and / or the CMMI methods, and will focus on issues of specific interest to the Government.

In either case, the objective is to identify strengths, weaknesses, and risks associated with the proposed software development effort, and to ensure they are considered as part of the basis for award. Successful offerors should be required to address the identified weaknesses and risks via a corrective action plan after contract award.

Suggested Software Acquisition Content for Section L

The following suggested content may be tailored and adapted for use in RFP Section L. The offeror should expand the Statement of Work (SOW) wording to reflect proposed processes and development tasks.

Technical:

a.
Describe the key computer hardware and software characteristics of the system being proposed as the technical solution to the RFP requirements. Identify and discuss areas of technical risk.

b.
Discuss the concepts/measures for determining the "best" system performance including test approaches. Describe how your system approach will provide optimum system performance within overall mission time constraints. Describe your approach to supporting Government validation of the system capabilities, including analytic tools, graphical tools or third party tools, among others. Provide additional specific information for validation of system capabilities generated by your proposed approach, including analysis of algorithms, analysis trace tools and system performance simulation and validation tools.

c.
Identify your incremental development and verification process and your use of system analysis and trades, modeling and simulation, prototyping, etc. to mitigate technical and schedule risk. Discuss the complexity of the proposed system in terms of real-time requirements, including processor architecture and performance requirements, database size, etc.

d.
Discuss architectural issues, for both computer hardware and software, involved in interfacing the target processor and/or proposed components. Address specific isolation features within the software architecture that will allow portability of the software from one member of a processor family to another or to another processor family.

e.
Describe your engineering approach to achieving required weapon system performance and functionality over the full range of operation of the weapon system (including prospects / potential for system upgrade).

1.
Discuss how your allocation and design is portable within a processor family or to other processor families with minimal impact. Discuss how your verification approach is affected by your allocation and design approaches. Address the security aspects of your allocation of functions, model and/or data.

2.
Identify all data elements required by your algorithms, and the sources of those data elements. Determine which data are to be provided by external interfaces, which by a system module and what data would be system resident. Describe the sensitivities in your approach to variability and error in accuracy and resolution, in data required by your algorithms and models.

3.
Explain in detail the proposed approach to designing, developing, testing and delivering the system software; and integrating the system software and hardware into the weapon system. Explain how you will employ rapid prototyping. Identify technical risks and how they will be mitigated.

f.
Identify your needs for existing system assets (hardware, software, I/O capacity, and databases) to support development, integration, and test activities. Provide a schedule for development, integration, and test activities including the use of existing assets (GFE and/or CFE). In the schedule show milestones for completion of key software integration, system hardware/software integration and test, major system performance verification tests, environmental tests, flight tests, and their inter-relationships.

g.
Identify and discuss capabilities, other than those that have been defined as future/growth requirements, having the greatest technical and/or schedule challenge.

h.
Explain how you plan to manage the development and integration of future requirements into the system. Explain your technical approach to growth and portability of system software in the system/software architecture.

i.
Describe how system capabilities will be accessed through the user-system interface. Explain how your approach will ensure flexibility, portability, consistency, responsiveness, and smooth transition between functions and sub functions.

j.
Briefly outline your concept of life cycle system (hardware/software) support to include hardware and software upgrades, technology insertion / refresh, etc.

k.
Discuss how your approach ensures a robust system design (fault tolerant, allowance for manufacturing variability, etc.). Explain your approach to software development in the context of concurrent hardware/software development with critical timing, through-put, and memory constraints.

l.
Describe your process for establishing the CS&S architecture within the context of the overall system. Describe your process for selecting processor types and architecture, software architecture, and major interfaces. Include a description of how your process considers the incorporation of open architecture into the system design process.

m.
Provide a summary of the expected software/hardware sizing information using the Software Development Size and Schedule Summary or the Software Parametric Data Input Form. The CSCI / CSC functions identified should be based on the offeror's preliminary allocation of functions to hardware and software. Provide separate effort (hours) and schedule estimates for each CSCI / CSC function identified. Discussion, justification and validation for the functions and estimates shall be provided to support the information provided. Substantial subcontracted software development efforts should be separately addressed to provide appropriate visibility into strengths, weaknesses, and risks. [Note: need to reconcile wording with OSD requirement for Software Resources Data Report SRDR]
Process:

a.
Incorporate into the expanded (proposed) SOW those specific tasks necessary to define, develop, test and deploy the CS&S within the context of the overall system development. The CS&S expanded SOW shall be consistent with the development processes proposed in the SDP, IMP, IMS, and verification sections of the specifications.

b.
Submit a preliminary SDP that defines the processes planned for use in this development effort, coordinated and consistent with the IMP, IMS, SOO, SOW and Section 4 (verification) of the proposed specifications. The SDP shall fully describe the proposed software development, integrity, and quality processes. These software development processes should be traceable to past performance on applicable domain systems and to objective evidence.

Discuss your methodology for defining, managing, tracking and verifying computer resources (hardware/software) growth and reserve capacity requirements in the proposed specifications. Include your approach to growth analysis for each functional area considering the following: historical experience and risk, planned or predicted technology refresh or other upgrades to computer resources hardware, qualification of hardware necessary to support growth provisions, etc. Describe your process to derive, define, and specify intermediate software parameter (interface) tolerances to assure compliance with overall software, subsystem and system specified performance requirements. Describe your process to assure a complete definition of software requirements, including dependencies relative to timing. Describe your software risk management process as reflected in the IMP.

Proposed processes should be based on the tailoring of standard processes used on previous programs, standard commercial processes, and wholly new standard processes. The SDP shall address all software including both deliverable and non-deliverable products developed. The Government at its discretion may place the proposed preliminary SDP on contract. An outline of essential coverage and attributes for the software process (SDP) topics is provided below:

Development methodology

· Spiral, incremental, waterfall, evolutionary, etc.

· Prototyping and simulations

· Analysis and design methodology

· Design/coding standards

Development Process

· Requirements definition and allocation from the system level specification to software level

· Allocation of specific software requirements to identified block or builds

· Traceability

· Preliminary software design

· Detailed software design

· Code

· Unit test

· CSC integration & test

· CSCI integration & test

· System integration & test

· Other Development testing

· Flight testing

Development and Engineering Resources

· System/Software Engineering Environment (S/SEE)
· Includes requirements analysis and tracking tools, compilers, assemblers, editors, debuggers, configuration management tools, code analyzers, code auditors, simulations, software development libraries and files, software development labs, test/integration labs, etc.

Program Management

· Organizational relationships / responsibilities definition

· Sub contractor management

· SDP application/scope

· SDP use with subcontractors / associates (tiered SDPs)

· Flowdown of process requirements to subcontractors and impact on SDP

· Process to ensure consistency and integration of software schedules with IMP / IMS

· Risk Management

· Metrics definition and use

Configuration Management

· Functional Configuration Audit

· Physical Configuration Audit

· Problem identification / reporting / tracking / resolution

· Patch definition and control

Quality Assurance (QA)

· Quality Assurance Functions

· Software Product Evaluations

Training

Staffing

Margins, Reserve Capacity, and Growth

· Margin allocation / budgeting

· Computer resources reserve capacity / growth management (requirements definition and monitoring)

· Software size control (establishing and monitoring software size)

Capability Demonstrations (risk mitigation by demonstrating readiness prior to need)

· System / Software Engineering Environments

· Language capability

· Training

Internal Independent Verification and Validation (IIVV)

Documentation (capturing & maintaining design disclosure information)

· Tools

· Delivery (electronic)

· Content and format

· Networking among associates, subcontractors, SPO, and other government organizations

· Currency/change controls

· Process and documentation variability by software class (e.g. deliverable, test)

Software reuse (reusing existing software and designing for reuse)
c.
Explain your requirements process, addressing the development and baselining of system and software level requirements. Explain how your process provides traceability between the SRS and the System Specification and the Systems Requirements Document (SRD) provided with the RFP. Explain how your process addresses section 4 content that covers all Section 3 "shall" requirements. In addition, if the development approach is to be spiral or incremental, explain how your process identifies the spiral/increment in which each "shall" Section 3 requirement is to be verified.

d.
Describe your process for providing complete CS&S coverage in the proposed specification baseline. Discuss, as a minimum, your process for incorporating the following: requirements to meet overall system performance requirements, computer resources reserve and growth requirements, programming language, processing margins and parameter tolerances between software CSCIs and components, architecture, reusability, module size, module complexity, computer resources development and support systems (System/Software Engineering Environments) and computer resources security.

e.
Define and incorporate into the IMP you submit with your proposal the specific software events consistent with the development processes proposed. In addition, define and incorporate specific software event exit criteria for both the computer system specific and the system level events defined in the IMP. Define the software product completion criteria and methods of incremental verification to establish software product completion. These criteria shall be defined in the IMP under the "SD&D Completion Event" milestone and shall be consistent with Section 4 of the proposed specifications. Additionally, incorporate critical events for incremental (builds, blocks) software development and safety critical software development into appropriate sections of the IMP. See Appendix A, "Software in the Integrated Master Plan". The Government at it's discretion may place the proposed preliminary IMP on contract.

f.
Define and incorporate into the IMS you submit with your proposal the specific software tasks consistent with the development processes proposed. Task durations as well as resource loading shall be defined for each IMS software event.

g.
In order to ensure that offerors have the required software development capabilities, the government may conduct a Software Development Capability Evaluation (SDCE). The SDCE, if employed, should be conducted with the prime offeror and proposed team members and subcontractors who have significant software development responsibility. Specific RFP content for SDCE is provided below:

An SDCE evaluation will be based on an analysis of the following documentation that is to be submitted with the offerors’ proposals, and upon verbal responses obtained during SDCE site visits, if they are conducted. For instances of teaming and prime / subcontractor arrangements among offerors, it is the responsibility of the prime offeror to determine the required information (such as proposal information, SDCE question responses, and supporting data) that is to be supplied to the government by each member of the bidding team. The SDCE is intended to review the offeror's ability to develop software as well as the integration and executability of the SDP, IMS, IMP, and Section 4 (Verification) of the proposed specifications.

The following information in direct support of the SDCE is to be submitted with the proposal and will not be limited by the specified page counts for the proposal:

1.
Responses to the questions identified herewith (see tailored questions in attachment __). Responses to the questions should be provided directly in the documentation accompanying the proposal, such as the draft SDP, IMP/IMS, or other proposal volumes, to the extent possible. When responses to the SDCE questions are provided in other proposal information, specific page number and paragraph references should be provided with the response to the question. This approach is intended to reduce the SDCE preparation effort and eliminate duplication within the proposal. Responses, generally, should be concise and unambiguous, preferably not exceeding one page per response. Responses should be provided for the processes to be employed on the program by the offeror and any team members or subcontractors who will provide a significant portion of the software. Common processes require only one response. The response to one question may refer to the response to another, when appropriate.

2.
Substantiating documents must be submitted for all planned processes, whether employed by the prime offeror, team members, or subcontractors. Examples of substantiating documents include:

· Copies of corporate software-related procedure, process, standard, and practice descriptions that are relevant to the acquisition. (Also for each subcontractor and team member if different procedures, processes, or practices are to be employed.)

· Copies of documents that provide evidence of use of the proposed processes (e.g., development schedules, software development plans, software requirements specifications, test and integration plans, and procedures).

3.
For new processes not yet documented, describe the benefits and risks of using the new process and the rationale for employing them in lieu of examples of past application.

4.
The following forms must be completed and submitted with the proposal:

· Capability Definition Matrix (one per CCA)

· Capability Implementation Matrix (one per CCA)

· Cover Sheet for Project Sample Data for each sample submitted

The following documents required by this RFP package should reflect the systems and software engineering processes being proposed for this program:

1.
Proposal IMP/IMS, clearly indicating the temporal relationships (both sequential and parallel) of the system and software functions and showing that adequate time has been allocated for all required processes. Completion criteria for events should include system and software engineering process step completions.

2.
Proposal SDP. The SDP should include descriptions of the software engineering processes requested by the SDCE questions. This is essential to clarify the offeror’s intent to apply the processes and discipline to this program.

Note: The following attachments should be provided as part of the RFP:

1.
Tailored SDCE Questions

2.
Capability Definition Matrix (see, attachment 3-1)

3.
Capability Implementation Matrix (see attachment 3-2)

4.
Cover Sheet for Project Sample Data (see attachment 3-3)"

h.
Guidance for application of CMMI and SCAMPI appraisals is still under development.

i.
Describe your process for identifying CSCIs. Define the parameters used in the selection process (e.g. size, target processor, performance, cost, etc.). Describe how this process integrates with the system engineering requirements definition and allocation process.

j.
Describe how your CS&S work is defined within the Earned Value Management System (EVMS). Describe how this definition correlates with the Contract Work Breakdown Structure (CWBS), SOW, IMP and IMS. Describe your process for establishing software tracking and reporting within the EVMS. Define your guidelines for establishing software development work packages at the lowest level (e.g. max. hours, number of people, max. duration, duration between measurements milestones, etc.). Specifically address your process for establishing work packages whose size is consistent with timely identification of problems concerning actual expenditures versus earned value. Describe your criteria for taking earned value on individual tasks, e.g., 0 - 100%, 50 - 50%, supervisors estimate, percent complete, etc.

k.

As part of the proposal, provide a copy of the software cost data and assumptions used for all planned deliverable and non-deliverable software developed or used on this contract and previous contractual efforts. Provide the definitions used for software cost estimating for this contract and previous contractual efforts.

l.
As part of the proposed SDP, describe the software metrics intended for use on this development effort. Recommended software metrics are described in guidebook section 3.8. The offeror is encouraged to define additional specific metrics deemed beneficial considering the proposed development process and products. Describe how the metrics will be used to manage the software development effort. The offer shall define how metrics information will be communicated to the government. Describe how metrics will be adapted as the needs of the program change.

m.
Describe your process for providing the government with access to both developmental and product baseline data generated on the System/Software Engineering Environment (S/SEE). Describe your approach to availability and utilization of the S/SEE across the contractor (prime/sub/associate) and Government team members (applicable acquisition, logistics, test centers, etc.).

n.
Describe your process for selecting the programming implementation language for each CSCI or processor. Describe the risk management activities planned to achieve the required programming language capabilities consistent with the programs need dates. Describe how the selected programming language tools are integrated into the System/Software Engineering Environment. Describe the specific characteristics and parameters to be considered in the programming language selection process.

o.
Describe the software product engineering data that you will develop and maintain as part of the software development/sustainment effort. Provide rationale.

p.
Identify your expected needs for existing system assets (hardware, software, databases, etc.) to support your embedded computer resources development, integration, and test activities. Describe any assumptions regarding the content, completeness, and quality of proposed GFE / GFP.

q.
If you propose the use of either GFE and / or COTS software (modified and/or unmodified) define your process for product documentation. Discuss standards (format / level of content) for all deliverable / non-deliverable software/firmware documentation. Define your process for maintaining GFE and/or COTS equipment. Identify any GFE and/or hardware, software, and data limitations that may preclude the execution of the contract in accordance with the proposed system specification. Identify any risks associated with the use of GFE and/or COTS and define your risk mitigation plans. Specifically define your process for integrating existing COTS with newly developed hardware and software. Describe your approach to assure that the selected COTS & GFE will meet the performance and functional requirements in the system specification, consistent with your total system performance system responsibility.

r.
Provide a list of existing subsystems and/or software that will be modified or reused to meet the requirements of this program. Provide sizing information to the extent possible. Discuss reuse issues including risk, ownership rights and licensing, and product assurance. Discuss, as appropriate, the development processes that promote reuse for the current program and result in software that is reusable for future programs. Specifically note any proposed trade-offs in performance to allow higher levels of reuse with attendant program benefits.

s.

Describe your process to identify safety critical software and to ensure it will function safely relative to the CS&S implementation. Address the following:

1.
Hazard Analyses: Describe the techniques used to determine the safety critical functions and software components of these functions. Describe how this will be accomplished at the system and subsystem level for both requirements and design.

2.
Software Development Process: Identify and describe specific software development process methods, steps, and tools which will be applied to software components which are determined to be safety critical. Address the requirements through the design and implementation phases.

3.
Testing: Describe the verification methods utilized to ensure the integrity of safety critical function and their associated software. Describe how hazards associated with safety critical functions will be eliminated or controlled to an acceptable level of risk. Identify the role each of the following levels of testing plays in this verification process: system testing, subsystem testing, hardware/software integration testing, and all levels of software development testing. This needs to link to the overall DT&E and OT&E planning, including completion of the Verification Cross Reference Matrix and participation in DT&E/IOT&E.

t.
Describe in your proposed SDP, your process to define the mission critical software protection requirements. Address the following factors:

1.
Analyses to define system threats to and vulnerabilities of the weapon system development environment

2.
Analyses to define the requirements and the modes of operation of the development and support environment to protect against malicious infiltration of the environment.

3.
Analyses to define the requirements for protection against computer viruses (capable of self propagation through the system), sabotage, and insertion of hidden damage vehicles (e.g., deliberate errors) capable of disrupting either the development and support environment operation or the safety and operational effectiveness of the produced weapon system.

4.
Physical security, administrative controls, development system connectivity and the use of software systems and process designed to aid in maintaining system security and integrity.

5.
Protection requirements derived from operational requirements (as defined in the system specification) which impact the development environment, the weapon system design/architecture or it's operation

6.
Other factors, as defined by the offeror determined to be critical to the protection of the environment and the operational weapon system.

u.
Describe your computer resources support management process. Specifically address the computer resources support management process role in design and development, manufacturing planning, test and evaluation planning, and other key program events. Include discussion of the following elements in your description of your computer resources support management process:

1.
Computer resources support management process integration with the systems engineering process

2.
Computer resources support management integration into design trade studies

3.
Facilities and capital requirements for computer resources support management

4.
Computer resources support management integration with the integrated logistics support process.

5.
Computer resources support management integration with the computer resources working group

v.
Describe how the computer resources support management process is managed to ensure requirements are met. Describe the controls that are used for consistent application of this process. Describe your experience in using this process on other commercial or Government programs, the results obtained and any associated metrics. Identify any specific expertise required and how the required training/education is obtained.

Appendix D:
Suggested Software Content for Request for Proposal (RFP) Section M, “Evaluation Factors for Award”
Suggested Section M Language

The following criteria are provided as examples that can be applied in source selection for software intensive systems.

a.
The offeror proposes a sound system technical approach, including the associated embedded computer hardware and software, that is:

1.
Integrated with the overall systems engineering approach

2.
Compliant with technical requirements

3.
Within an acceptable level of risk. Risk assessments shall include sizing, timing, coding, test and documentation requirements.

b.
The offeror proposes a sound software development process that:

1.
Is fully defined in the SDP

2.
Is integrated with the IMP/IMS

3.
Is reflected in the SOW

4.
Provides incremental verification of the system and its associated (hardware and software) as specified in Section 4 of System Specification

c.
For RFPs that require a Software Development Capability Evaluation (SDCE), the offeror must demonstrate a capability compliant with the SDCE criteria as defined in AFMC Pamphlet 63-103, as tailored for this program. The basis of this evaluation shall be the offeror's SDCE responses submitted as part of proposal and results of on-site review(s) for offerors and related subcontractors. (Additional information is provided in suggested standards for the application of Development Process Capability / Maturity Appraisals below.)

d.
The offeror's structured software development approach will be evaluated relative to the following: software architecture; lines of code estimates for software proposed to be developed, modified and non-developmental software, and productivity; and software portability."

Each specific listed feature should be important for the source selection decision. For example, if software portability is a requirement but is really not expected to be a qualitative discriminator among the proposals received, leave it out. Ask yourself how you will use the information to enhance the comparative evaluation of the acceptable proposals and if you cannot think of a good answer, omit it. Any proposal that will be considered for award must first satisfy the minimum requirements of the solicitation. The "Basis for Award" language in Section M already covers the fact that an offeror must meet all of the Government's requirements.

Suggested Standards Related to Development Process Capability / Maturity Appraisals

Area:
Technical

Factor:
Development Process Capability / Maturity Appraisal

Subfactor:
Program Management

Description: The purpose of this functional area is to evaluate the program level management capabilities that relate closely to successful software management and development. These program-level management processes and procedures should be established, and should be consistent and compatible with the software engineering processes and procedures. Program management should provide visibility into the actual cost, schedule, and technical progress of the program.

Standard: The proposal defines an adequate management approach, the ability to implement the approach, and the commitment to apply the approach to meet program needs and criteria for the following capability areas:

a.
Management Authority, Responsibility, and Accountability

b.
Program Planning and Tracking

c.
Subcontractor Management

d.
Legal and Contracting Issues

e.
Risk Control

Area:
Technical

Factor:
Development Process Capability / Maturity Appraisal

Subfactor:
Systems Engineering

Description: The purpose of this functional area is to focus attention on those aspects of systems engineering that have the greatest potential impact on a successful software development effort in terms of development schedule, development and life cycle cost, system quality, and support for a fielded system that meets user needs.

Standard: The proposal defines an adequate systems engineering approach, the ability to implement the approach, and the commitment to apply the approach to meet program needs and criteria for the following capability areas:

a.
System Requirements Development, Management, and Control

b.
Computer System Architecture Design and Review Process

c.
Supportability

d.
Intergroup Coordination

e.
Systems Engineering Planning

f.
System Integration and Test

g.
Reuse

Area:
Technical

Factor:
Development Process Capability / Maturity Appraisal

Subfactor:
Software Engineering

Description: The purpose of this functional area is to evaluate capabilities for the management and engineering development of the software product. This area focuses attention on generation of the software development plan; estimation of size, cost, and schedule; definition of development methodologies; tracking and reporting against the plan; and development and control of the software requirements, design, code, integration, and testing.

Standard: The proposal defines an adequate software engineering approach, the ability to implement the approach, and the commitment to apply the approach to meet program needs and criteria for the following capability areas:

a.
Software Development Planning

b.
Software Project Tracking and Recording

c.
Software Requirements Management

d.
Software Design

e.
Software Code and Unit Testing

f.
Software Integration and Test

Area:
Technical

Factor:
Development Process Capability / Maturity Appraisal

Subfactor:
Quality Management and Product Control

Description: The purpose of this functional area is to assure the quality of the program's software products and establish and maintain their integrity throughout the program's life cycle. Quality management involves defining, planning, implementing, and monitoring quality goals. Product control involves identifying the software configuration, systematically controlling changes to the configuration, developing documentation, and maintaining the integrity and traceability of the configuration throughout the life cycle.

Standard: The proposal defines an adequate quality management and product control approach, the ability to implement the approach, and the commitment to apply the approach to meet program needs and criteria for the following capability areas:

a.
Software Quality Management

b.
Software Quality Assurance

c.
Defect Control

d.
Metrics

e.
Peer Reviews

f.
Internal Independent Verification and Validation (IIV&V)

g.
Software Configuration Management

h.
Documentation

Area:
Technical

Factor:
Development Process Capability / Maturity Appraisal

Subfactor:
Organizational Resources and Program Support

Description: The purpose of this functional area is to evaluate organizational resources to the extent they are applied to support the proposed program.

Standard: The proposal defines an adequate organizational resources and program support approach, the ability to implement the approach, and the commitment to apply the approach to meet program needs and criteria for the following capability areas:

a.
Organizational Standards and Procedures

b.
Facilities

c.
Training

d.
Human Resources

e.
Technology Assessment and Transition

f.
Organization Process Management

g.
System/Software Engineering Environment

Area:
Technical

Factor:
Development Process Capability / Maturity Appraisal

Subfactor:
Program Specific Technologies

Description: An evaluation will be made to address specific technologies or application areas to be applied to this program which are not typically required on most programs. These areas will be evaluated only if the application areas / technologies are included as part of the offeror's proposed approach.

Standard: The proposal defines an adequate approach, the ability to implement the approach, and the commitment to apply the approach to meet program needs and criteria for the following capability areas:

a.
Artificial Intelligence

b.
Safety Critical Digital Systems

c.
Etc. (other technologies as required)

Appendix E:
Contracting Considerations for Software
Background

There are a number of pitfalls to be avoided when contracting for software intensive systems. They include ensuring the government does not become responsible for failure on the part of the contractor due to government furnished software that fails or does not perform as expected. Another is applying an improper type of contract for software development. Yet another is establishment of incentives through award fee type contracts that do not focus on the aspects of contractor performance that result in rapid delivery of capability to the warfighter.

The objective of this section is to ensure software intensive contracts are structured properly to avoid undue risk associated with government furnished software and to provide incentives for the software developer to achieve performance, cost, schedule and life-cycle support goals.

Government Furnished Software

Program offices are cautioned against providing software as Government Furnished Equipment / Government Furnished Property (GFE/GFP) to the development contractor. This includes software tools to support the development process.

Air Force policy for providing software as GFE/GFP was previously contained in AFR 800-14, Para 3-14c, which stated: “Government provided software tools (for example: compilers, emulators, pre-processors) will not be used to support contracted development efforts unless those tools are made available for evaluation by prospective vendors prior to being placed on contract, and government provided support for those tools is available.” While AFR 800-14 has been rescinded, this guidance is still sound.

Programs have historically used government furnished software tools because of expected risk reduction and cost and schedule savings. These tools have often not performed as expected because they were not fully matured or because of differences in how they were used from program to program. In all known instances, the government has been held responsible for any impacts to the system development when government furnished tools did not perform as expected.

The preferred approach is to specify the requirements in performance terms, and then require the development contractor to select his own tools based upon his analysis of those tools and software available in the marketplace. This approach allows the development contractor the opportunity to assess the maturity and product quality of the candidate software packages and to arrange for the support of the tools without putting the government in the middle.

There are cases in which it is clearly advantageous to provide government-owned software. It is preferred in these cases to structure the contract such that the Government is not made responsible for the performance, support, or maintenance of the government-provided software. One approach to consider is providing the software pursuant to FAR 52.245-19, government Furnished Property “as is.” These concerns should be brought to the attention of the contracting officer during acquisition planning to ensure that the situation is appropriately addressed in the contract.

Software Co-Developed by the Government

Some recent programs have incorporated Government software through a co-development arrangement where a government entity enters into a type of subcontract or partnering agreement with the prime contractor. In this case, the government entity is treated as a subcontractor during the source selection, and personnel working for the government entity are prohibited from participating in the source selection except through contractor discussions. Strengths, weaknesses, and risks associated with the government entity’s software development capabilities must be assessed just as for any other proposed software developer.

Steps For Dealing With Government Furnished Software

For Government Off-The Shelf (GOTS) software, execute the acquisition management processes of Attachment 8, “Accommodate Application and Sustainment of Non-Developmental Software”. Apply all applicable acquisition management processes to government furnished software currently in development or being modified just as you would for contractor developed software. Also, establish clearly in the contract the responsibilities of each party in dealing with government furnished software, especially if it contributes to a failure to meet contract requirements.

Contract Types for Software Development

Contract type is an important consideration in acquisition of software based systems. For a given acquisition program, contract type will likely be determined during formation of the acquisition strategy.

The two major contract types typically used for weapon system acquisition are cost reimbursement and fixed price. Fixed price contracts are best applied in situations where development risk is small and requirements are stable and well understood. Limited development risk allows the contractor to cover the risk at a reasonable price. Requirements should be well understood so the government does not have to constantly modify the contract to meet the needs of the user. Weapon system software development does not typically fit this scenario.

Cost reimbursement type contacts are much more common for software intensive weapon system development. Cost reimbursement type contracts can be implemented with fixed or variable fees as follows:

· Cost Plus Fixed Fee (CPFF), which provides a fixed fee dollar amount but no incentives cost control, schedule, or performance.

· Cost Plus Incentive Fee (CPIF), which provides for objective incentives for cost control that are defined in the contract. There are no incentives for performance or schedule.

· Cost Plus Award Fee (CPAF), which provides for subjective incentives for management, cost, performance, schedule etc. The incentives can be revised periodically to emphasize different, important aspects of contract performance (e.g. design at the beginning of the contract and flight test performance and support at the end).

For major development programs, the most common contract type is CPAF.

The basic characteristics of each contract type are determined in each case by the specific wording of the contract (most notably in the special provisions), so generalizations may not always hold. It is advisable to consult with your Contracting Officer in addition to the EN home office to understand the characteristics of a specific contract. Nevertheless, the table below contrasts some observed general characteristics of fixed price vs. cost reimbursement type contracts:

	Characteristic
	Fixed Price (Firm Fixed-Price (FFP)
	Cost Reimbursement or Fixed-Price Incentive (FPIF)

	Contractor provided Software Cost Estimates
	Estimated at higher confidence levels
	Estimated at lower confidence levels

	Contractor provided Software Schedule Estimates
	Estimated at higher confidence levels to control costs
	Estimated at lower confidence levels

	Requirements compliance
	Mandatory
	Best Effort

	Requirements wording
	Extremely precise or a specific product description, less functional based
	Precise but less specific, more functional based

	Visibility into actual cost incurred
	None
	Required at specific WBS levels

	Visibility into earned value status
	Possible
	Required at specific WBS levels

	Cost Overruns
	Borne by Contractor
	Borne by Government (CPFF)

Partially borne by Government (CPIF or FPIF)

	Process compliance (e.g. SDP)
	Little or no emphasis
	More emphasis

	Schedule compliance
	Schedule compliance inherent and enforceable through the contract. You can include additional incentives for schedule performance.
	Schedule compliance inherent and enforceable through the contract. Award fee or performance incentives can provide additional incentives for schedule performance.

	Requirements flexibility
	Strictly controlled. Minimal flexibility. Contract changes may be costly
	Spec and lower level requirements more flexibly implemented. Requirements changes can still be costly.

	Constructive changes
	Not allowed
	Not allowed

Award Fee Approach

Successful application of award fee incentives, especially for software intensive contracts, seems to be an elusive goal. There is much dissatisfaction with the award fee process including:

· Assessments take too much program office manpower

· Tendency to award 100% until / unless program is in obvious trouble

· Award fee is rolled over so contractor eventually receives awards initially withheld

· Award fee incentives -- conducting meetings instead of delivering products

There is no magic bullet to alleviate these problems. Some of this dissatisfaction can be nevertheless be alleviated through careful award fee planning.

Even though the award fee can legitimately be assessed subjectively, subjective assessments may be overridden as part of the reconciliation process. Consequently, award fee assessments are best based on objective measurable criteria. Care should be taken in selecting these objective criteria to avoid unintended effects. For example, using software development productivity as criteria may influence the developer to cut corners and lower the quality of the product.

Award fee can be based on any balanced set of objective criteria that address issues important to the program. If properly constructed, the Integrated Master Plan (IMP) is a good source of such criteria. Then to insure software is adequately addressed in the award fee, the following approach is suggested:

· Establish key software accomplishments in the Integrated Master Plan (IMP).

· Focus on timely completion of IMP significant accomplishments in the Award Fee Plan.

Guidance on establishing software accomplishments in the IMP is provided in Appendix A.

Contract Clause Language

The program office may wish to incorporate appropriate contract clauses in the model contract to address the following areas:

· Intellectual property rights: Refer to "Intellectual Property: Navigating Through Commercial Waters", USD(AT&L), 2001. Available at http://www.acq.osd.mil/dpap/guidebooks/index.htm
· Escrow

· Warranty

· Licensing

· Government furnished equipment / government furnished property (GFE/GFP)

Software Contract Line Items (CLINs)

Separate CLINS can be established for software if software is a separate deliverable under the contract. Identifying software is as a contract line item in the model contract included in the RFP ensures that software has appropriate visibility and accountability, and aids in the reporting of software cost.

Critical Processes

The government ensures its rights to expect the contractor to perform to his critical processes by placing essential development processes on contract. The Integrated Master Plan (IMP) is the vehicle to accomplish this, together with the contractor's Software Development Plan (SDP), which contains descriptions of these processes.

Coordination with Defense Contract Management Agency (DCMA)

DCMA can play a vital role in monitoring the execution of the process through memorandum of agreements (MOAs) or similar instruments. The program office and DCMA need to define the DCMA role in the program. This can start as early as the RFP generation phase. DCMA experts in the software development process should be invited to participate in process capability / maturity appraisal teams for added insight into the developer's processes.

Appendix F:
Computer Systems and Software Criteria for Technical Reviews

This appendix defines Computer Systems and Software (CS&S) related criteria for the typical systems and software-engineering technical reviews. It provides an overview of the objective of each review, as well as inputs and outputs. The reviews addressed here include:

-
CS&S Support to the System Requirements Review (SRR)

-
CS&S Support to the System Functional Review (SFR)

-
Software Specification Review (SSR)

-
CS&S Support to the System Preliminary Design Review (PDR)

-
Software Preliminary Design Review (PDR)

-
CS&S Support to the System Critical Design Review (CDR)

-
Software Critical Design Review (CDR)

-
Software Test Readiness Review (TRR)

-
Software Functional Configuration Audit (FCA)

-
CS&S Support to the System Functional Configuration Audit (FCA)

-
CS&S Support to the System Verification Review (SVR)

-
Software Physical Configuration Audit (PCA)

-
CS&S Support to the System Physical Configuration Audit (PCA)

CS&S Support to the System Requirements Review (SRR)

The System Requirements Review (SRR) is a requirements definition activity and review which is normally accomplished in the C&TD phase. The SRR focuses on evaluation of the Mission Area Analysis (MAA), the draft system level specifications, and other associated systems engineering documents. The purpose of the SRR is to ensure that the system requirements have been completely and properly identified and a mutual understanding between the government and the contractor exists. Particular emphasis is placed on ensuring that adequate consideration has been given to logistics support, software, test, and production constraints.

This activity is essential to fully establish, understand and define the CS&S requirements in the system requirements definition process. In concert with acquisition reform, it is expected that this event would be handled as a technical interchange meeting between the knowledgeable engineers and other program participants close to the specifics of the program. (This assumes that the contractors decide to perform an SRR event in their systems engineering process in the IMP, and that they involve the acquisition program office in the event.) For systems involving significant exploitation of CS&S technology integral to the system requirements and architecture with follow-on CS&S development, a senior CS&S engineer should be involved in this SRR process. Consistent with the Integrated Master Plan / Integrated Master Schedule (IMP/IMS) process, the key is to identify and establish relevant CS&S exit criteria.

Inputs/Entry Criteria:

-
Draft system specification with CS&S performance (specific and implied) requirements, including CS&S verification requirements

-
CS&S architectures as integral to the system architecture

-
Candidate CS&S technologies identified

-
CS&S coverage in the draft Single Acquisition Management Plan (SAMP) and IMP

-
CS&S related trade studies and effectiveness studies identified

Outputs (Exit Criteria):

-
CS&S requirements defined in the complete draft system specification, including specific verification requirements

-
Identification and assessment of key CS&S technologies to be exploited/applied, including a strategy and process to mature the higher risk technologies

-
CS&S requirements in the draft interface specifications and control documents

-
CS&S risks identified, with a risk mitigation approach

-
CS&S demonstrations and prototyping plans are defined

-
Preliminary software development process defined and documented

-
Initial software development size estimates defined

-
Software trade-offs addressing COTS, reuse, development risks ,and architectures are identified and planned

-
Initial allocation of functional requirements to subsystems and to hardware and software are defined

-
Initial system / software engineering environment (S/SEE) (i.e. integrated system and software development tool requirements defined)

-
Software development training requirements identified

-
Preliminary EMD software development estimates established; effort, schedule, and cost analysis

-
Programming languages and architectures, security requirements and, operational and support concepts have been identified

-
Preliminary software support data defined

CS&S Support to the System Functional Review (SFR)

The System Functional Review (SFR), (may also be called System Design Review), is normally accomplished as part of the C&TD phase of the acquisition / development process. These activities establish the CS&S requirements and technical considerations in the SFR and requirements confirmation process. For systems involving significant CS&S technology integral to the system requirements and architecture, this event should involve senior CS&S engineers working as members of a systems engineering team. Consistent with the IMP/IMS process, the key is to identify and establish relevant CS&S exit criteria. Note: If the C&TD phase is skipped (i.e. the program goes directly into SD&D), the system functional and performance requirements must still be established through a formal systems engineering activity/event. Consistent with clear accountability in design (CAID), the lower level subsystems and configuration baselines may be identified and managed as contractor-controlled developmental baselines during the SD&D phase.

Inputs/Entry Criteria:

-
All planned reviews completed, with all CS&S issues resolved or documented with a plan of action to resolve, including a date to reach resolution without program impact

-
Completed system specification with CS&S functional/performance (specific and implied) requirements, including CS&S verification requirements

-
CS&S architectures are defined integral to the system architecture

-
Planned CS&S trade studies have been completed

-
Computer system architectures defined

-
Subsystems identified, including all computer software configuration item specifications (CSCI) drafted

Outputs (Exit Criteria):

-
CS&S requirements defined in the system specification, including specific verification requirements are complete and baselined as part of the system specification

-
Draft subsystem/allocated functional specifications, including CS&S requirements are completed

-
Draft contractor-allocated preliminary software requirements specifications (CSCI development specifications), including verification requirements, and interface requirements specifications (IRS) are defined

-
Development specification tree is defined through subsystems and configuration items, including interface specifications

-
System/segment design approach is defined, including CS&S architecture

-
Software development process defined and reflected in the IMP

-
Preliminary identification of the system/software engineering environment (S/SEE) i.e. integrated system/software tool set, is defined

-
CS&S design/development approach confirmed through analysis, demonstrations, and prototyping

-
Software process IMP/IMS events, schedule, task definitions and metrics are defined for the next acquisition phase

-
Software requirements traceability defined through the higher tier specifications to the system/subsystem requirement

-
CS&S risk management strategy and approach established for the SD&D phase

-
Preliminary software risk management process defined and integrated with the system risk management process

-
All software development work, consistent with the contractor’s software development process for the SD&D phase, is defined in the contract work breakdown structure (CWBS)

-
Software development estimates for the SD&D phase have been completed

Software Specification Review (SSR)

A Software Specification Review (SSR) is conducted for each Computer Software Configuration Item (CSCI) after the System Functional Review (SFR), but prior to the initiation of top-level design for the individual CSCI. The review is part of the overall systems engineering process of allocating and formally defining requirements and must occur after the system level hardware/ software allocation decisions have been made. This activity is normally held early in the System Development and Demonstration (SD&D) phase. Emphasis is on demonstrating the adequacy of the internal development baselines, including the software requirements specification (SRS) and interface requirements specification (IRS). This activity establishes the allocated developmental baseline for the CSCI. In concert with acquisition reform, it is expected that this event would be handled as a technical interchange meeting between the knowledgeable software engineers and other program participants close to the specifics of the program. Consistent with the Integrated Master Plan (IMP) / Integrated Master Schedule (IMS) process, the key is to identify and establish relevant computer systems and software (CS&S) exit criteria. [This assumes that the contractor decides to perform an SSR as an event in their systems engineering process in the IMP, and they involve the acquisition program office in the event]. If the SSR activity and event are not included in the offeror’s / contractor’s IMP/IMS, the activities and the exit criteria should be identified as part of the next event, which is most likely Preliminary Design Review (PDR).

Tasks performed as a part of this review include:

-
ensuring the SRS performance requirements are feasible, complete, and consistent with the higher level specification requirements (establish traceability)

-
ensuring all derived requirements have been identified and documented

-
ensuring the requirements as stated are testable and measurable

-
ensuring there are complete verifiable requirements for all performance requirements, i.e., section 4 is complete and consistent with section 3

-
evaluating reserve capacity requirements and scenarios / procedures for measurement

-
evaluating agreements on interfaces and boundaries

-
evaluating results of functional analyses

-
evaluating requirements allocation decisions

-
evaluating identified software risks and proposed mitigation methods

-
evaluating proposed top level software architecture

-
evaluating trade studies and feasibility analyses

-
evaluating applicable design constraints

-
evaluating applicable human factors considerations

-
examining the proposed software development processes.

Inputs/Entry Criteria:

-
Draft SRSs and IRSs for all CSCIs to be reviewed

-
Baselined higher level (system and subsystem) specifications

-
Software risk management approach and analysis results

-
Software work packages defined

-
Draft allocation of requirements to Computer Software Components (CSCs)

-
Software Development Files (SDF) formats and tools for establishment and maintenance

-
Functional analysis results

-
Software architecture studies and analysis

Outputs (Exit Criteria):

-
Subsystem and functional issues have been resolved

-
Computer software subsystem requirements are traceable to higher level requirements

-
The set of requirements incorporates the functionality that must be implemented

-
The internal development baselines (SRS and IRS, if applicable) are established

-
The software and interface requirements are allocated to CSCIs and CSCs

-
Cost, schedule, and performance risks have been identified

-
Risks are acceptable and the software development risk management process is defined and integrated with the system risk management process

-
Requirements are allocated to planned increments, e.g. blocks

-
Software development schedules, down to and including the software work package schedules, reflect and accommodate contractor selected processes and defined IMP events

-
Required software integration and test tools and facilities are defined

-
Life-cycle software support requirements are compatible with, and incorporated into, the system lifecycle resource requirements

-
Methods are defined to manage and control the growth of the software during the development phase

-
Metrics to be used by the developer are defined and implemented where applicable

-
Software development size, staffing, schedule, and cost estimates are updated

-
The system/software engineering environment (S/SEE) requirements are defined

CS&S Support to the System Preliminary Design Review (PDR)

This activity addresses the computer system and software (CS&S) design as part of subsystem and system-level preliminary design reviews. Preliminary design reviews (PDRs) form the basis for determining whether a preliminary architecture and design approach for a configuration item are acceptable to start detailed design. PDRs are normally accomplished as part of the SD&D phase of the acquisition/development process. These reviews should be held at various levels of the system development, consistent with the specification tree structure, including configuration item (CI), aggregations of CIs, subsystem, and system. This activity addresses the computer system and software (CS&S) design as part of the subsystem and system level preliminary design reviews. (The CSCI level PDRs are described below.)

PDRs and other major system reviews should be conducted as technical interchange meetings among the knowledgeable stakeholders on the program responsible for the engineering development progress and status of the development effort. It is incumbent upon development contractors to conduct design review activities which are appropriate for the complexity, life cycle, and degree to which the development at hand is similar to previous developments. Acquisition personnel must ensure that contractor processes entail appropriate design activities, and that adequate customer interface and visibility is maintained. Technically knowledgeable members of the Integrated Product Team (IPT) from the acquisition and supporting organizations should be invited to attend. For systems involving significant CS&S technology integral to the system design, this event should involve senior CS&S engineers working as members of the IPT. Consistent with the Integrated Master Plan (IMP) / Integrated Master Schedule (IMS) process, the key is to identify and establish relevant CS&S exit criteria. PDR (with its completion criteria) should be accomplished in accordance with plans established and committed to in advance by the contractor in the IMP/IMS and software development plan (SDP).

At the conclusion of preliminary design, a configuration controlled development specification or description must be complete and ready for use in detailed design. The system level PDR or equivalent review should be held for complex systems after completion of all software or other lower level reviews and before detailed design begins.

The CS&S requirements specifications should be reviewed for changes and traceability to the preliminary design. Conversely the CS&S design should be reviewed to determine that it fully implements the higher-level functional/design architecture and specified requirements. Impact of changes in requirements should be analyzed for impact to the design. Where necessary, requirements could be reallocated and designs adjusted to be consistent and complete. Analysis should include internal and external interfaces. The verification requirements and procedures should be analyzed for consistency and completeness. Where incremental development is being used, allocation of software requirements to increments (e.g. blocks) should be reviewed for consistency and completeness.

Allocation of functional requirements to elements of the software architecture should be analyzed for consistency and completeness. Where incremental development is being used, allocation of software requirements to increments (e.g. blocks) should be reviewed for consistency and completeness.

Each PDR ensures the process used to arrive at functional and performance requirements for each configuration item is complete, including trades and allocations; that it demonstrates a balanced and integrated approach; and that it establishes an audit trail from functional baseline to customer requirements, substantiating changes as necessary. The reviews ensure that selected design approaches are confirmed through evaluation of risk mitigation and resolution. The physical architecture and design is assessed to determine adequacy, completeness, and realism of proposed development functional requirements. Finally, the reviews confirm that the integrated system meets functional baseline requirements and that the system preliminary design meets customer requirements.

Inputs/Entry Criteria:

-
System/subsystem functional and performance requirements baseline, including the SRS baseline and any changes since the Software Specification Review (SSR)

-
Preliminary system software and CSCI architecture is established and accommodated within the system architecture

-
CS&S specified requirements and preliminary design are satisfied or accommodated by the subsystem/system design architecture and approach

-
Preliminary CS&S designs are complete and accommodated in the system architecture and design

-
CS&S functional performance interface requirements

-
CS&S design implementation trade studies

-
Make/buy decisions

-
Compatibility between the CS&S and all configuration items

-
Interchangeability/replaceability decisions baselined

-
Scheduled CSCI (CS&S) and subsystem PDRs have been successfully completed per established exit criteria

-
ECPs including CS&S impacts

Outputs/Exit Criteria:

-
Complete preliminary CS&S (CSCI and interface) designs are established, documented, reviewed, accommodated within the system/subsystem design, and determined to be ready for detailed design

-
Confirmation that the CS&S specified requirements are satisfied by the design architecture and approach

-
System/Software Engineering Environment (S/SEE) requirements and configuration are defined and internally controlled

-
Software increments (blocks and builds) defined and allocated

-
Commercial Off-the-Shelf (COTS) and reusable software identified and verified to meet requirements

-
Software test plans complete

-
Software development progress metrics are updated to reflect current development and design status

-
Software development files are established and maintained current

-
Software development estimates (effort and schedule) are updated

-
Life-cycle software support requirements are updated

-
Approval to start detailed subsystem / system design

Software Preliminary Design Review (PDR)

The preliminary design review (PDR) forms the basis for determining whether a preliminary architecture and design approach for a configuration item is acceptable to start detailed design. It is incumbent upon development contractors to conduct design review activities which are appropriate for the complexity, life cycle, and degree to which the development at hand is precedented in previous similar developments which are available to the contractor. Maintaining a proper level of development activity and rigor is critical to program success. Acquisition personnel must ensure that contractor processes entail appropriate design activities, and that adequate customer interface and visibility is maintained. This section provides guidance concerning typical content which should be expected in software preliminary design review activities, as well as completion criteria to be satisfied. Consistent with acquisition reform initiatives, it is expected that the review itself will be conducted by the contractor as a Technical Interchange Meeting (TIM). Technically knowledgeable members of the Integrated Product Team (IPT) from the acquisition and supporting organizations should be invited to attend. For systems involving significant CS&S technology integral to the system design, this event should involve senior CS&S engineers working as members of the IPT. Consistent with the Integrated Master Plan (IMP) / Integrated Master Schedule (IMS) process, the key is to identify and establish relevant CS&S exit criteria. PDR (with its completion criteria) should be accomplished in accordance with plans established and committed to in advance by the contractor in the IMP/IMS and software development plan (SDP).

At the conclusion of software preliminary design, a configuration controlled development specification or description must be complete and ready for use in detailed design. For complex systems, a system level PDR or equivalent review should be held after completion of all software or other lower level reviews and before detailed design begins.
A software PDR is normally one of a series of subsystem (lower-level) PDRs held in EMD for each configuration item or aggregate of configuration items, leading to a system PDR for completion. Each PDR ensures the process used to arrive at functional and performance requirements for each configuration item is complete including trades and allocations; that it demonstrates a balanced and integrated approach; and that it establishes an audit trail from functional baseline to customer requirements, substantiating changes as necessary. The reviews ensure that selected design approaches are confirmed through evaluation of risk mitigation and resolution. The physical architecture and design is assessed to determine adequacy, completeness, and realism of proposed development functional requirements. Higher level configuration items (integration and interface) are assessed to ensure they satisfy their portion of the functional baseline. Finally, the reviews confirm that the integrated system meets functional baseline requirements and that the system preliminary design meets customer requirements.

Inputs (Entry Criteria):

-
System/subsystem functional and performance requirements baseline, including the SRS baseline

-
Preliminary computer software configuration item (CSCI) architecture

-
Preliminary CS&S designs

-
CS&S functional performance interface requirements

-
CS&S design implementation trade studies

-
Make/buy decisions

-
Compatibility between all configuration items

-
Interchangeability/replaceability decisions baselined

Outputs (Exit Criteria):

-
Software risk management process defined and implemented

-
Software architectural level design established

-
System / Software Engineering Environment (S/SEE) requirements and configuration are defined and internally controlled

-
Preliminary software design is defined and documented

-
Software requirements baseline is verified to satisfy system/subsystem functional and performance requirements baseline (complete or approved)

-
Software increments (blocks and builds) defined and allocated

-
Preliminary Interface Control Document (ICDs) defined

-
Software metrics defined and implemented

-
Software test plan defined and documented

-
Commercial Off-the-Shelf (COTS) and reusable software identified and verified to meet requirements

-
Life-cycle software support requirements updated

-
Software development process defined and implemented

-
Software development estimates updated

-
Preliminary allocated baseline is ready for start of detailed design for each software item

-
Software item is approved to start detailed design

CS&S Support to the System Critical Design Review (CDR)

CDRs are normally accomplished as part of the SD&D phase of the acquisition/development process. These reviews should be held at various levels of the system development, consistent with the specification tree structure, including critical item (CI), aggregations of CIs, subsystem, and system. This activity addresses the computer system and software (CS&S) design as part of the subsystem and system-level critical (detail) design reviews (the software CSCI-level CDRs are described below). Consistent with acquisition reform, CDRs and other major system reviews are to be conducted as technical interchange meetings among the knowledgeable stakeholders on the program responsible for the engineering development progress and status of the development effort.

The CS&S requirements specifications would be reviewed for changes and traceability to the detailed design. Conversely the CS&S design would be reviewed to determine if it fully implements the higher-level functional/design architecture and specified requirements. Impact of changes in requirements would be analyzed for impact to the design. Where necessary, requirements could be reallocated and designs adjusted to be consistent and complete. Analysis should include internal and external interfaces. The verification requirements and procedures should be analyzed for consistency and completeness.

Allocation of functional requirements to software configuration items, components, and units should be analyzed for consistency and completeness. Where incremental development is being used, allocation of software requirements to increments (e.g. blocks) should be reviewed for consistency and completeness.

Inputs (Entry Criteria):
-
Software requirements developmental (contractor) baseline(s) confirmed to satisfy system/subsystem requirements baselines

-
Software increments planned and defined, e.g. blocks, including requirements allocated to the planned and defined increments

-
Software system architectural level design established

-
Confirmation that the CS&S specified requirements are satisfied by the design architecture and approach

-
Scheduled CSCI (software) and subsystem CDRs have been successfully completed per established exit criteria

-
Complete detail level CS&S designs

-
CS&S specifications, including changes since PDR

-
ECPs including CS&S impacts

Outputs (Exit Criteria):

-
System/software engineering environment (S/SEE), the integrated software development toolset, is implemented and ready to support the code and unit test phase

-
Complete detail level CS&S designs reviewed and determined to be ready for implementation

-
Confirmation that the CS&S specified requirements are satisfied by the design architecture and approach

-
CS&S metrics tracking development status and progress

-
Software (CSCI) detail level design established

-
Software test descriptions complete

-
Draft software test procedures complete

-
Detailed software design and interface descriptions complete

-
Software development progress metrics updated to reflect current development and design status

-
Software development files established and maintained current

-
Software development estimates updated

-
CSCI interface control documents (ICDs) are defined in the developmental baseline

-
Software metrics are defined

-
Life-cycle software support requirements are updated

-
CSCI design approval to start code and unit test

Software Critical Design Review (CDR)

Software Critical Design Reviews(CDRs) should be performed at the computer software configuration item (CSCI) level for programs which are major (large) or software intensive development programs. This is consistent with performing CDRs at the CI level and these reviews activities should be accomplished prior to and as a input criteria condition of proceeding with the higher level reviews. The primary purpose of the software CSCI CDR is to determine if the completed detailed design meets the specified requirements established in the pertinent developmental baseline (functional/performance) specification, and the design is complete and ready to be implemented, i.e., coded and unit tested. Consistent with acquisition reform, CDRs should be proposed as part of a contractor’s IMP/IMS/systems engineering process.

The Software Requirements Specifications (SRSs) should be reviewed for changes and traceability to the completed detailed design. Impact of changes in requirements would be analyzed for impact to the detailed software design. Where necessary, software requirements could be reallocated and designs adjusted to be consistent and complete. Analysis should include internal and external interfaces. The verification requirements and procedures should be analyzed for consistency and completeness.

Software CSCI designs should be analyzed for consistency with the CS&S design architecture and interfaces with other elements of the system design. Where incremental development is being used, the CSCI design should be reviewed for completeness and consistency for each increment scheduled to be completed, i.e. the detailed design completed as part of this review. Design allocations between and among the planned increments should be analyzed and reviewed.

Inputs (Entry Criteria):
-
Software CSCI requirements developmental (contractor) baseline(s) confirmed to satisfy system/subsystem requirements baselines

-
Software CSCI increments planned and defined, e.g. blocks, including requirements allocated to the planned and defined increments

-
Software system architectural level design established

-
Confirmation that the CS&S specified requirements are satisfied by the design architecture and approach

-
Current software CSCI metrics tracking development status and progress

-
Complete detail level CS&S designs

-
CS&S specifications, including changes since PDR

-
ECPs including CS&S impacts

Outputs (Exit Criteria):

-
Detail level software CSCI designs established and reviewed and determined to be complete and ready for implementation

-
Confirmation that the software CSCI requirements, as specified in the contractor developmental baseline specifications, are satisfied by the detailed design description

-
Software CSCI test descriptions complete

-
Draft software CSCI test procedures complete

-
Detailed software CSCI design and interface descriptions complete

-
Software CSCI development progress metrics updated to reflect current development and design status

-
Software CSCI development files established and maintained current

-
Software CSCI development estimates updated as part of the balance and control process

Software Test Readiness Review (TRR)

The Computer System and Software (CS&S) Test Readiness Review (TRR) is a software-only activity conducted as a part of the System Development and Demonstration (SD&D) phase. This activity is performed to ensure the software is ready to enter Computer Software Configuration Item (CSCI) level testing. In concert with acquisition reform, it is expected that this event would be handled as a technical interchange meeting between the knowledgeable software engineers and other program participants close to the specifics of the program. Consistent with the Integrated Master Plan / Integrated Master Schedule (IMP/IMS) process, the key is to identify and establish relevant computer systems and software (CS&S) exit criteria.

The Test and Evaluation Master Plan (TEMP), or its functional equivalent, is the basis for the software test planning and readiness activity leading to the TRR. The developer’s software development process is the other key input to TRR planning. Key features and subsystems, interfaces with existing or planned systems required for mission accomplishment, identification of critical system characteristics, explicit technical performance measurement results against user defined requirements, developmental test schedules that include statutory tests, and other information that is required to fully design the system must all be considered as elements of TRR planning. The test readiness activity must ensure all of these items are included where software is a part of the subsystem/system.

Typical documents, or their equivalents, reviewed during this activity may include documentation such as the software requirements specification (SRS), interface requirements specification (IRS), test plans and descriptions, Computer System Operators Manual (CSOM), Software Users Manual (SUM) and the Computer Systems Diagnostic Manual (CSDM). Other items that may be addressed include lower level test and integration results; CSCI test procedures; other documentation updates; software problem reports; and software test tools, facilities, and schedules including sufficient resources availability (time on the test facilities) over the planned schedule.

During the TRR, test procedures are evaluated for compliance with the software requirements specification (SRS), interface requirements specification (IRS), TEMP or its functional equivalent, and other documentation as applicable. Results of lower level testing accomplished to date are reviewed to ensure all functional and performance requirements have been satisfied (no significant deficiencies exist in the product being tested). Open problem reports against the product being tested, the process used to develop the product, or the environment being used in the test are reviewed and assured to be acceptable. The TRR is successful when it is determined the software test procedures and the lower level test results form a satisfactory basis for proceeding to CSCI level and system testing.

Inputs/Entry Criteria:

-
The requirements being tested (applicable SRS and IRS, or subsets) are identified

-
Traceability of test requirements to the SRS and IRSs is established

-
All CSCI level test procedures are complete

-
Objectives of each test are identified

-
All applicable documentation is complete and controlled (requirements, design, test procedures, version description document, etc.)

-
The method for documenting and dispositioning test anomalies is acceptable

Outputs (Exit Criteria):

-
Software test descriptions and procedures are defined, verified and baselined

-
Planned testing is consistent with defined incremental approach including regression testing

-
All test facilities and resources (including testers, (lab test stations, hardware, and software) are ready and available to support software testing within the defined schedule

-
The software being tested and the entire test environment is configuration controlled as applicable

-
All lower level software testing has been successfully completed and documented

-
Software metrics show readiness for testing

-
Software problem report system is defined and implemented

-
Software test baseline is established and controlled

-
Software development estimates are updated

-
Requirements that cannot be adequately tested at the CSCI level (and thus require testing at the subsystem or system levels) are identified

Software Functional Configuration Audit (FCA)

Software Functional Configuration Audits (FCAs) should be conducted for each computer software configuration item (CSCI) in the system. Software audits may be conducted on a single CSCI or a group of CSCIs. This audit is intended to confirm the CSCI is verified/tested relative to the allocated requirements in the software requirements specification (SRS), interface requirements specifications (IRSs), and relevant higher level specifications. This audit may be performed as part of the contractor’s developmental baseline process, i.e. internal to the contractor’s processes. Software FCAs also verify tested CSCIs were designed, coded, and tested following defined processes identified to be applied on the program in the IMP and supporting plans to include the software development plan, the configuration management plan, and the test plans.

Software FCAs may be performed incrementally on increments of software i.e. planned partial functional capability increments, sometimes called blocks. Often software is developed incrementally so as to build a partially capability early to support a first operational capability. In such cases, a final software FCA would be conducted to ensure all specified requirements have been satisfied. In cases where CSCI verification can only be completely determined after system integration and testing, the (final) FCA would be conducted using the results of these tests.

Inputs/Entry Criteria:

-
System and subsystem functional/development specifications

-
CSCI functional/development specifications, e.g., software requirements specification (SRS) and interface requirement's specification (IRS)

-
Draft CSCI product design specifications

-
Unresolved software related test deficiency reports

-
Software test plans, descriptions, and procedures

Outputs (Exit Criteria):

-
CSCI allocated baselines for software functions

-
Verification of CSCI functional/performance requirements, i.e., verification/test results sufficient to establish specified functional/performance requirements have been satisfied.

-
Readiness for next level of FCA

-
Software FCA minutes identifying open discrepancies and actions for resolution.

-
Relevant software metrics

CS&S Support to the System Functional Configuration Audit (FCA)

Functional Configuration Audits (FCAs) are conducted to verify CI/CSCIs have achieved the requirements in their functional, if any, and allocated configuration documentation, i.e., functional/performance requirements' specifications. The specific tasks addressed here are the FCA activities necessary to confirm adequacy and completeness of the verification of the computer hardware CIs, and software CSCIs. For CSCIs, the audit verifies that the specified requirements are satisfied as demonstrated and recorded in the verification records, e.g., test results.

A series of FCAs is normally held in the SD&D phase to cover each relevant CI/CSCI in a new development, and they can also be held in the Production and Deployment phase for modifications, upgrades and product improvements. The entry and exit accomplishments for this review are to be included in the IMP. FCAs are an incremental part of the SVR activity.

An FCA may be conducted in increments. In such cases, a final FCA would be conducted to ensure that all requirements of the FCA have been satisfied. In cases where item verification can only be completely determined after system integration and testing, the (final) FCA would be conducted using the results of these tests.

Inputs/Entry Criteria:

-
System and subsystem functional/development specifications

-
CI and CSCI functional/development specifications, e.g., software requirement's specification (SRS) and interface requirement's specification (IRS)

-
Draft CI and CSCI product design specifications

-
Unresolved CS&S related test deficiency reports

-
CS&S test plans, descriptions, and procedures

Outputs (Exit Criteria):

-
CI and CSCI allocated baselines for CS&S functions

-
Verification of CI and CSCI functional/performance requirements, i.e., verification/test results sufficient to establish specified functional/performance requirements have been satisfied.

-
Readiness for next level of FCA or readiness for production

-
FCA minutes identifying open discrepancies and actions for resolution

CS&S Support to the System Verification Review (SVR)

The System Verification Review (SVR) confirms the completeness of the system development and readiness for production and sustainment. Configuration items (CIs), subsystems and the system are verified to satisfy the performance and functional requirements contained it the functional and allocated baselines. The completeness of the computer system and software (CS&S) verifications are confirmed as integrated with the total system. SVR is the culmination of incremental reviews which confirms completeness of the products i.e. CIs, Computer Software Configuration Items (CSCIs), and subsystems which comprise the system. The FCA part of the SVR audits the adequacy and compliance with the verification process, as well as the completeness and sufficiency of the recorded verification (test) results relative to the specified requirements.

For the CS&S CIs, CSCIs, and subsystems, verification testing should be accomplished prior to the system SVR as planned events in the Integrated Master Plan (IMP) and the supporting software development plan (SDP). This verification process would include, e.g. FCAs for each CSCI. Traceability among system through CSCI requirements, design, and code should be verified.

Inputs/Entry Criteria:

-
Completed incremental FCAs for each CS&S CI, CSCI and Subsystem

-
System and subsystem functional/development specifications

-
CI and CSCI functional/development specifications, e.g., software requirement's specification (SRS) and interface requirement's specification (IRS)

-
CI and CSCI product design specifications

-
Verification/test results for each CS&S CI, CSCI, and subsystem confirming compliance with specified requirements, i.e. all part 4 verification requirements against part 3 performance requirements

Outputs (Exit Criteria):

-
CI and CSCI allocated baselines for CS&S functions

-
Verification of CI and CSCI functional/performance requirements, i.e., verification/test results sufficient to establish specified functional/performance requirements have been satisfied.

-
CI and CSCI product specifications baselined.

-
Software requirements, design and code traceability established

-
Software CSCIs verified through hardware/software and subsystem integration and test.

-
Software implementation verified against specified system requirements

-
Readiness for production

-
FCA minutes identifying open discrepancies and actions for resolution.

-
Required operational and support manuals/documents/electronic data bases, to include software development files, are complete and available

Software Physical Configuration Audit (PCA)

Software Physical Configuration Audits (PCAs) may be held for individual Computer Software Configuration Items (CSCIs) or aggregations of CSCIs. This approach would be appropriate for large software intensive systems, and for major software intensive subsystems. The results of these software PCAs would become entrance criteria to the system PCA. For CSCIs the PCA is usually held at the end of the SD&D phase, but should not to be started unless the FCA for that CSCI has been completed or is being accomplished concurrently. The entry and exit accomplishments for the PCA are to be included in the integrated master plan (IMP). Guidelines for conducting CSCI PCAs may be found in the legacy MIL-STDs 973, 1521, 2167, and 498 or in various commercial standards and guide that replaced these MIL standards as part of the acquisition reform initiative. These references could be used to establish appropriate tasking in the statement of objectives (SOO) for the software PCAs.

For CSCIs, the PCA includes a detailed audit of design documentation, listings, and operation and support documents. The documentation to be audited typically includes the Software Product Specification (SPS), Interface Design Document (IDD), and Version Description Document (VDD), or their equivalents. The software PCA should include an audit of the released quality control records to make sure the as-coded configuration item is reflected by this documentation. The software PCA could be conducted with an electronic information base, in lieu of a paper (document) information base. Satisfactory completion of a software PCA and approval of the product specification and interface design document, or their equivalents, are necessary to establish the CSCI’s Product Baseline.

For the software PCA, the contractor should identify any differences between the physical configuration of the CSCI and the configuration that was used for the software FCA. A list delineating both approved and outstanding changes against the CSCI should be provided and should identify approved specification change notices (SCNs) and approved deviations/waivers to the software and interface requirements specifications.

Inputs/Entry Criteria:

-
Software requirements specifications, including interface requirements specifications

-
CSCI product specifications, including interface specifications

-
Software computer program source code listings

-
Satisfactory completion of the system, subsystem and CI/CSCI SVRs and FCAs

-
Satisfactory completion of the software FCAs

-
Whether electronic or paper documentation, the information defining the exact design of the CSCI is identified, internally controlled, and ready for software PCA

-
All required software information, whether electronic or documentation, has been confirmed ready for audit

Outputs (Exit Criteria):

-
Software PCA discrepancies have been documented as action items with specific action organizations and suspense dates established for resolution of the discrepancies

-
Software product CSCI specifications have been verified against the as-coded software

-
Software support and operational information is completed and verified for accuracy

-
Applicable software metrics are complete

-
Version description documents are completed and verified for accuracy

CS&S Support to the System Physical Configuration Audit (PCA)

Physical Configuration Audits (PCAs) are a formal examination of an "as-built" configuration item against its technical documentation to establish or verify the configuration item’s product baseline. A PCA should be held on each CI after completion of the acceptance testing (and SVR/FCA), of the first system designated for operational deployment. This review should be conducted in accordance with established configuration management guidelines, e.g., see MIL-STD-973. If electronic representations of the technical documentation are the form to be audited, these procedures should so stipulate.

A system PCA is conducted to confirm all CI/CSCI PCAs have been satisfactorily completed; items that can be baselined only at the system-level have been baselined; and required changes to previously completed baselines have been implemented (e.g., deficiencies discovered during testing have been resolved and implemented).

For CSCIs, the PCA is usually held at the end of the SD&D phase, but should not to be started unless the FCA for that CSCI has been completed or is being accomplished concurrently. The entry and exit accomplishments for the PCA should be included in the IMP.

For CSCIs, the PCA includes a detailed audit of design documentation, listings, and operation and support documents. The documentation to be audited includes the Software Product Specification (SPS), Interface Design Document (IDD), and Version Description Document (VDD), or their equivalents. The PCA should include an audit of the released quality control records to make sure the as-coded configuration item is reflected by this documentation. Satisfactory completion of a PCA and approval of the product specification and interface design document, or their equivalents, are necessary to establish the CSCI’s Product Baseline.

For the PCA, the contractor should identify any difference between the physical configuration of the CSCI and the configuration that was used for the FCA. A list delineating both approved and outstanding changes against the CSCI should be provided and should identify approved specification change notices (SCNs) and approved deviations/waivers to the software and interface requirements' specifications.

Inputs/Entry Criteria:

-
Satisfactory completion of the relevant CI/CSCI PCAs

-
System, subsystem, and CI/CSCI product specifications, including interface specifications

-
Satisfactory completion of the system, subsystem and CI/CSCI SVRs and FCAs

-
Whether electronic or paper documentation, the information defining the exact design of the CI and CSCI is identified, internally controlled, and ready for PCA

-
All required CS&S information, whether electronic or documentation, has been confirmed ready for audit

Outputs (Exit Criteria):

-
CS&S PCA discrepancies have been documented as action items with specific action organizations and suspense dates established for resolution of the discrepancies

-
Software product CSCI specifications have been verified against the as-coded software

-
Computer systems product CI specifications have been verified against the as-built product

-
CS&S support and operational information is completed and verified for accuracy

-
Software metrics are complete

-
Version description documents are completed and verified for accuracy

Appendix G:
Process Considerations for Safety Critical / High Assurance Systems

INTRODUCTION

This appendix provides an outline for the acquisition and development process steps to be followed when acquiring and developing safety critical / high-assurance systems. It is crucial to avoid limiting the scope of the processes to software only. The software, hardware, and entire system architecture must be addressed. A fundamental flaw with some existing process standards is the predominant focus on software processes, while ignoring the overall system. This vision was necessary some 20 years ago when system developers / contractors had little experience in designing, developing, integrating, and testing software being developed for routine uses, let alone for safety critical systems. However, as computer system capabilities have matured to highly integrated (functionally and physically) system architectures, it has become imperative to expand the development and acquisition processes to address system attributes. It has for years been standard practice in the flight systems environment to address the entire system as safety critical, by thoroughly evaluating all functional threads throughout the system. As the implementation of safety critical / high assurance functionality extends to other systems, this system focus must now be applied in areas where it has not been used extensively in the past.

The process steps described in this appendix are integral to the successful design, development, integration, and test of safety critical / high assurance systems. Process sections focus heavily on safety considerations. Cost, schedule, performance, and support risks are not addressed directly, although they are inherent in the overall process. Following a thorough process as defined here reduces overall life cycle costs, minimizes schedule delays, allows for more rapid system changes, and enhances safety by design.

Note: This process has been applied successfully to numerous aircraft flight-critical systems. We attempted to generalize it for this guidebook. Where there are still flight-systems references, the reader should generalize to his/her specific domain.

SYSTEM SELECTION PROCESS

Determining the viability/capability of computer system attributes is the foundation for ensuring safety for high assurance computer systems.

1. Perform Capability / Capacity Review: Evaluation of the contractor’s capability to develop a safe computing system is the first step. If the contractor does not have the experience or processes to design, develop, integrate, and test a safety critical system, this portion of the procurement is destined to fail. Cost, schedule, performance, supportability, and safety will all be compromised.
Process steps:

· Evaluate the contractor’s capability/capacity to develop/integrate the architecture

· Evaluate the contractor’s capability/capacity to develop/integrate the software

· Evaluate the contractor’s capability to develop/integrate safety critical systems

· Evaluate all valid past experience

2. Conduct Architecture Trade Studies: The system architecture provides the fundamental mechanization of the system. An insufficient architecture will restrict system performance, processing capability, system flexibility, functional integration capability, and supportability; and will limit the computing system's ability to satisfy safety requirements. Understanding and defining the capability of the architecture early will minimize development and support issues; will help contain technical, cost, and schedule risks; and will reduce architecture technical/safety risks.

Process steps:

· Evaluate candidate architectures

· Platform viability

· Performance requirements

· Cost/schedule constraints

· Security, supportability, etc.

· Evaluate hardware capability/availability

· Evaluate software sizing, supportability and overall software architecture

· Evaluate functional interlacing throughout architecture

· Evaluate complexity of interfaces/sizing

· Determine technological feasibility of approach

· Technical maturity of proposed elements

· Compatibility of architecture elements

· Contractors' experience in technological domain

· Identify low risk approach for safety areas

· Forecast future capability/requirements of architecture
3. Safety Critical Functional Thread Analysis/Decomposition

· Establish program safety definitions – use good examples

· Could be coupled to MIL-STD-882

· Identify all functional threads

· Identify the criticality of functional threads

· Trace functional threads through architecture

· Identify the requirements tied to the functional thread

· Identify all systems/subsystems affected by thread

· Identify all hardware/software components supporting the thread

· Determine the overall effect to architecture trade study results

4. Hardware Selection and Design Process

· Identify processing requirements for architecture

· Ensure processing capability/loading is compatible with actual processor

· Ensure throughput estimates are based upon actual timing measurements (in milliseconds (ms), not in millions of instructions per second (MIPS))

· Select reliable/mature proven hardware

· Do not push the state of the art on critical systems

· Match processor requirements to memory, back-plane, throughput requirements

· Determine Failure Modes Effects Criticality Analysis (FMECA)/reliability design impacts

· Determine diminishing manufacturing sources (DMS) impacts for future supportability

· Design in growth

· Design in safety

· Design in fault tolerance of hardware components/system

· Determine split between hardware/software failure accommodation

5. Software Selection and Design Process

· Identify language selection

· Standardize to extent possible across the system for improved supportability

· Select a mature/proven language with solid contractor experience

· Determine software size

· Determine software structure (Computer Software Configuration Items [CSCIs], Computer Software Components [CSCs], and Computer Software Units [CSUs])

· Limit complexity/size

· Identify reuse areas

· Identify assembly language areas
SYSTEM ALLOCATION/DEVELOPMENT PROCESS

1. Failure Modes Effects Analysis (FMEA) Process

· Overall FMEA

· Applies to all levels (software, hardware, system, function, component, subsystem, and integrated system)

· Must address single fail, dual fail, combination unlike single fail, triple fail, and order dependent failures

· Evaluate how analysis supports architecture and safety critical function threads

· This will be a basis for the Failure Modes Effects Testing (FMET) strategy
2. System Requirements Review Process

· Understand all performance requirements for the system architecture

· Allocate criticality to the requirement

· Define requirements flow to lower levels (from weapon system level to next major level)

· Define interface requirements between levels (system view looking down)

3. Requirements Allocation Process

· Identify system requirements flowed to each subsystem (subsystem view looking up)

· Identify the system requirements flowed to each function

· Specify the requirements allocated to each component of system/subsystem

· Hardware (platform, processor, cards, back-plane, memory)

· Software (CSCI, partition, operating system, application software)

· Interfaces (internal and external buses, discretes)

4. System Architecture Safety Risk Mitigation Process

· Identify risk drivers (aircraft probability of loss of control (PLOC), reliability, availability, high assurance requirements, fail-operational/fail-safe requirements, critical function support)

· Identify techniques for mitigating architecture risks

· Identify techniques for mitigating hardware risks

· Identify techniques for mitigating software risks

· Develop a Fault Tolerant (FT) Design Scheme

· Apply to hardware, software, and system

· Identify critical faults (hardware, software, system, and function) and the effect to the system if failure occurs

· Determine FT design mechanization for critical faults

· Determine FT design mechanization requirement for all other faults

· Develop Redundancy Management Design Scheme

· Determine level of redundancy required to support criticality/risk drivers

· Identify/define complexity of redundancy management mechanization

· Voting schemes

· Built In Test (BIT) monitor structure

· Rate requirements

· Cross-channel data link (CCDL)

· Data latency requirements

· Transient requirements (maximum allowable)

· Accommodation for loss of critical components

· I/O wrap-around/feedback requirements

· NOTE: Implementation of Redundancy Management techniques does not lower criticality

5. Functional Integration Process (Functional Fusion)

· Identify all functional thread requirements

· Determine capability of architecture to support functional integration

· Determine processing requirements for each functional thread

· Required rates

· I/O coupling

· Sensor feedback

· Fault tolerant/Redundancy management requirements

· Allowable transients

· Memory requirements

· Determine integrated function processing requirements

· Manage all components of the integrated function thread to ensure compatibility/availability of the complete integrated function

6. Software Change Process

· Plan for several additional software releases to fix discrepancy reports (DRs) and improve system testing and maturity

· Develop flow chart identifying/documenting development process steps to be followed through for all areas of change

· Tie to documented development process

· Tie to software test process

· Identify effects to safety critical function threads

· Identify effects to hardware

· Analyze associated effects to the design:

· Rate changes

· System transients

· Mechanization flow

· Hardware compatibility

· Interface compatibility

· Other software modules

· Tie to regression test process

7. Hardware Change Process

· Determine areas of DMS impact

· Determine performance requirements for system

· Identify problem areas

· Plan for upgrades using mature, reliable components

· Again, do not push the state of the art

· Fully re-qualify system, platform, and software (operating system and application software)

· Determine regression process for areas of change

· Treat hardware re-procurement as a new development

SYSTEM TECHNICAL MANAGEMENT PROCESS

1. Integrated Scheduling Process

· Identify key program events

· Identify system program events

· Identify components of system

· Identify software version release requirements

· Identify software integrated function capability or block update events

· Identify all planned testing (CSU, CSC, CSCI, and integrated system)

· Identify laboratory build-up and planned testing

· Identify delivery dates for hardware, software versions, models and development/test assets

· Identify development approach (serial, incremental, spiral)

· Identify key functional capabilities tied to program events, system availability, lab releases and air vehicle releases

· Establish a block integration manager to bring it all together

2. Block/Build Management Process

· Define Function/Integrated function requirements

· Group minor function capabilities into builds for hardware/software

· Group major function capabilities into blocks for hardware/software

· Tie function to software/hardware capability availability

· Tie to flight test need dates and other program milestones

· Generate integrated schedules

· Plan for multiple releases (builds) for each block

· Plan for periodic block updates (about every year or two)

· Tie to regression test process

Operational Flight Program (OFP) DEVELOPMENT PROCESS

1. System/Software Engineering Environment (S/SEE)

· Establish a SEE compatible with the selected hardware / software / architecture

· Determine tool requirements

· Determine areas for automation

· Standardize across air vehicle for supportability

· Determine architecture required for each S/SEE

· Determine skill/staffing requirements

· Determine capacity to release versions

· Determine capacity for performing lower level testing, if within S/SEE

2. Training System (TS) OFP Process

· Users desire concurrent delivery of capability for flight OFPs and trainers

· Best solution for safety critical systems:

· Do not place ARINC 610 hooks in safety critical applications

· Do not induce additional safety risks into the flight OFP

· Testing for critical systems is already complicated by the inherent complexity and safety interlocks that require testing for flight-critical functions

· A TS-specific OFP does not have to perform all the system integration/FMET testing associated with the flight OFP for every release

· Develop/plan for a separate OFP early-on

· Address in the contract

· Start the process early in the development

· Have the contractor set aside a few junior engineers after the initial release, to work the unique training OFP software and integration problems

· Have a initial TS OFP release about six months prior to first flight (FF) to mature problems in the OFP

· Do not allow TS OFP problems to interfere with the flight OFP development

· Work the TS in background

· Using this approach, the TS will have a better quality OFP which will only slightly lag the flight OFP, without impacting the safety / schedule of the air vehicle

· With the proper planning, this can be a low cost, low impact solution

3. OFP Build Process

· Determine OFP structure/architecture

· Establish common OFP constraints/requirements

· Establish an operating instruction (OI) or memorandum of agreement (MOA) for each software version developer

· Define common OFP interface requirements

· Define CSCI sizing and associated load image requirements

· Determine the version description document (VDD) requirements for each CSCI and air vehicle OFP release

· Treat the build process as a system development (design, develop, integrate, and test)

· Build multiple prototype OFPs to test the process/product

· Start about two years before first flight

· Determine how OFPs will be loaded onto the air vehicle

· Equipment required

· Security requirements

· Time required

· Safety requirements

· Configuration control requirements

· FMET this capability to ensure it will always work

4. Software Design Process (Top Level)

· Follow a very thorough development process - do not cut corners

· Apply disciplined processes based on accepted standards such as DOD-STD-2167, MIL-STD-498, or IEEE standard 12207

· Determine areas of reuse

· Determine areas of autocode

· Do not allow patches

· Do not rely on software partitioning as the sole means to mitigate risk

· Software partitioning alone does not eliminate Fault Tolerant/Redundancy Management design mechanization

· Hardware partitioning is the first step

· Safety critical function partitioning is the second step

· Treat the operating system and hardware to the highest criticality level of application software residing on the platform

· Do not ignore system integration processes because partitioning has been implemented

· Determine how redundancy management and fault tolerance will be accounted for in the design mechanization

· Determine limitations of platform, architecture, operating system, and each application software partition

· Build tools

· Past experience with safety critical systems

· Actual throughput capability

· Critical functions, data latencies, system transients

· Thoroughly test the design, hardware, partitioning mechanization, system and interfaces

· Identify staffing/skill requirements for the entire process

· Develop the plan based on criticality of the software / system

SYSTEM INTEGRATION/VERIFICATION PROCESS

1. Laboratory Architecture Development Process

· Determine/evaluate overall integration laboratory architecture requirements

· Evaluate test coverage of entire architecture

· Minimize test duplication

· Identify weaknesses with approach and determine how this will be addressed

· Identify schedule for developing labs early-on

· Tie capability/maturity to program events/capability requirements

· Identify lab capacity / shift requirements for performing testing

· Determine realistic lifetime for labs

· Identify testing to be accomplished in labs vs. what must be performed on air vehicle

· Establish an overall lab manager (could be the block manager)
2. Laboratory Fidelity Process

· Determine lab fidelity requirements

· Evaluate coverage of test capability of individual labs

· Identify specific lab requirements

· Actual hardware

· What will be simulated / emulated / modeled

· Development tools

· Test equipment

· Unique tools (software/hardware and interfaces) which must be developed

· Determine delivery requirements for hardware and test assets

· Develop the detailed test schedule tied to software version release requirements and functional capability needs

· Establish a lab manager with ties to the block manager

· Start effort at least two years before first flight to ensure a mature lab capability is available when needed

3. FMET Process

· Apply process/test cases to all levels within the architecture

· Perform testing in labs

· Tie testing to FMEA

· Tie testing to hardware / software risk mitigation areas

· Tie testing to Safety Critical Function threads

· Start testing early as possible

· Perform piloted response tests (pilot in the loop)

· Ensure testing addresses:

· Single point failures

· Dual failure cases

· Triple failure cases

· Combination of single point unlike failures

· Order dependent failures

· Loss of function

· Loss of component

· Loss of subsystem

· Loss of redundancy

· Loss of sensor

· Loss of feedback

· Loss of communication/CCDL

· System transient response

· Loss/degradation of power

· Ensure the result of failure correlates to the expected system response

· Prioritize problems in the DR system

· Determine method for analyzing / fixing identified problems

· Plan for a total of FMET cases on the order of 1000, not 20

4. Hardware Test Process

· Ensure the hardware testing addresses the following:

· Processor / memory

· Board Level

· Backplane

· Safety of Flight (SOF) testing

· Design Life Testing

· Environmental Qualification testing (sand, dust, shake, bake, humidity etc…)

· Electro-Magnetic Interference (EMI) testing

· Hardware interface

· Ensure testing is performed early, to enable procurement of new hardware if not acceptable

· Ensure hardware problems are not masked by software

· Design in testability to the hardware

· Allow for test point external of the card / box / rack, if feasible

· Place orange (test) software in flight OFP, but fully integrate / test as part of the system

5. Software Test Process

· Perform CSU testing

· Perform CSC testing

· Perform CSC integration testing

· Perform CSCI informal / preliminary qualification testing on every release

· Perform CSCI Formal Qualification Testing on every release to air vehicle

· Automate as much testing as possible to ensure capability to run ALL testing with each version release

· Document all problems (software, hardware, integration, lab assets) in the discrepancy reporting system

· Establish a board to review all problems and disposition corrective action required

· Prioritize problems based on criticality

· Tie to software change request process

· Never cut corners on the test process for any reason, but especially to meet schedule

6. System Integration Process

· Design-in system integration

· Plan for capability availability of:

· Functions

· Hardware

· Subsystems

· Components

· Models

· Lab architecture

· Software versions

· Organize planned testing coupled to capability availability

· Build maturity into the process

· Rely on planned, formal, structured test approaches

· Develop an air vehicle integrated system test product flow process to understand/manage the product releases from every level / lab facility (where levels include weapon system, air vehicle, air vehicle segments, and individual subsystems)

· Tie to Equipment Operational Flight Certification (EOFC) process

· Start this process soon after contract award and continue until development activity is completed

7. System Test Process

· Perform Test Coverage Analysis addressing all areas / levels:

· Functional threads

· Architecture

· Hardware

· Software

· System

· Couple this process to:

· System Integration process

· System Architecture Risk Mitigation process

· Integrated Scheduling process

· Laboratory Architecture Development process

· Laboratory fidelity process

· FMET process

· Generate test procedures, test cases, etc. for all systems/laboratories

· Test the system from the perspective of:

· Internal to system

· Internal to functional thread

· External to the system

· How the system affects other systems / subsystems / functions

· How other systems / subsystems / functions affect the system

· Minimize duplication of testing to the extent possible

· Start testing early (two years before first flight?) to mature capability
8. Regression Test Process

· Run entire test suite for block update releases (No regression)

· Run regression test suite for build releases (within blocks)

· Perform full FQT for every flight release to the air vehicle

· Predefine a core set of tests to be performed no matter the area of change

· Predefine a core set of tests to be run dependent on the area of change

· Address testing at all levels:

· CSU, CSC, CSCI, SW FQT, integrated system, System FQT, and ground tests on air vehicle

· Ensure testing addresses all areas of change:

· Internal system

· Interfacing software

· Integrated function elements

· Hardware changes

· Sensor and effector changes

· Rate changes

· Component changes

9. Discrepancy Reporting Process

· Document all problems (software, hardware, integration, test case, and lab assets) in a discrepancy reporting system at the time of discovery (don’t wait until the problem is fully understood)

· Establish a board to review all problems and disposition corrective action required

· Prioritize problems based on criticality, for example:

· Priority 1: Safety impact (must fix prior to flight)

· Priority 2: Safety impact with known limitation documented in flight manual (in general, must fix prior to flight)

· Priority 3: No safety impact, probable operational impact (must be fixed in next planned release or before operational need)

· Priority 4: No safety impact, no operational impact (could be lab problem)

· Priority 5: No safety impact, nuisance problem

· Tie to software change process
10. Ground/Low-Speed Taxi Test Process

· Perform on-aircraft tests to ensure communication, wiring compatibility, and functional operation of systems

· Perform structural coupling tests to ensure filters are adequate

· Ensure at least Level 4 Equipment Operational Flight Certification (EOFC) release from the air vehicle level

11. Flight/Hi-speed Taxi Test Process

· Successfully complete all Ground/Low Speed Taxi Tests

· Ensure at least Level 4 EOFC release from the air vehicle level (EOFC levels are defined below)

CERTIFICATION PROCESS

1. Equipment Operational Flight Certification (EOFC) Process

· Tie to hardware and software across the system for releases to various tier levels, where tier I is the weapon system, tier 2 is the air vehicle, tier 3 is the segment level (i.e., flight controls, utility systems, avionics, etc.), and tier 4 is the individual subsystem level

· Identify testing required for each level

· Software (CSU, CSC, CSCI, PQT, and FQT, including FMET)

· Hardware (SOF and Design Life Testing, Environmental Qualification Testing [sand, dust, humidity, shake, bake, EMI etc…])

· System integration testing to be performed in all labs

· May be in parallel across tier

· For software include VDD and software drawing for each level

· For hardware include hardware drawing

· Determine EOFC Level requirements, for example:
· Level 1: Release to subsystem / air vehicle segment labs for initial testing (lab use only).

· Level 2: Release to air vehicle segment integration labs for early integration testing. Preliminary qualification / dry runs complete. Can have open DRs

· Level 3: Release to air vehicle for non-flight ground tests / engine runs. Air vehicle segment integration labs have successfully completed all qualification testing with no open Priority 1 or 2 DRs. No limitations are identified.

· Level 4: Release to air vehicle for taxi / flight test. Passed all level 3 EOFC certification requirements. Limitations exist.

· Level 5: Release to air vehicle for taxi / flight test. Fully qualified. No known operational limitations exist. No open DRs.

NOTE: Each EOFC level certification means you are ready to go to the next level of test requirements

· Identify an integrator for each tier owner

· Identify a coordinator across the tier

· Coordinate with the block/build manager

· Tie to regression test process

2. System AWCC Process

· See MIL-HDBK-516 and supplemental guidance

· Develop Tailored Airworthiness Certification Criteria (TACC) or Modification Airworthiness Certification Criteria (MACC)

· Tie to EOFC process

· Tie to regression test process

· Tie to block/build manager processes

· Tie to OFP process

· Tie to DR process

PAGE
17 December 2004, V0.9
Air Force Software Management Guidebook
ii

