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Introduction 

Statistical analysis of data sets is seemingly a relatively straight-forward process wherein the analyst gathers data and applies statistical techniques for decision-making.  It is a process that is approached and accomplished by analysts in the DoD cost estimating environment on a daily basis.  It is a process that generates much intellectual intrigue, dialogue and, not infrequently, controversy.  For example, the theorist functioning in a purely academic realm is in a position to significantly influence his or her research design and thereby insure both control and volume of data, whereas the analyst functioning in a DoD cost estimating environment generally is restricted to existing data bases and wrestling with time constraint issues, age of technology and viability of statistical models.  In essence, the approach to statistical analysis of data sets is dependent upon the analyst’s environment.  Hence, there is an endless source of information on statistical techniques and how to use them and it is the ‘how’ that often drives the process; i.e., the analyst tends to formulate “...problems in a way which requires for their solution just those techniques in which he himself is especially skilled” (Pedhazur, 1982, p. 4).


Stepwise regression is one technique; however, that does face intense controversy regardless of the analyst’s environment.  This controversy abounds in nearly all areas regardless of whether the analyst has a social science prospective or a DoD prospective.  Therefore, the purpose of this article is to briefly highlight some of the rationale that contributes to this controversy, to illustrate the stepwise regression analysis technique with a hypothetical data set and to summarize key characteristics about use and limitations of the technique.  This article will in no way involve an exhaustive investigation of the stepwise regression technique and the reader is encouraged to read further.  Pedhazur’s Multiple Regression in Behavioral Research, (1982) is one recommended source.

Insight into the Role of Stepwise Regression Analysis in the World of Statistics


Methodologies and Goals of Analyses.   The selection of a statistical method is a consequence of the specific goal or desired outcome of the analysis.  Such selection requires that the analyst have a clear understanding of the intended goal of the research 

and, equally important, an understanding of data availability, specification of research design and viability of regression methods. Therefore, before an investigation of the stepwise regression technique can begin, it is necessary to appropriately describe the technique and identify where it fits within the environment of business and social science statistics. Controversy arises seemingly from a lack of agreement as to the technique’s appropriate role and is mitigated by acknowledgment that any technique is subject to mis-use, mis-application and mis-interpretation by the researcher.  Consequently, in an effort to ward off controversy and provide meaningful insight, the following definitions and categories for research design will be used in this paper and are as follows:


Research Design Methods, Model Categories and Correlation.  Multiple regression analysis is a method for relating two or more independent variables to a dependent variable.  There are two rather distinct uses of the method for research purposes -- uses where the researcher experimentally controls the independent variables (as in medical research where doses and/or levels of medication are controlled by the researcher) and where the researcher selects a sample from a universe of naturally-occurring variables and relates these variables to some outcome of interest (as in research where physical or performance characteristics are hypothesized to be related to some outcome).  Categorically, the first use is defined as “designed regression” or experimental regression where the researcher designs an experiment, specifies and controls the independent variable(s) and measures their impact on the dependent variable.  With designed regression, the researcher generally controls each independent variable.  Consequently, adding or dropping independent variables from the regression equation does not change the regression coefficients because the independent variables are ‘controlled’ and, therefore, not correlated (Cody & Smith, 1987, p. 184).  


The second use of multiple regression is defined as “nonexperimental regression” where the researcher hypothesizes a relationship, identifies and collects a sample from an existing population and tests the variables. In testing the variables, the researcher seeks to explain variation in the dependent variable given one or more independent variables.  Because the researcher does not have control over the independent variables with this form of multiple regression, the independent variables may exhibit a degree of correlation.   In other words, with a nonexperimental regression method, the researcher hypothesizes how various independent variables (units of production, weight, speed, etc.) aid in explaining changes to the dependent variable  (hours of labor effort, dollars per pound, etc.) as independent variables enter the model. Technical assistance is generally needed with this method to help the analyst determine a logical relationship between the independent variables and the dependent variable to be estimated.  Within DoD, that would be the acquisition team.  While seemingly a simple process, because the method relies on existing data which cannot be controlled, the independent variables are most often, to some degree, related or correlated with each other.  The problem of correlation among the independent variables must always be investigated because this correlation causes the regression estimates to change depending on which independent variables are entered into the regression model (Cody & Smith, 1987, p. 184). In other words, the regression coefficients change as independent variables are added or dropped from the regression equation.  This creates the potential for the analyst to be misled when using a nonexperiemental data set, and “…for the novice researcher, it is near certainty” (Cody and Smith, 1987, p. 183).  

Nonetheless, this is the method most commonly used in fields of study involving prediction of economic trends and physical or performance phenomena and is the method generally used by DoD analysts seeking to estimate future costs or labor hours for Defense contracts.  The DoD analyst defaults to this method by relying on existing data bases or cost history that affect the costing of contracts and program (FAR 15.404-1(c)).  Using the cost history and with the aid of the acquisition team members, the DoD analyst hypothesizes a causal or logical relationship given what is to be estimated, draws a sample from an existing data source, performs statistical tests and, given satisfactory results,  uses the derived regression model for explanation.   Once again the process sounds simple, however, there are more potential pitfalls, not only with regard to correlation of the independent variables, but also with the statistical tests and whether the analyst seeks an explanatory model or a predictive model.  Technically, statistical research may be categorized into two modeling approaches; the explanatory model which relies on causality and the predictive model which seeks only to made good predictions.  In general, the DoD analyst tends to use the causality model; however, there are times when a model is used simply because it makes good predictions.  Stepwise regression analysis fits into the second category of predictive modeling.  Therefore, given the two research design methods, the two modeling categories, the issue of independent variable correlation, and agreement that the DoD analyst uses the nonexperiemental method, it is now advisable to focus on the latter two issues -- model categories and variable correlation – and inspect the role stepwise regression plays in estimating.  To do so requires consideration of the major types of multiple regression.


Three Major Strategies of Multiple Regression.  Once the design method has been determined, in this case, the nonexperiemental method, the data set may be collected and assembled for regression modeling.  The data collection and assembly process is, in itself, a research topic.  The reader is encouraged to consult an appropriate text on this topic such as Cochran’s Sampling Techniques,3d Ed. (1977)  for further information.  Once the data set is readied and entered into a computer statistical package, there are now three major analytical strategies in multiple regression that may be used:  standard multiple regression, hierarchical regression, and statistical (stepwise) regression.  These three strategies are best explained by viewing in the diagrams shown below:

[image: image1.wmf]DV

a

b

c

d

e

IV

1

IV

3

IV

2

DV

            ....

           ......

          ........

         ..........

        ..........

       ...........

      ...........

      ..........

     ...........

     ..........

    ..........

    .........

    .......

    ......

    ...

DV

                ....

              .....

             ......

              .....

           ........

          ........

         .........

         .........

        .........

        ........

       .........

       ........

       .......

       ......

       .....

       ....

       ..                

DV

        ..

      .....

     .......

    ..........

    ...........

   ...........

   ...........

  ...........

  ...........

 ...........

 ..........

 .........

 ........

 .......

 .....

 ...

(a)

(b)

(c)

(d)

     .....

     .....

     .....

IV

3

IV

3

IV

3

IV

3

IV

2

IV

2

IV

2

IV

2

IV

1

IV

1

IV

1

IV

1


Figure 1  Venn diagrams illustrating (a) overlapping variance sections; variance allocation in (b) standard multiple regression, (c) hierarchical regression, and (d) stepwise regression. (Tabachnick & Fidell, 1989, p. 142). 


Inspecting the overlapping variance sections.  Starting with diagram (a), three independent variables (IV) with one dependent variable (DV) are labeled.  The overlapping sections are a + b + c + d + e and, as can be observed, there is significant overlap between IV1 and IV2 and the DV in terms of sections a + b + c + d where these two independent variables correlate strongly with the DV and with each other.  The third independent variable IV3 overlaps only with IV2 in terms of section d and correlates to a lesser extent with the DV.  Clearly how these IV’s are modeled with the DV will be drastically affected by the choice of regression strategy and herein lies the crux of the issue of model correlation.  The troublesome issue relates to IV1 and IV2 because of their strong correlation with each other and with the DV and the assignment of sections a + b + c + d and, to a less extent, with IV3 and the assignment of section d.  Inspection of diagrams (b), (c), and (d) show assignment of the sections using the three regression strategies (Tabachnick & Fidell, 1989, p. 141).


Standard Multiple Regression.    Here the three IV’s are entered all at once into the regression equation with each IV being assessed as if it had entered the model after all other IV’s had been entered.  Each IV is evaluated in terms of what it adds to the explanation of the DV that is unique and different from all other IV’s in the regression.  In Figure 1, diagram (b), the shaded areas indicate the variance given to each IV; i.e., IV1 gets credit for section a, IV2 for section c and IV3 for section e.  Hence, each IV is assigned only that area that it uniquely contributes to predicting the DV.  Notice that sections b and d of the IV’s, while contributing to the coefficient of determination (R2), are not assigned because of their overlap with each other.  


In this case, by using this strategy, IV2 is given very little credit when, in fact, it is actually very highly correlated with the DV.  This is purely a function of the regression strategy chosen and, more importantly, it is for this reason that, prior to selection of any modeling strategy, the analyst should always begin with a correlation matrix.  A correlation matrix immediately displays all correlations among and between the IV’s and the DV and is, without doubt, the most important first step in any analysis process involving multiple variables.  The utility of the correlation matrix in interpreting the regression equation using the standard strategy is critical and self-evident (Neter & Wasserman, 1974, p. 346).


Hierarchical Multiple Regression.  With this strategy, sketched in Figure 1, diagram (c), the analyst specifies the order in which the IV’s will enter the regression.  The specification is normally based on some logical or theoretical consideration as ascertained by the analyst in conjunction with the acquisition team members.  In diagram (c), the analyst has sequenced IV1 as the first variable to enter, IV2 as the second and IV3 as the third entry. Consequently, IV1 gets credit for sections a and b, IV2 for sections c and d and IV3 for section e.  


This strategy is founded in logical and theoretical basis regarding the importance of the IV’s.  Once determined, the analyst, as in diagram c, specifies the sequence of entry of each IV and then analyzes the results.  It is at this point that the analyst may seek to investigate additional combinations of sequencing the IV’s and analyzing and interpreting those results in conference with the other acquisition team members in an effort to afford an improved regression.  And it is at this point that the next strategy, stepwise regression, becomes a candidate because, once the causality issue has been confirmed, then the objective becomes to find an improved model.


Caution:  ALWAYS run the Correlation Matrix.    As suggested in the description of the standard multiple strategy, running a correlation matrix is the recommended first step in working with the nonexperiemental method because of variable correlation.  The correlation matrix gives an initial preview of the extent of correlation and where the correlation occurs.  Armed with such information, the analyst is afforded especially useful knowledge necessary when seeking various modeling approaches by manipulating variables.  While critical to multiple regression, the correlation matrix is  also useful whenever the analyst seeks to investigate relationships among variables using any statistical technique.  The importance of the matrix will be evident from the illustration of the stepwise strategy which follows.


Statistical (stepwise) Regression.   This strategy is often generically called stepwise regression and is sketched in Figure 1, diagram (d) above.   As noted, stepwise is easily the most controversial of the three strategies because the goal of this approach is ordering the entry of the IV’s such that the statistical criteria are optimized.   When used as a stand-alone process, there is no meaning or interpretation of the variables because decisions regarding which IV’s are included and their order are made solely on the basis of statistics computed on the particular sample data set.   


In diagram (d) above, IV1 entered the model first because it correlated higher with the DV.  Next, IV’s 2 and 3 are compared with respect to sections c and d for IV2 and sections d and e for IV3.  IV3 is entered second because it correlates more strongly with the DV than does IV2.  Lastly, IV2 is assessed with respect to section c and a statistical decision is made as to whether it contributes significantly to R2.  If it does, IV2 enters the equation; if it does not, IV2 is dropped despite the fact that it correlates almost as strongly with the DV as IV1.  This illustrates why interpretation of the regression equation is hazardous without the analyst having the benefit of a correlation matrix.  This also illustrates why the strategy is controversial.  Used as just described, the model provides some utility if the analyst seeks only to develop a prediction equation.  Even where such is the case, the model is still subject to attack because of its potential for capitalizing on chance and overfitting the data:  Without a large sample size, the resulting regression equation may not generalize to the population well and because of the statistical process for ordering IV’s, the resulting variable coefficients are dictated by minute differences in the single sample (Tabachnick & Fidell, 1989).  


While the goal of hierarchical regression is predicated on the theory and hypotheses being test, the goal of stepwise regression relates to such issues as economy and feasibility – thus the dilemma for the analyst as both aspects are important. Consequently, stepwise regression may still have a place in the analyst’s tool bag (Pedhazur, 1982).  

The Illustration.  The following illustration will present a recommended approach to successfully evaluating the stepwise strategy.   The illustration used the SAS Programming Language for data analysis (SAS® Propriety Software Release 6.09 TS048).

The data set displayed below in Table 1 will be used to illustrate various statistical (stepwise) strategy applications (Cody & Smith, 1987, p. 185). As the data are for illustrative purposes only, no priority will be assigned among the four independent variables (IV’s) selected to estimate the dependent variable (DV).  However, from a DoD analyst perspective, determination and identification of a casual relationship between the IV’s and the DV would have been determined within the acquisition team as a first step prior to any data collection. Hence, the analyst would be working from a baseline with a pre-determined theory that these four IV’s are appropriate to estimate the DV.  In a real situation, the IV’s would typically represent some physical or performance-type measures hypothesized to estimate the DV.   

Table 1 – Data Set

OBS     Y      X1     X2    X3    X4

                     1        7.5    6.6    104    60    67

                     2        6.9    6.0    116    58    29

                     3        7.2    6.0    130    63    36

                     4        6.8    5.9    110    74    84

                     5        6.7    6.1    114    55    33

                     6        6.6    6.3    108    52    21

                     7        7.1    5.2    103    48    19

                     8        6.5    4.4      92    42    30

                     9        7.2    4.9    136    57    32

                    10       6.2    5.1    105    49    23

                    11       6.5    4.6      98    54    57

                    12       5.8    4.3      91    56    29

                    13       6.7    4.8    100    49    30

                    14       5.5    4.2      98    43    36

                    15       5.3    4.3    101    52    31

                    16       4.7    4.4      84    41    33

                    17       4.9    3.9      96    50    20

                    18       4.8    4.1      99    52    34

                    19       4.7    3.8    106    47    30

                    20       4.6    3.6      89    58    27

While there are numerous ways to approach working with the data set in Table 1, running a simple correlation matrix is a quick and easy means of gaining a bird’s eye view of the relationships among IV’s and  IV’s and the DV.  Hence, Table 2, shown below, displays a correlation matrix for the data set.

Table 2 – Correlation Matrix

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 20  

                Y            X1            X2            X3            X4

 Y        1.00000       0.81798       0.62387       0.42559       0.31896

            0.0               0.0001         0.0033         0.0614         0.1705

 X1       0.81798       1.00000       0.56297       0.51104       0.36326

             0.0001         0.0               0.0098         0.0213         0.1154

 X2       0.62387       0.56297       1.00000       0.49741       0.09811

             0.0033         0.0098         0.0               0.0256         0.6807

 X3       0.42559       0.51104       0.49741       1.00000       0.62638

             0.0614         0.0213         0.0256         0.0               0.0031

 X4       0.31896       0.36326       0.09811       0.62638       1.00000

             0.1705         0.1154         0.6807         0.0031         0.0   


Inspection of the correlation matrix shows that IV1 and IV2 are strongly correlated with each other (0.56297) and with the DV (0.81798 and 0.62387 respectively).  The other two IV’s, while not nearly as strongly correlated with the DV, are strongly correlated with each other (0.62638).  In addition to inspecting the correlation matrix, performing a t-test is also helpful.  Thus, a t-test was computed on each of the IV’s and found the first two IV’s significant at the alpha (() 0.05 level.  The third and fourth IV’s failed the t-test.  


The correlation matrix provided information for consideration in the regression analyses to follow.   While a great deal of insight is evident, no decisions about the data set are appropriate at this point and caution is in order to refrain from speculations.  The purpose of the correlation, as used here, is simply as a starting place in the analysis process. 


When performing statistical regression, there are a number of different techniques for modeling the data.  SAS software includes five of these techniques (Cody & Smith, 1987, p. 187):

(1)  Forward – The single best IV is entered into the model first followed by the next variable which adds the most to explaining the DV, and so on for all variables in the data set.
(2)  Backward Elimination – All IV’s are entered initially into the equation and then the worst one is dropped, and so on.
(3)  Stepwise – Similar to forward except as each new IV is entered into the equation it is assessed for significance in conjunction with variables already in the equation.
(4)  MaxR – This technique seeks a one-variable equation with the best R2, the two-variable equation with the best R2, and so on.
(5)  MinR – Similar to MaxR with a slightly different selection process.
The reader is encouraged to consult a SAS manual for a comprehensive description of these techniques.


While all five techniques were performed on the data set in Table 1, only extracts follow.  The extracts were selected using printouts for the stepwise, MinR and backward elimination techniques. With another data set, other techniques may well prove more helpful as these particular printouts were chosen only because, for this data set, they indicate how statistical regression may be helpful in the overall analysis process.


The stepwise technique, as shown in Table 3, follows:
             Table 3:  Stepwise Procedure for Dependent Variable Y       

 Step 1   Variable X1 Entered        R-square = 0.66909805   C(p) =  1.87549647

               
        DF         Sum of Squares      Mean Square          F    Prob>F

 Regression       1            12.17624633      12.17624633      36.40    0.0001

 
 Error              18              6.02175367        0.33454187

 
 Total              19            18.19800000

                  
         Parameter          Standard               Type II

 Variable         Estimate           Error                 Sum of Squares          F    Prob>F

 INTERCEP       1.83725236      0.71994457       2.17866266        6.51    0.0200

 X1                     0.86756297      0.14380353      12.17624633      36.40    0.0001

 Bounds on condition number:            1,            1

 ------------------------------------------------------------------------


With the stepwise technique, the first IV to enter the model is the IV that explains the most about the DV; in this case, IV1 entered first because it explains about 67% of the variation in the DV.  From the SAS printout for step 1, this is denoted by R-square (0.66909805).  Additional items of interest on this printout are:

(1)  C(p) = 1.87549647, the C(p) statistic can be used in multivariate regression 

scenarios, as in this illustration, to eliminate  potential estimating equations 

     which have a comparatively large estimating error (i.e. large mean square error 

     (MSE)).  Each possible estimating equation has a C(p) value associated with 

it. The “p” in the C(p) test refers to the number of parameters (intercept plus  

            number of IV’s) in the regression equation being investigated.  It turns out that

            in the “ideal” case, C(p) is less than p.  So, in general, smaller C(p)’s are 

            better.  In this sense, the C(p) test eliminates estimating equations with 

            comparatively large estimating errors (Neter and Wasserman, 1974, p. 380-

            382).

In this illustration, C(p) is used as a warning for adding variables into the 

equation that may not be appropriate. As IV’s are added to the equation, C(p) 

will decrease until it approaches N (the number of IV’s in the equation).  If it 

goes back up after adding an IV, that IV should not be used in the equation.

For step 1, there is one IV in the equation and C(p) is greater than one; thus, 

some improvement or decrease in C(p) may be expected as the next IV enters 

the equation in step 2 (Graham, 1994, p. 11-12).

(2)  F statistic = 36.40 and Prob>F = 0.0001, where these are measures of overall equation significance.  The F statistic is quite high and could be compared with an F critical value from a table; however, it is easier and just as valid to compare the Prob>F value with an alpha (().  Using an alpha (() of 0.05, this equation is clearly significant because 0.0001 is < (.  In other words, the model is statistically significant at the alpha (() 0.05 level.

(3)  While the entire equation is statistically significant, it is also important to inspect whether the IV’s, in this case there is only one IV, are significant.  For step 1, this value is given in the lower portion of the printout labeled X1 in the last two columns where the F statistic is again 36.40 and the Prob>F is again 0.0001.  These values are the same because there is only one IV in the model; hence, this inspection is redundant with only one IV but becomes critical with the addition of IV’s as will be evident in the step 2 of the stepwise technique.
At the completion of step 1, the regression equation is as shown on the printout labeled INTERCEP and X1 and can be written as follows:



Yc = 1.83725236 + 0.86756297X.


In step 2, shown below, the second IV enters the model.  This is the next IV in the data set, given that IV1 is already in the model, that explains the most about the DV that is unique from IV1 and is less than the SAS program default alpha  (() of 0.15.  For this data set, that variable is IV2.  

Table 3:  Stepwise Procedure Continued

 Step 2   Variable X2 Entered        R-square = 0.70817380   C(p) = 1.76460424

                       DF         Sum of Squares      Mean Square       F      Prob>F

 
Regression       2            12.88734675       6.44367337      20.63   0.0001

 
Error              17              5.31065325       0.31239137

 
Total              19             18.19800000

               
            Parameter           Standard               Type II

 Variable             Estimate              Error            Sum of Squares      F      Prob>F

 INTERCEP       0.64269963      1.05397972       0.11615840       0.37    0.5501

 X1                     0.72475202      0.16813652       5.80435251      18.58    0.0005

 X2                     0.01824901      0.01209548       0.71110042       2.28     0.1497

 Bounds on condition number:     1.463985,     5.855938

 ------------------------------------------------------------------------

 
All variables left in the model are significant at the 0.1500 level.

 
No other variable met the 0.1500 significance level for entry into the 

 model.


Observing the printout for step 2 shows that C(p) when down (1.76460424) indicating that this is an improved equation; the F statistic is still significant (20.63) and the Prob>F for the entire equation remains unchanged at 0.0001.  A check on the significance of IV2, however, shows a very low F statistic (2.28) and a Prob>F of 0.1497 – the probability is less than SAS default (() of 0.15 but exceeds the more conservative (() of 0.05 being used in this illustration.  Hence, IV2 is not significant at the (() 0.05 level and, even though the entire model is significant, the regression equation from step 2 would not be used.  Notice also that SAS found no more variables that were significant and terminated the stepwise technique.  


The SAS program provides a summary printout of the stepwise technique as shown below:

Table 3:  Stepwise Procedure Continued

Summary of Stepwise Procedure for Dependent Variable Y       

      
 
    Variable      Number   Partial    Model

 
Step   Entered Removed     In       R**2     R**2         C(p)         F           Prob>F

  
  1               X1                   1         0.6691   0.6691    1.8755    36.3968    0.0001

    
  2               X2                   2         0.0391   0.7082    1.7646      2.2763    0.1497

From the summary printout, notice the Partial R**2 column.  This column shows how much variation is being explained by each of the two variables.  The X1 variable explains 66.9% of the variation in the DV and is the same value found in step 1 of the stepwise technique.  The X2 variable only contributes 3.9% to explaining the DV that is unique from what has already been explained by X1 and, as determined above, is not significant at the (() 0.05 level.  Variables three and four are not shown in the printouts because the SAS program deemed them not significant.


A curiosity at this point begins to surface about IV2.  Recall from the correlation matrix (Table 2) that IV2 was strongly correlated with the DV at 62.4% (0.62387) as well as being correlated with IV1 at 56.3% (0.56297).  The expectations would have IV2 entering the equation and being significant.  However, while IV2 has contributed about 4% to the entire equation and while the entire equation is statistically significant, IV2 was deemed not significant.  


In an effort to learn more about IV2, the Minimum R-square technique was run and the portion displaying IV2, as extracted from the printout, is shown below: 

                         

 Table 4:  Minimum R-square Procedure

     

  Minimum R-square Improvement for Dependent Variable Y

Step 3   Variable X3 Removed        R-square = 0.38921828   C(p) =16.99474821

         

             Variable X2 Entered

               

        DF         Sum of Squares     Mean Square       F       Prob>F

 

 Regression       1             7.08299424       7.08299424      11.47    0.0033

 Error              18            11.11500576       0.61750032

 

 Total              19            18.19800000

                    

        Parameter            Standard              Type II

 Variable         Estimate                Error            Sum of Squares       F       Prob>F

  

INTERCEP       1.15952015      1.47222078       0.38304333        0.62     0.4412

 X2                     0.04760077      0.01405478       7.08299424      11.47    0.0033



Bounds on condition number:            1,            1

 ------------------------------------------------------------------------

From this printout, notice that the R-square value is again about 40% (0.38921828), that C(p) is very large at 16.9947 and that the F statistic and Prob>F values are significant at the alpha (() 0.05 level (11.47 and 0.0033 respectively).  Thus IV2 is significant when it is in the equation by itself.  However, variable two only contributes about 40% to explaining the DV, leaving about 60% of the variation in the DV unexplained – certainly not a comforting situation for the analyst who wishes to make an estimate.


The curiosity about IV2 remains, especially as this variable had a significant t-test value.  In addition, there are two more variables in the data set, IV3 and IV4.  In an effort to learn more about all three of these variables, another SAS technique – the Backward Elimination technique – was run and the first-step printout is shown below: 
Table 5:  Backward Elimination Procedure

      Backward Elimination Procedure for Dependent Variable Y       

 Step 0    All Variables Entered     R-square = 0.72232775   C(p) =   5.00000000

                 

        DF          Sum of Squares      Mean Square       F     Prob>F

 Regression       4            13.14492048       3.28623012       9.76    0.0004

 Error               15             5.05307952        0.33687197

 Total               19           18.19800000

                    

             Parameter         Standard                Type II

 

Variable               Estimate             Error          Sum of Squares      F      Prob>F

 

INTERCEP       0.91164562      1.17841159       0.20161506       0.60    0.4512

 

X1                     0.71373964      0.18932981       4.78747493      14.21   0.0019

 

X2                     0.02393740      0.01419278       0.95826178       2.84    0.1124

X3                    -0.02115577      0.02680560       0.20983199       0.62    0.4423

 
X4                     0.00898581      0.01141792       0.20864378       0.62    0.4435

 
Bounds on condition number:     2.431593,     31.79315

 

------------------------------------------------------------------------


This technique has, as its first step, all variables entering the equation and then proceeds to eliminate those variables that are not significant (Graham, 1994, p. 11-9).  Hence, from this printout, all four variables are shown.  Notice the R-square is high at 0.72232775 and this is good; however, the C(p) is 5.000 and this represents a warning because C(p) exceeds the number of independent variables in the model.  Notice also that while the overall F and Prob>F values (9.76 and 0.0004 respectively) are significant at the alpha (() 0.05 level, when these measures are considered for each IV, only IV1 is significant and IV2 at 0.1124, IV3 at 0.4423 and IV4 at 0.4435 all exceed the alpha (() value of 0.05, making them not significant.  A further concern is the sign on the coefficient of IV3 (-0.0211577) which is negative and raises the question, both theoretically and computationally, of whether this makes sense given its positive correlation with the DV identified in the correlation matrix (Table 2).  

Summary of Findings from Stepwise Illustration.  From the illustration, the findings were as follows:

(1)  The correlation matrix and t-test showed variables one and two as strongly correlated with the DV, with each other and statistically significant.  However, when modeled with the stepwise techniques, only IV1 was significant at the alpha (() 0.05 level. 

(2)  Variable two by itself explained little about the DV.
(3)  Variables three and four were strongly correlated with each other and to a much lesser degree with the DV.  These variables were not statistically significant at the alpha (() 0.05 level as measured by the t-test and application of various stepwise techniques.  Additionally, the sign on IV3 in the Backward Elimination technique may be a problem.

Closer inspection of the findings, raise a number of questions.  Is IV1 so strongly correlated with the DV that nearly any other IV may be added to the equation and still have the entire model be statistically significant?  Is the correlation between variables one and two and between variables three and four indicative of faulty logic and/or data normalization issues?  How important is variable two as regards the logic determined by the acquisition team and should it be retained despite the statistical findings given that it adds about 40% to the explanation of the DV?  Armed with the above information, it would be necessary to clarify these issues and provide defensible (logical) rationale.

Using the Statistical (stepwise) Strategy in Estimating. 


The above data set has been used to illustrate how this strategy may be provide insight into various ways to develop an improved regression equation given hypothesized causality.  Some generalizations will now be presented.    


The stepwise strategy was developed to economize on computational efforts, as compared with developing all the potential regressions, and still arrive at a reasonably good “best” set of independent variables.  As illustrated above, this strategy computes regression equations in stepwise-fashion; hence, the name for the strategy, where each step adds or deletes an independent variable.  The criterion for adding or deleting an independent variable may be stated in terms of the coefficient of partial correlation (Partial**R) or the F statistic.  In the illustration above, the SAS program software used a default alpha (() of 0.15 to assess each independent variable and terminated the program when no further independent variables were considered sufficiently helpful to enter the regression equation.   Noteworthy also is that the stepwise strategy permits an independent variable, brought into the model in an earlier step, to be dropped in a later step(s) if it is found no longer helpful in conjunction with variables added at later stages.  Hence, just because a variable enters the model in an early step is no guarantee that the variable will remain in the final determination of the “best” set of independent variables (Neter & Wasserman, 1974).


In using the final “best” set of independent variables regression model, caution is advised due to prediction bias that arises because the final model is so uniquely related or fitted to the data set.  Because this prediction bias may be especially large when the effects of the independent variables are small, it is advised, as good statistical practice, to measure the potential bias via model “calibration”; i.e., by using the final model to predict a new set of data.  Another caution relates to situations where the independent variables are highly intercorrelated or where there exists a pattern of multicollinearity.  Essentially, the regression model becomes highly suspect for predicting future values for the independent variable where those variables do not also follow the past pattern of multicollinearity found in the original data set; i.e., the model can, at best, predict future values where there is a similar pattern of multicollinearity evident (Neter & Wasserman, 1974).  

Summary & Conclusions.  


The stepwise strategy is useful for the DoD analyst in limited situations and is best used in conjunction with either the standard or hierarchical multiple regression strategies.  Should the analyst seek a prediction equation where economy and feasibility are critical, use of the stepwise strategy as an independent estimating technique should meet the following conditions (Cohen & Cohen, 1975, p. 104):

(1)  The research goal is entirely or primarily predictive and not at all, or only secondarily, explanatory.  This condition is based on the problems associated with substantive interpretation of the stepwise results as discussed in the illustration.

(2)  The sample size (n) is very large, and the original number of independent variables (k) (that is, prior to stepwise selection) is not too large; i.e., a k/n ratio of one to at least 40 is prudent. 
(3)  Especially if the results are to be substantively interpreted, a cross-validation of the stepwise strategy analysis in a new sample data set should be performed, and only those findings that hold true for both samples should be used.  Alternatively, the original sample may be randomly divided in half and used in this manner.

In summary, as with any other research activity, it is the analyst (researcher), not the method, that should be pre-eminent.  It is the analyst’s theory, specific goals, and knowledge about the measures being used that should serve as guides in the selection of analytic methods and the interpretation of the findings.  Because non-experimental research is frequently the only mode of analysis available, such analysis can and does lead to meaningful findings where the research is designed with forethought, executed with care and interpreted with circumspection (Pedhazur, 1982).


As is now evident, the stepwise technique is, in itself, not the basis for controversy but, rather, it is the misuse of the stepwise technique.  Hence, the DoD analyst may, indeed, include the stepwise multiple regression strategy in their tool box of estimating techniques for consideration in estimating contract and program costs.  
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