
White Paper
Navy Enterprise Implementation of Open Architecture

An Assessment from the Small Business Perspective
v1.1 December 11, 2007

A 2005 White Paper reviewed Navy efforts to implement Open Architecture (OA) across its
enterprise systems. That paper offered a good faith independent assessment with the hope it would
assist the Navy in moving forward to achieve its goals. It observed the Navy would not likely achieve
significant cost effective benefits of OA without a meaningful level of persistent competition which
could be facilitated by harnessing the innovation and agility of the small business community to
provide system architectural alternatives. The purpose of the original White Paper did not change but
advances in technology did. A second paper dated 20Jul07 was published to assesses software and
hardware in the context of their chronological evolution and what recent trends may mean to Navy
achievement of its goals. This paper is version 1.1 of the 20Jul07 paper. It addresses comments
received by the author and includes updated information relevant to the Navy's pursuit of OA goals.

Copyright (c) 2007 Harley Garrett, Global Technical Systems, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included as Enclosure V entitled "GNU Free
Documentation License".

Navy Enterprise Implementation of Open Architecture
An Assessment from the Small Business Perspective - Version 1.1 - 11Dec2007

The information systems component of a ship's combat system is the critical area of ship systems
design that can most benefit from using Open Architecture (OA) principles, processes, and policies. In
the author's opinion, of all major OA principles, if implementation does not create a healthier
competitive environment, the Navy will not gain any significant benefits from the other companion
principles. The most effective way to capture OA benefits is to pursue alternative designs that spawn
competitive stimulus.

A White Paper drafted in 2004 and published 24Jun051 reviewed Navy efforts to implement OA across
its enterprise systems. It observed the Navy would not achieve significant cost effective benefits of OA
without harnessing the innovation and agility of small business. Until this occurs, a meaningful level of
persistent competition will not emerge and the Navy will have fewer alternatives. A follow-on White
Paper published 20Jul07 assessed software and hardware technology in the context of its history and
what recent trends mean to Navy achievement of its OA goals. This v1.1 version incorporates many
constructive comments received by the author as a result of the 20July07 paper.

What is Open Architecture?

OA cannot be effectively implemented without first achieving unanimity throughout an implementing
organization of what the term means. This has been a challenge for the Navy and may have impeded
progress. A common understanding in all Navy organizations is still evolving. It may help to review
some of the history behind the OA concept.

DoD has long emphasized equipment commonality and standardization as ways to lower weapon
system ownership costs along with Non-Developmental Items (NDI) and ruggedized Commercial Off-
the-Shelf (COTS) hardware. But these policies per se did little to further intra-service interoperability
and even less to facilitate joint warfare. As COTS was emphasized, Mil-specs gave way to performance
based specifications. Finally, on 29Jun1994, the SECDEF directed commercial specifications and
standards be given precedence over military derived specifications to achieve performance.2

Shortly thereafter, USD (AT) memo 29Nov1994 3defined these “Open System” commercial
specification and standards as consensus-based public or non-proprietary An Open Systems Joint Task
Force (OSJTF) was created to accelerate implementation of “open systems” in weapon system
electronics and, in addition to other duties, “...identify opportunities for implementing open
architectures”.

Some ten years later, a May 2003 revision of DoDD 5000.1 added the term “modular” to “Open
Systems”. In his implementing guidance 4, the ASN (RD&A) correctly referred to the DoD directive as
a mandate to use Open Systems Architectures” and established an Executive Committee (EXCOM) to
meet initially on 16Oct03 and begin the task of implementing Open Architecture principles as the basis
for all Navy war fighting systems development and maintenance.

1 “ The Navy Shipbuilding Dilemma: An Option to Increase Competitiveness”; 24Jun05; H.Garrett, Available on Request
2 “Acquisition of Weapons Systems Electronics Using Open Systems Specifications and Standards”, USD (AT) Memo,

29Nov1994
3 IBID
4 “Naval Open Architecture Scope and Responsibilities” ASN (RD&A) Memo. 5Aug04

1

On 5Apr2004, the USD (AT&L) issued a memo5 amplifying the DoD guidance declaring a Modular
Open Systems Approach (MOSA) as a key enabler of joint warfare and mandating its use in all
programs subject to milestone review. Significantly, this memo may have been one of the first to
integrate business processes as well as technical processes into the “Open Systems” approach to
weapon systems design. Since then, ship-specific terms have emerged such as “Open Architecture
Computing Environment” (OACE) and “Total Ship Computing Environment-Infrastructure” (TSCE-I).

A more general definition was used by the CNO in a 12Dec06 Rhumbline:

“Open Architecture is the confluence of business and technical practices yielding modular,
interoperable systems that adhere to open standards with published interfaces. This approach
significantly increases opportunities for innovation and competition, enables reuse of components,
facilitates rapid technology insertion, and reduces maintenance constraints.” The CNO then added “OA
delivers increased war fighting capabilities in a shorter time at a reduced cost.”

While a Navy-wide uniform understanding of OA may still be emerging, it is important to view the
evolution of the term in the larger context of DoD's earlier problems. DoD's official 1994 policy to
move away from military specifications was due in no small measure to the diminishing number of
manufacturing sources for military components, especially electronic components.

Diminishing Manufacturing Sources (DMS)

Throughout the 1970's and 1980's, DoD invested heavily in advancing semi-conductor technology.
Large purchases of mil-spec devices created a competitive landscape of manufacturers and customized
device designers. A 1986 weapon system required electronic modernization only once during its 30-
year life cycle based on a mil-spec technology obsolescence rate of every 15 years. As solid state
technology advances were introduced into consumer products, such as personal computers and cell
phones, DoD's influence on chip makers waned and mil-spec manufacturers began to disappear.

By 1997 mil-spec sales were less than one percent (1%) of world wide semiconductor sales. A TacTech
Inc study6 found mil-spec device technology obsolescence had decreased to 12 years but the time
between next-generation commercial integrated circuits was decreasing faster. DoD dealt with this by
making Life-of-Type (LOT) buys of remaining Mil-Spec inventories which only guaranteed future
obsolescence while forgoing cost and performance benefits. The study found if a weapon system were
designed with commercial parts to capture advancing COTS technology, it would require seven (7)
upgrades during its 30-year operational life.

Beginning in the early 1980's, DoD moved quickly to combat the effects on weapons systems of DMS
and Material Shortages (DMSMS). Working with service logistics organizations, the Defense Logistics
Agency, defense industry, the Society of Logistics Engineers, IEEE, and other organizations, the
department has institutionalized the need to manage parts obsolescence. 7 Since then, while DoD's
percentage of total world-wide electronics manufacturing has decreased, manufacturing sources for
electronics, in general, has grown rapidly. Even with the transition to COTS electronics and piece parts,
the technology and processes DoD now has in place to manage DMSMS will play a major role in
keeping weapon systems affordably refreshed over their life cycles.

5 “Amplifying DoDD 5000.1 Guidance Regarding Modular Open Systems Approach (MOSA) Implementation”. USD
(AT&L) Memo 5Apr04

6 Available on request in the form of an old ppt.
7 See http://www.dmsms.org/

2

The Navy A-RCI Experience

In the late 1990's, shortly after the 29Nov1994 USD memo promulgated the OSJTF, the Navy realized
it was losing its edge in underwater acoustic technology. Breaking with tradition, it launched a program
called Advanced Rapid Commercial Off-the-Shelf (COTS) Insertion (A-RCI). The idea was to leverage
COTS and small business innovation to implement fleet-wide sonar system upgrades quickly. It used a
modular open system approach (MOSA) to create an environment in which it could procure reusable
software from a variety of continuously competitive sources. Among the obstacles it encountered was
the negative impact of closed business models on “meaningful” competition in a landscape dominated
by a few very large defense companies long established in traditional procurement policies. The
program overcame these and was highly successful.8 Its experience with 2-year software refresh cycles
and 4-year hardware refresh cycles verified the earlier TacTech findings.

A November 2006 study9 of the A-RCI program compared ownership costs for the period five years
before implementation to five years after. It conservatively found a savings in the $4 billion range
while capturing the performance objectives expected from the MOSA approach and COTS advances.

The Navy OA Implementation Effort

On 12May03 the DoD amended DoDD 5000.1 stating: “Acquisition programs shall be managed
through ...a systems engineering approach that optimizes total systems performance and minimizes
total ownership costs. A modular, open systems approach shall be employed, where feasible”.

The ASN (RD&A) created an EXCOM which met initially on 16Oct03 to ensure Navy-wide
implementation of DoD 5000.1 by embracing OA principles across all Navy domains. A plan of action
was drafted to be reviewed by the ASN and an OUSD Tri-Service “Red Team”. 10

In March 2004, OPNAV 76 published a White Paper11 defining OA in technical and operational terms.
Emphasizing the surface warfare domain, it was intended to help create a Navy-wide common
understanding of OA and how it should be implemented in that domain.

In an April 2004, the USD AT&L amplified DoDD 5000.1 to mandate the use of MOSA in all programs
of record12 and approved the use of a OMB's Program Assessment and Rating Tool (PART) to assess
and rate programs with respect to compliance. The USD charged the Open Systems Joint Task Force
(OSJTF) to chair a MOSA Review Team (MOSART) to evaluate service plans using PART. In
September 2004, the OSJTF published v2.0 of a Program Manager's MOSA Guide to help all military
service PMs apply MOSA principles to their programs.

EXCOM #2 met with ASN (RD&A) in June 2004 to review the Navy program. The review reinforced
OA as critical to achieving Navy goals but recognized creation of a well-developed Navy business
strategy as something that should be emphasized over technical details to create alternatives for

8 “The A-RCI Process – Leadership and Management Principles”, William Johnson, Naval Engineers Journal; Fall 2004
9 NAVSEA Code 017 Independent CAIG Validated Study
10 “Naval Open Architecture Scope and Responsibilities”, ASN (RD&A) Memo 5Aug04
11 “Open Architecture, The Critical Network Centric Warfare Enabler” Capt Rushton, Surface Warfare Directorate (N76)

with Messrs McCrave, Klett & Sorber, 18Mar04
12 “Amplifying DoDD 5000.1 Guidance Regrading Modular Open Systems Approach (MOSA) Implementation”. USD

(AT&L) Memo 5Apr04USD AT&L 5Apr04
3

analysis and involve players other than the big primes.

 “..we should no longer think of traditional DoD prime contractors as the only contributors....we
need to significantly involve industry and academia much more in the future to ensure OA's
success”.13

In August 2004, the ASN (RD&A) summarized the results of the 2Jun04 EXCOM, directed action
items for it to complete, and signed out the new OA policy 14assigning PEO IWS overall responsibility
as well as individual responsibility for the Surface Domain. To execute domain-wide responsibility,
PEO IWS was directed to establish an Open Architecture Enterprise Team (OAET) consisting of
members from the various PEO organizations. While making it clear PEO's would be individually
responsible for creating Open Architectures within their respective domains, it recognized air, space,
surface, subs, and C4I domains may have unique requirements due to their functional and technical
differences. It also reiterated the need for a good Navy business strategy:

 “The primary focus of business strategy will be to develop an Analysis of Alternatives Process
with which to determine ROI and priorities for adopting OA standards and software reuse
practices within and across domains.” 15

Notwithstanding the clear governance construct to implement OA strategy established by the ASN in
2004, progress within the PEO structure in 2005 was not robust but a foundation for growth was
established. PEO IWS-7 held an initial Industry Day to begin involving industry, reviewed past
“lessons learned”, and started research at the Navy's Post Graduate School (Monterrey, CA). The
OAET began meeting and IWS-7 published Version 1.1 of the Open Architecture Assessment Tool
(OAAT) for program managers (PMs) to evaluate the extent to which their programs met Open
Architecture principles. An effort was also undertaken in conjunction with a key area extending from
the June 2004 EXCOM and the ASN's August 2004 policy guidance:

 “Finally, I want to review our contractual obligations within the PEOs to fully understand all
options with regard to alternate strategies for budgeting and contracting in order to maximize
the benefits of OA”.

From this review, work was started on the first Naval Open Architecture Contract Guidebook to assist
PMs and Contract Managers by providing sample language for inclusion in solicitations and contracts
and institutionalize OA requirements in those documents. In December 2005, OPNAV N6 & N7
published a requirements document16 formally establishing the operational need for OA principles and
defining OPNAV participation in and support of the OAET. This document serves as official
justification for resources within the Navy budget for its purposes. Principles it reflects are:

 Modular design and design disclosure
 Reusable application software
 Inter-operable joint war fighting and secure information exchange
 Life cycle affordability, and,
 Encouraging competition and collaboration to develop alternative solutions and sources.

13 “Summary of EXCOMM of June 2, 2004”, ASN (RD&A) Memo 5Aug04
14 “Naval Open Architecture Scope and Responsibilities” ASN (RD&A) Memo 5Aug04
15 IBID
16 “Requirement for Open Architecture (OA) Implementation” Deputy Chief of Staff of Naval Operations (Warfare

Requirements and Programs) (N6/N7) 23Dec05
4

Key to the N6/N7 requirements document was establishment of an OPNAV Open Architecture Council
(OAC), to ensure Navy systems requirements reflect OA principles and to establish and communicate
POM/PR guidance to the acquisition community.

In February 2006, IWS-7 held the second OA Industry Day announcing to some 100+ attending firms
that the Navy leadership was indeed changing the way it had traditionally done business. Proprietary
rights to software and hardware were to be avoided in future designs and all contracts were to require a
minimum of Government Purpose Rights (GPR). Much to the consternation of at least two large
companies attending, the Navy announced its intention to own all legacy and newly created software
source code and control-share it with selected contractors through the newly established Software and
Hardware Asset Reuse Enterprise (SHARE) repository.

While some may argue SHARE is not meeting Navy objectives and its implementation has been
controversial in some sectors, SHARE is a major cornerstone of Navy OA strategy. In the author's
opinion, in spite of birthing pains, the Navy should be encouraged to continually refine its
implementation. A more detailed assessment of SHARE regarding its utility in promoting OA and
potential policy issues is provided in Enclosure 2 to this paper.

Another key achievement in 2006 was the release of Version 1.0 of the Naval Open Architecture
Contract Guidebook. While not perfect, this document provides contracts officers and program
managers guidance and sample language for use in sections C, L, and M of RFPs, OA checklists, and
an OA award fee plan. But notwithstanding progress, the Navy's overall effort has garnered growing
attention among higher levels in the Navy as well as “across the Potomac”.

Capitol Hill Interest and CNO Involvement

While congressional committees have been cognizant of the Navy's plans to acquire new ships and
modernize legacy platforms using OA principles since 2003, a US Senator expressed his feelings to
SECNAV in an August 2006 letter and the CNO expressed his interest to ASN (RDA) in helping to
move OA forward. The CNO's memo reiterated the OA principles stated in the OPNAV requirements
document and he emphasized:

 “And, most importantly: Encouraging competition and collaboration through development of
alternative solutions and sources.”17

A press report which followed in November 2006 18quoted the ASN (RDA) as saying:

“The whole idea ...is to open up more competition so...more companies can participate,
particularly for smaller pieces”.

The CNO's frustration was evident in the same press report:

 “The technology is outstripping us in terms of delivering less expensive technology rapidly and
getting more capability to the fleet. ..fundamentally I think we are behind. We are moving too
slow.” 19

17 Memorandum For Assistant Secretary of the Navy for Research, Development, and Acquisition; Subj: Navy Open
Architecture, 28Aug06

18 Defense Daily 3Nov06
19 IBID

5

The Navy is moving too slow and the pace COTS is advancing shows no signs of slowing down long
enough to permit the Navy to catch up. So what is the Navy to do about this? Perhaps the SECNAV,
new CNO, and the next ASN(RDA) will take a fresh look.

The author believes the Navy should strive to implement OA consistent with its own definitions but its
success will require a comprehensive understanding of a triad of dependencies:

1. COTS technical advances and new software development methods,
2. Changes in software openness and business processes, and,
3. Better integration of small business into the Navy acquisition process.

The Navy cannot control 1), can leverage 2) to its advantage, but has significant control over 3)
regarding changes in acquisition policy, organizational structure, and, if necessary, personnel. Absent
consistent strong leadership at the very top levels of the Navy who remain persistently committed to a
results-oriented implementation, the Navy may not fully capture OA benefits which many in its ranks
have correctly identified.

The former CNO's remarks above might be best appreciated after the reader reviews the Enclosure 3 to
this paper “Chronology of Modern Computers and Software”. Using Enclosure 3 as a prelude, the
following discussion of the above triad of dependencies is offered:

COTS Technical Advances and Software Development Methods

Since the 2003 promulgation of DoDD 5000.1 OA policy, advances in COTS technology out pace if
not overwhelm Navy progress. The rapid pace of advances since WWII has been extraordinary and
recently accelerated. 20 Several trends are critical to any enterprise effort that wishes to “keep pace”.

Relationship between hardware and software. It might be said when the ability to deliver reliable
software (the “yin”) lags hardware advances (the “yang”), a crisis exists. The NATO Science
Committee thought so in 1968 21when it met to address how to develop, operate, and maintain reliable
software to meet a demand being generated by the pressures of increased computer power availability
in more affordable minicomputers such as the PDP-8 which was rapidly expanding the population of
non-scientific users.

Higher Level Languages (HLLs) and Software Architecture. Software development began its journey
from hand coding assembly language to more “abstraction” in the 1950s with FORTRAN which was
easier to write and could be compiled into into executable machine code. By 1968, languages became
more abstract and scientists argued that architecture of a software system matters and getting it right is
very critical.

Software Architecture Paradigms. Although there is no precise definition of “Software Architecture”,
its paradigms are useful to describe how a programmer views his program during its execution.22
Among programming paradigms are: procedural or imperative, functional, object-oriented, and process
or concurrent (parallel)-oriented. While FORTRAN is procedural and HASKEL is functional, SIMULA
I was an early example of object-oriented paradigm and EASE was designed to facilitate parallel

20 See Enclosure 3: Chronology of Modern Computers and Software
21 Software Engineering ; Report on Conference Sponsored by NATO Science Committee at Garmish Germany October 7-

11, 1968; http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf
22 See Wikipedia for this source and other data in this section: http://en.wikipedia.org/wiki/Main_Page

6

http://en.wikipedia.org/wiki/Software_Architecture#_note-3
http://en.wikipedia.org/wiki/Software_Architecture#_note-3
http://en.wikipedia.org/wiki/Software_Architecture#_note-3

(concurrent) programming. More recent languages are multi-paradigm. JAVA is both object-oriented
and functional while C++ is object-oriented and procedural. Very High Level Languages (VHLL) or
scripting languages such as JAVASCRIPT, PYTHON, and RUBY have very high levels of abstraction.

As HLLs continue to get more and more abstract, the term “source code” may be losing its original
meaning or at least re-defining itself. Model Driven Development where executable code is generated
from a model is becoming popular giving rise to more object-oriented languages and new ones are now
emerging in the process-oriented paradigm to facilitate execution over multi-core hardware
architectures. As a result, software concerns similar to those addressed by the 1968 NATO Science
Committee's Software Engineering Conference are now re-emerging as a subject of academic study.23

Multi-Core Processors. Microprocessors are more powerful than ever and moving rapidly from single
core to multi-core on a single die. These new processors are making “Micro-Supercomputers” out of
ordinary desktops and shrinking traditional supercomputers down to server size. Programmers must
now be experts in parallel programming and processor architecture.

Software Impact. Microprocessor architectures now become a critical consideration to legacy software
reuse and hardware refresh decisions. Different manufactures such as Intel, AMD, and IBM, employ
different circuit designs in an increasingly core-dense family of products. Writing new applications to
capture full advantage of these processors requires a detailed technical understanding of the target
multi-core processor's internal architecture. Simply refreshing hardware from dual-core to quad-core
with no modernization of legacy code does not necessarily mean higher performance.24 Application
source code (new or legacy) must be “parallelized” or parsed to identify its “threads” and “processes”
to program them to execute efficiently by minimizing CPU idle time across the multiple cores.

Software Obsolescence. Conversion from single-core to multi-core architectures is now injecting new
complexities in how to prevent future software obsolescence as the underlying hardware continues to
advance. For example, re-hosting a deployed quad DSP board to a new multi-core architecture is no
easy task.25 Detailed software specification documents from the original source will always preserve
the algorithmic meaning of legacy code for use by others to modernize later in different languages or
re-engineer to compile and execute on other platforms. Middleware provides portability but relies on
sources with legal access to the underlying hardware or operating system to remove its architecture-
specific code from the algorithmic processes of the application.

Expanding Software Industry. Commercial software developers have always been pushed to deliver
applications within cost and schedule parameters but now must ensure applications can execute in ways
that take reasonably optimal advantage of multi-core processors and their internal architectures. While
a “tool” industry has grown up selling licensed proprietary software tools to automate programming
tasks, a broader more robust competitive landscape is now emerging characterized by small highly
innovative firms specializing in multi-core programming tools. Some of these small firms leverage
advanced model driven development technologies 26to expedite software development times and lower
costs for multi-core platform applications.

23 “The Landscape of Parallel Computing Research: A View from Berkeley” , Technical Report No. UCB/EECS-2006-183
December 18, 2006; http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

24 “Choosing Dual or Quad Core”, Jeff Atwood, 1Sept07; http://www.codinghorror.com/blog/archives/000942.html
25 “Combating Obsolescence in High-Performance Multiprocessor Software”;William Lundgren, Kerry Barnes, and James

Steed, Gadae, Inc; May 2007, http://www.power.org/resources/devcorner/cellcorner/Gedae_May07.pdf
26 IBID

7

http://en.wikipedia.org/wiki/Software_Architecture#_note-3
http://en.wikipedia.org/wiki/Software_Architecture#_note-3
http://en.wikipedia.org/wiki/Software_Architecture#_note-3
http://en.wikipedia.org/wiki/Software_Architecture#_note-3

Beowulf Clusters. While partitioning algorithms to run on multiple computers dates back to the 1970's,
today's Beowulf Cluster technology with the Message Passing Interface (MPI) communications
protocol and Parallel Virtual Machine (PVM) software make heterogeneous computers act as a single
machine lowering the cost of data processing from $30,000 per Gflops in 1997 27to less than $100 per
Gflops today. 28This technology now makes a supercomputer affordable to even the smallest firms for
commercial or research purposes. Economic data processing is no longer the domain of large high
performance computer centers.

Manufacturing Technology. Moore's Law will continue to be operative awhile longer through photo
lithography and software controlled manufacturing processes. While the original Intel 4004 had 2250
transistors manufactured to a 10-micron level, processors are now made now at the 45 nanometer level
in high volume.29 The Intel Itanium 2 (dual core) processor has 1.7 billion transistors and last year the
firm announced a prototype 80-core chip.

While rapid technical advances have been made in hardware, a paradigm change in software
development concepts is now gaining momentum and having a major impact on business processes.

Changes in Software Openness and Business Processes

The “Open” Movement. While the desire for software portability across operating platforms dates back
to Thompson and Richie's 1969 Unix and C-language, and an industry consortia was formed to “keep
Unix Open” leading to several “unix-like” operating systems, two other events combined to propel the
demand for free software and portability across platforms: 1) Richard Stallman's 1983 Free Software
Movement (FSM) and 1985 Free Software Foundation (FSF) which pioneered the GNU General Public
License (GPL), and, 2) Linus Torvalds 1991 use of Stallman's GNU Project free software tools to
create the Linux kernel.

Free vs Open Source Software. Free and Open Source software may be thought of as “zero cost” but
both terms are better defined by how they evolved. “Free” was first promoted by Stallman under the
FSM, but the term “Open Source” became popular in 1998 when an Open Source Initiative (OSI) was
created in to promote “free” software. Both the OSI and FSF have the same goals and differences are
academic if not ethereal. More important is how both implement copyright law.

Copyright Law and Licensing. While proprietary software has long used copyright law to restrict
unauthorized use and distribution of the copyrighted work through an appropriate license, the Open
Movement evolved two decidedly different adaptations generally represented by the GNU GPL and the
Berkley Software Distribution (BSD).30 Both require delivery of copyrighted source code and permit
alterations but are distinctly different regarding what a recipient can and cannot do with a product
derived from the openly available source code. Stallman, through the GNU GPL, pioneered the “copy
left” licensing approach which uses copyright law to deliberately pass on to recipients the copyright
holder's rights in a way that guarantees the same rights to others to whom the recipient may further

27 SC Technical Paper 1997, Michael Warren, Donald Becker et.al.; http://loki-www.lanl.gov/papers/sc97/
28 http://www.theinquirer.net/en/inquirer/news/2007/08/31/desktop-supercomputer-breaks-100-per-gflop
29 “Intel opens first high volume 45nm Micro-Processor factory”, 25Oct07;

http://www.intel.com/pressroom/archive/releases/20071025corp.htm
30 For a good overview of licenses, see Use of Free and Open-Source Software (FOSS) in the U.S. Department of Defense

Copyright 2002 by The MITRE Corporation: http://terrybollinger.com/dodfoss/dodfoss_pdf_hyperlinked.pdf
8

distribute. Stallman's FSF definition, 31 defines free software by whether or not the recipient has access
to the source code and is granted the four freedoms to:

• Run the program, for any purpose (freedom 0)
• Study how the program works, and adapt it to your needs (freedom 1)
• Redistribute copies so you can help your neighbor (freedom 2)
• Improve the program, and release your improvements to the public, so that the whole

community benefits (freedom 3)

Freedom's 0 and 1 include selling derivatives but in so doing, you must also provide the buyer the right
to access the source code granting him the above freedoms. Software released under the GPL is known
as “GPL'd”. Since the GPL prohibits recipients from distributing their derivatives to successive users
(or paying customers) with restrictions imposed that limit their freedoms (such as denying access to the
source code), some claim the GPL is “viral”. But this term is misused or overly pejorative since
proprietary licenses are also viral in the sense the copyright holder unilaterally withholds freedoms to
successive users while the GPL does the exact opposite. In addition, the GPL permits free use of the
GNU Compiler Collection (GCC) to compile proprietary programs and proprietary programs can be
combined with many run-time libraries released under the Lesser GPL (LGPL). It is also worthwhile to
note that under the GPL, a derivative developer's “right” to redistribute his work is not a “requirement”.

The Berkley Software Distribution License evolved from the original Bell Labs use of Unix 32and it is
considered more permissive than the GNU GPL. This is because the BSD License allows proprietary
commercial use and for the software released under the license to be incorporated into proprietary
commercial products. Some notable examples of this are the use of BSD networking code in Microsoft
products,33 and the use of numerous FreeBSD components in the Mac OS. At least 59 license variants
now exist and are considered either compatible or incompatible with the GNU GPL.34

The Linux Operating System. While Stallman's GNU project intended to include an open source
operating system, original work concentrated on creating a free set of software development tools
known as the GNU Toolchain which included, among other tools, the GNU Compiler Collection
(GCC). Since many of these tools were available in 1991, Linus Torvalds used them to create the Linux
kernel. Torvald's released the original Linux kernel under a “free” license but it prohibited the
commercial sale of any software developed from the kernel. With no financial incentive to create
distributions, few programmers embraced it. Conversely, under the GNU GPL, a developer may sell his
product so long as he extends to his customers the same rights he enjoys under the GPL.

Within a year after releasing Linux, Torvalds re-licensed the Linux kernel under the GNU GPL. His
decision, in combination with the rapidly growing internet, unleashed a world-wide pent-up demand
among programmers to use Linux for their innovations leading to the wide-spread notion that the
highest quality software is best developed as a communal effort. By 1999, the Linux was used in 25%
of the server markets and 4% percent of desktop users (clients) used the Linux OS.35

Impact of Stallman and Torvalds on Software Development. Originally, algorithms were 100%
manually composed by the developer and written in appropriate language compiled to run on a target

31 http://www.gnu.org/philosophy/free-sw.html
32 The first Unix system at Berkeley was a used on a PDP-11 installed in 1974;

http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
33 See example at: http://research.microsoft.com/invisible/include/winsock.h.htm
34 See http://en.wikipedia.org/wiki/List_of_FSF_approved_software_licenses
35 A Business Case Study of Open Source Software , July 2001, Carolyn A. Kenwood, the Mitre Corporation

9

http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/FreeBSD
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/PDP-11

platform. Wide-spread availability of reusable code was largely stifled by proprietary operating systems
and software libraries. With the release of Linux under the GNU GPL, and Stallman's GNU Project
tools, programmers world-wide were free to create and share segments of their code or whole
application specific algorithms for others to use or modify in the creation of their new applications.

Today, there are vast open repositories of code representing the brightest most innovative efforts of
others in a true collaborative environment. While anyone can participate, numerous foundations and
web-hosting organizations have emerged to ensure code they release is robust and reliable while
development continues through periodic revisions. For example, Sourceforge.net as of 27Nov07
hosted 163,226 projects being worked on or used by a community of 1,735,769 registered users.36Now,
anyone developing new software does not have to “ reinvent the wheel” and developing new software
consists more of reconfiguring the best segments of existing open source code than composing new
code from scratch.

Open Industry. A new “open industry” of firms emerged who believed that even though under a GPL
they would have to deliver source code reflecting their development investment, customers would still
be willing to hire them to install, set up and train employees, and maintain their systems. SuSE, Red
Hat, and Apache are examples. In addition to Sourceforge, numerous other Open Source Development
sites are now in operation such as RubyForge, Tigris.org, JavaForge, and GNU Savannah.

The Open Movement has expanded widely and now literally tens of thousands of software applications
and design tools have been created as publicly available distributions from the Linux kernel. Some are
obtained through purchase of the services, some like Firefox and Thunderbird, are free including
updates released from the Mozilla Foundation. Major firms are now embracing this movement. In
1998, IBM created a Linux Technology Center and is leading the development of an “open software
architecture framework” published under the Eclipse Public License. 37

In 2003, DoD funded Mitre through a DISA contract to investigate the use of Free and Open Source
Software (FOSS) in the DoD. The main conclusion was that FOSS software was already in use
throughout DoD and played a more critical role than had generally been recognized.38 One unexpected
result was the degree to which security already depends on FOSS. Banning FOSS in DoD applications
would remove certain types of infrastructure components (e.g., OpenBSD) that currently help support
network security. By May 2003, DoD announced its policy in this area 39. More recently, the Navy CIO
established an Open Source Software Policy defining the use of open source software in Navy systems,
albeit only if such software meets the definition of COTS. 40

The Open Systems Battle. While Linux has penetrated the server market rapidly since 2000 and is now
offered in desktops and laptops, it's growth has slowed as it became a major threat to proprietary
systems.41 But notwithstanding Microsoft's May 2007 claim of patent infringements, Linux continues
higher growth in the server market than Windows or Vista and its rate of absorption in commercial
markets is not likely to recede. 42

COTS advances in hardware may be mostly the result of large business competition in the commercial
marketplace. However, changes in openness regarding software development and the business practices

36 http://sourceforge.net
37 However, the Eclipse Public License is not GPL compatible. See footnote 34
38 Use of Free and Open-Source Software (FOSS) in the U.S. Department of Defense, v1.2.04, 2Jan2003 ;

http://terrybollinger.com/dodfoss/dodfoss_pdf_hyperlinked.pdf
39 DoD CIO Memo: Open Source Software (OSS) in the Department of Defense (DoD), 28May03
40 Navy CIO Memo: Department of the Navy Open Source Software Guidance, 5Jun07
41 See the Microsoft “Halloween Documents”: http://en.wikipedia.org/wiki/Halloween_documents
42 “Dell CEO: Linux Server Sales Increasing” , Tom Espiner ,15Oct07;

http://software.silicon.com/os/0,39024651,39168818,00.htm?r=1
10

it precipitated are now providing risk/reward ratio incentives to competitive small businesses seeking to
profit from their technical innovation. The extent to which the Navy can leverage this second part of
the triad of dependencies will impact on their success in OA implementation. Finally, addressing the
third part of the triad will be equally challenging.

Better Integration of Small Firms into Navy Acquisition

Part of the Navy's OA strategy going forward might be to assess, using a “MOSA” type metric, its
progress to date regarding how well it has integrated small firms into its OA implementation process. A
review of some underlying factors might help create a foundation for such an assessment.

Industry Consolidation and Shipbuilding Costs. As the 2005 White Paper 43pointed out, the massive
defense industry consolidation in the 1990s had a profound effect on federal procurement and
acquisition policy. Notwithstanding this consolidation and based on tradition, contracts continued to be
awarded for entire ship classes and combat systems with exclusive life-cycle modernization rights.44

Unfortunately, as competition at the prime level reduced to a handful of very large players, the Navy,
like other federal agencies, began to outsource what had been in-house expertise and “downsize” its
professional acquisition staff which was now needed more than ever to manage major programs. A
recent GAO report stated staffing at NAVSEA has decreased almost 50% since 1991.45 Unfortunately,
the USCG also downsized its acquisition staff during the same period.

Faced with the need to modernize, the USCG, deemed the few “Lead System Integrator” or LSI mega-
firms remaining after the consolidation the only sources having both the technical expertise to deliver
maritime solution(s) and the experienced management to perform. As a result of awarding the
Deepwater asset re-capitalization contract with long performance periods and no provision for
government intervention other than termination, the USCG joined themselves “at the hip” while totally
abdicating program and technical control. Cost overruns and the superior attitude and conduct of the
prime are well documented in the Department of Homeland Security Inspector General's statement of
February 14, 2007 before a subcommittee of the Senate Committee on Commerce, Science, and
Transportation.46 Fortunately for the USCG, the 5-year base contract expired in June 2007 and the
USCG acted to pull back in-house certain responsibilities and authority. The future of this activity is
still unfolding. 47

But even traditional shipbuilding contracts are not exempt from the USCG's LSI experience witness the
design and technical issues, cost overruns, and schedule delays with the LCS and LPD-17 class ships
not to mention mounting DDG-1000 and CVN-78 costs. The Navy has exceeded its original budget by
more than $4 billion for the 41 ships under construction at the beginning of this fiscal year And more
cost growth is coming.48

In the past 6 months the LCS program cost growth from the original $220M unit cost precipitated the
cancellation of both LCS #3 49 and LCS #4 50 leading appropriators to add only enough funds in

43 See Footnote 1
44 See Aegis Baseline Improvement Contract N00024-98-C-5197 as an example.
45 GAO Report 07-943T, p.20, 24Jul07; http://www.gao.gov/htext/d07943t.html
46 “An Overview of Issues and Challenges Facing the Department of Homeland Security”, Richard L. Skinner, Inspector

General (IG) Department of Homeland Security (DHS); Testimony to US House of Representatives Committee on
Homeland Security, 7Feb07

47 “Deepwater – 120 Day Update”, Richard L. Skinner, DHS IG; Testimony to Subcommittee on USCG and Maritime
Transportation, Committee on Transportation and Infrastructure, US House of Representatives, 12Jun07

48 GAO Report 07-943T, p.1, 24Jul07; http://www.gao.gov/htext/d07943t.html
49 “Showdown Ends in Cancellation”; http://www.defensenews.com/story.php?F=2684255&C=landwar
50 “ Navy Cancels LCS #4”; http://www.defensenews.com/story.php?F=3153932&C=navwar

11

FY2008 to purchase a single LCS at new unit cost cap of $460M while directing the Navy to include
other shipyards in a competition to build the rest of the planned 55 ship fleet. While as of this date, the
FY2008 Authorization bill is still pending, its language attributing cost growth to several factors took
the Navy to task on its high risk acquisition strategy and lack of emphasis on “bid realism”. It also
noted, not unlike the USCG's experience, the Navy's program office, was understaffed and lacking the
experience and qualifications necessary to manage a major program. 51

Use of COTS and Open Systems standards in DoD Weapons Systems Designs. The use of COTS in
military systems was at least a partial by-product of historical peace-time budget pressures to reduce
weapons systems cost. During the process of its evolution, COTS became synonymous with
“affordable”. COTS became good; mil-specs bad and migration away from military to commercial
standards and specifications was officially set forth by USD policy in 1994.52 Acquisition policies
slowly changed. As industry consolidation took place during the 1990's, mega-firm marketing
strategies appeared projecting themselves as experts at delivering systems with a high degree of COTS
content virtually guaranteeing a price their DoD customers could afford.

Large vs Small Firms. Perhaps large firms worked hard but the current affordability of a 313 ship Navy
is not universally embraced. Some facts-of-life may have hindered their success. First, a logical
postulate might argue the more COTS and Open Architecture are used in a design, the fewer
engineering hours should be needed to develop it and unit production costs should more affordable than
former mil-spec designs. But with large engineering and manufacturing payrolls, what is the incentive
to capture optimal cost benefits for their customers? Second, given the decades of business-as-usual
based on non-COTS designs, government acquisition policies, and the political process, what business
based and technical challenges would large firms have to undertake to change that model?

Unlike larger firms, if small firms succeed, they must stay on the leading edge of technology and
innovation; they do not have the luxury of a foundation of long-term government contracts to sustain
them if they fail to perform. Yet in every area of technology many contracting officers and program
managers continued to view small firms as risky. Rather than risk being responsible for a small
business set-aside that might go sour, it was more than attractive to offload that risk to a large prime by
requiring a small business subcontract plan invoked through FAR/DFAR guidance and clauses.

Work Break-Out. During and after WWII the Navy awarded a single contract for each ship class
inclusive of all systems for the ship's purpose. As sensors and weapons (S&W) became more complex,
the Navy broke this work out and awarded a separate contract for the ship's combat system. While
within this work package, small firms were capable of doing several tasks more economically than the
prime, such as the “Rack & Stack” of components, systems checkout, and installation of equipments,
the prime remained contractually accountable to deliver the end product and reductions in actual costs
to the Navy were insignificant. Until the Navy decides to break out work packages and contract directly
with small firms, innovation and affordability will continue to be defined by its primes.

Traditional Work Partitioning. In breaking out the S&W to create the Combat System partition, focus
was on platform integration. In reality, the Navy defaulted that role to the most dominant radar primes
who, by circumstance, became “Combat System Integrators”. The Navy now apparently views the
DDG-1000 Advanced Gun System (AGS) as meriting a tertiary breakout apart from the traditional ship

51 HR 1598 National Defense Authorization Act for Fiscal Year 2008; Section 132, as passed by Senate with amendments
4Oct07

52 “Acquisition of Weapons Systems Electronics Using Open Systems Specifications and Standards”, USD (AT) Memo,
29Nov94

12

and combat system contracts. It might also consider computer processing systems, their architecture,
design, and production, as another ideal candidate to partition. Unlike the AGS, this technology
overlays and permeates all PEO and Program Manager (PM) domains.

Primacy of Computer Systems. On-board systems must be inter-operable with each other and with off-
ship systems for the the platform to be net-centric. The single technology that is common to all these
domains, in the author's opinion, is the Computer Processing System, its architecture from the sensor
interfaces to crew displays, hardware and software components, network connectivity on and off-ship,
and the integration and/or hosting of the ship's combat systems software applications. These systems
continue to contribute to cost growth. The Navy has now spent $1.75B on construction of the LPD-17
lead ship. During its recent sea trials problems were revealed in four areas, one of which was the ship-
wide computing network. The total LPD program is now 25% over its initial budget.53

Small firms cannot “fix” all of the Navy's ship building problems but they represent a sizable body of
knowledge of COTS advances and can be competitive sources for innovation in many areas of ship
design, most notably, in areas of Open Architecture computing platforms, networks, and software for
lead and legacy ships. However, the extent to which the Navy can better integrate small firms into it
OA process may be impacted by interrelationships among its offices.

Navy Organizational Structure.

Program Executive Officer (PEO) Structure. Originally, Program Managers (PMs) responsible for
meeting operational performance requirements of individual weapons system RDT&E and procurement
programs within cost and schedule constraints reported through systems command and staff levels
making SECNAV and CNO oversight of the programs cumbersome. As a result, a more “streamlined”
management structure was needed and the Program Executive Officer (PEO) structure was borne.
PEO's were established to oversee multiple programs aggregated according to force structure domains
to help clarify program responsibilities and reduce span of control problems at higher levels. Program
Managers now report through PEOs to the ASN (RD&A) who reports to the SECNAV. The Navy's
Systems Commands or “Syscoms”, while no longer directly responsible for program management,
support the PEOs with staff requirements common to all programs, such as engineering, personnel, and
contract administration, etc. The PEO structure, from the ASN (RD&A) to the program management
level, including the Syscoms, is now sometimes referred to as “The Acquisition Community”.

The CNO Staff (aka OPNAV). While the PEO structure created more visible program accountability
and streamlined programmatic reporting, it effectively separated overall control from the Syscoms and
CNO and placed it under civilian oversight by establishing the ASN(RD&A) as the Navy's Acquisition
Executive (AE). However, since weapons system programs have their origin in an operational
requirements, the CNO, through his OPNAV staff, retained that responsibility along with establishing
war fighting strategy, force structures, and the responsibility to obtain resources necessary to field
systems to meet operational requirements. Hence, under the PEO structure, it became extremely
important for the CNO and ASN (RD&A) and their subordinate staffs to work closely together.

OA Organization. To institutionalize OA within the Acquisition Community, the ASN (RD&A) created
an EXCOM in 200354 which included representatives from OPNAV and the Fleet Commands, to help
establish a plan of action. A second EXCOM meeting was held in 2004 to further define the OA plan

53 GAO Report 07-943T, p.10, 24Jul07; http://www.gao.gov/htext/d07943t.html
54 “Summary of EXCOMM of June 2, 2004”, ASN (RD&A) Memo 5Aug04

13

and an OA Enterprise Team (OAET) within the Acquisition Community to execute it.55 While the
ASN's instructions were explicit covering what tasks needed to be done and which Acquisition Offices
were responsible for implementing them, it was not until late 2005 before OPNAV established an OA
requirement. This document formally appointed N76 as the OPNAV member of the OAET and created
an Open Architecture Council (OAC), chaired by N766, to work OA requirements and resources
needed for implementation across the CNO's staff.56

While the Navy was slow to leave the 2003 OA starting gate, it made significant progress in 2005 and
2006 but momentum may have slowed in 2007. This may be due to several factors.

Declining Momentum

While many dedicated Navy personnel in both OPNAV and the Acquisition Community have been
fully committed to implementing OA in full compliance with the former CNO's guidance and made
significant progress, measurable results at a macro level have yet to be visible. Work continues on
updating the Contracts Guidebook and expanding SHARE but but momentum may be declining. Many
of the 14 action items identified by the October 2006 EXCOM meeting are apparently still pending or
not yet implemented. The processes successfully used by the Navy in its Submarine A-RCI experience
and brought to the attention of SECNAV in 2006 57are well documented in the Defense AT&L's
November-December 2007 publication 58 but any application of those to other domains remains a work-
in-progress. Personnel changes at senior levels and lower levels may have disrupted a fragile OA stake-
holder backed momentum. The Navy recently issued a Draft RFP for a small business set-aside,
signaling it may be moving to open legacy contracts as hinted by the ASN (RD&A) in her statements to
the press 59 last year, but that effort may have now stalled.

While to an outside observer the relationship between OPNAV resource providers and those with
acquisition responsibility has appeared to be less than fraternal, it is now clear members of congress
and committee staffs have begun to take note. Although the SECNAV became personally involved in
2007 and took proactive actions to cancel LCS # 3 and 4, the FY2008 Authorization Bill cites one of
the major reasons for the LCS cost growth was that:

“...the relationship between the Naval Sea Systems Command and the program executive
Offices for the program was dysfunctional”. 60

This stinging indictment may not survive in the final bill but signals an external perception that not
only may the OPNAV side of the Navy not be working well with the Navy's acquisition side but within
the acquisition community itself there are “dysfunctional” relationships in need of repair.

The summary in version v1.0 of this white paper will not be re-printed here but it may be useful for
readers of this paper to review the following which the author has not substantially changed.

55 “Naval Open Architecture Scope and Responsibilities” ASN (RD&A) Memo. 5Aug04
56 “Requirement for Open Architecture (OA) Implementation” Deputy Chief of Staff of Naval Operations (Warfare

Requirements and Programs) (N6/N7) 23Dec05
57 Senator Warner letter to SECNAV 24Aug06
58 “Making the Process Better – Peer Reviews, Advanced Capability Build Process, and Open Architecture
Processes”,William M. Johnson, Defense AT&L, Nov-Dec 2007,
59 Defense Daily 3Nov06
60 HR 1598 National Defense Authorization Act for Fiscal Year 2008; Section 132, as passed by Senate with amendments

4Oct07
14

Navy OA Goals Re-visited.

Modular design and design disclosure. The Navy has taken steps to ensure future designs are disclosed
through the SHARE repository and to ensure it has a minimum of GPR to those artifacts. For future
designs, modularity should be partially obtainable as a natural by-product of emphasizing the use of
open source software. However, legacy software may require modularization and conversion to modern
languages in order to compile for optimal execution on multi-core processors.

Reusable Software. Specific reuse from platform-to-platform should occur as a SHARE by-product but
will also be greatly facilitated by wide-spread Naval use of open operating systems (Linux preferred)
and use of open source software. Obsolescence prevention should be a major consideration in acquiring
new software and modernizing legacy software. Once again, that can be accomplished by wide-spread
use of Linux and open source software which will also help ensure a continuous competitive base of
vendors capable of performing software refresh services over ship life-cycles.

Inter-operable joint war fighting and secure information exchange. DoDD 5000.1 and the DUSD
(AC&C) Roadmap Plan for Open Technology Development provide a policy basis for Linux and open
source software to support joint war-fighting and secure information exchange. All versions of the
Linux operating system use Protected (Privileged) Modes in hardware and standard security features
such as Unix File System Permission, Access Control Lists, Mandatory Access Control, and Internet
Protocol Security (IPSec) to encrypt individual packets for internet transmission. In 2000, NSA
released Linux Security Modules which were incorporated in Linux distributions by patch. Version
v2.6.23 of the Linux kernel will contain all NSA security modules. SIPRNet and JWICS provide
network security and technologies now permit using TCP/IP over Link 11 which will be replaced by
Link 22 which, in turn, will be compatible with Link 16.

Life Cycle Affordability. This should be a natural fallout of open operating systems and open source
software but the extent to which it is captured on each platform or ship class will depend on refresh
cycles and more so on how adept the Navy is at “staying current” with rapidly advancing COTS
activity.

Re-Fresh Cycles. Software refresh cycles will be driven mostly by platform, sensor, and weapon
upgrades and are not likely to exceed 24 months but hardware refresh cycles may lengthen and be
driven more by economics than computing power with re-fresh cycles based on every third or forth
generation versus every second generation.

C ompetition, collaboration, and alternatives . Large primes will resist collaboration among themselves
and competition among them may not yield the best low cost alternatives. Small firms are likely to
collaborate with each other in a competitive situation with large firms but will compete best in a set-
aside environment. The Navy should exercise oversight in small business set-asides to ensure larger
firms participating in such competitions do not impinge on the independence of the smaller firms.

Summary

The purpose of this White Paper is not to criticize the Navy but to provide a candid and hopefully
constructive small business assessment of their OA progress against a background of rapidly advancing
computer processor and related technologies, at least two of which now alter the COTS landscape:
multi-core processors and the increasing demand for and use of open source software. Multi-Core

15

processors are a major event in the computing continuum. They are already having a profound impact
on how software is created and how it will be protected from obsolescence as the underlying hardware
advances and will most certainly have a non-trivial impact on re-fresh cycles. Open Source software
has become wide-spread in commercial areas and led to new business processes that can be prudently
leveraged as a part of the Navy's overall OA strategy.

However, recognizing the impact of advancing technology and the open movement is only one part of
leveraging it. The following recommendations are provided to help the Navy's leadership and its
internal organizations integrate the best small businesses have to offer into the OA implementation
process.

Recommendations

I. Enterprise-Wide Small Business Assessment . The Navy has made good progress in
implementing OA but has yet to achieve measurable results at macro levels in reducing its
shipbuilding program costs. While the OAAT, Program Manager's Guide in implementing
MOSA, and the Naval OA Contract Guidebook have been provided to Program Managers, the
Navy should consider an Enterprise-Wide Small Business Assessment to determine how well its
programs of record are acquiring and assimilating OA technologies and innovations from the
small business community. Such an assessment should place emphasis on whether the current
level of small business participation is providing OA technologies that have, or are having, a
measurable impact on reducing ship combat systems acquisition and modernization costs while
increasing their net-centricity and interoperability. Other metrics might include modularity and
reuse of software, platform independence of computer operations, and impact on ownership
costs over the life-cycle.

II. More Work Breakout and Small Business Set-Asides . The Navy should consider more small
business set-asides to acquire design alternatives at system and subsystem levels. For legacy
systems this should include computer processing system modernization including modernizing
and modularizing legacy software to re-host applications on modern processors. For new ships
it could include an independent analysis of existing designs or recommendations on how to
improve the designs. Aside from a free and open small business competition, the Navy can also
use existing IDIQ contracts or work through their own support contractor(s) to obtain and
expedite small business participation depending on what the statement of work requires. An
example of this might be an analysis of existing SHARE software to determine its modularity
and potential to be directly reusable in other applications or on new multi-core processors.

III. Peer Review Groups. The Navy should re-host its A-RCI experience in the submarine domain
to other domains. Creation of Peer Review Groups and the Advanced Capability Build (ACB)
process would provide a visible and manageable path for implementation of design alternatives
offered by or solicited from small businesses for surface ship and other domains. These groups
should include subject matter experts from both the small business community and academia.

IV. SHARE Policy . The Navy should consider implementing the recommendations provided in
Enclosure 2 to this paper. Absent those recommended changes or similar ones, the goals of
SHARE and SBIR programs will remain conflicted and inhibit the introduction of SBIR
innovations into the fleet.

16

V. Navy Leadership . Momentum created by staff in both OPNAV and the Acquisition Community
will atrophy as a natural by-product of personnel turnover in both senior and lower levels of
organization. In the author's opinion, the Navy will not succeed in capturing measurable OA
benefits at macro levels unless “all hands” are fully on-board. Future personnel selection for
critical staff positions should include a candid assessment of their understanding of and
commitment to OA implementation. This, in addition to instituting formal recognition of
individuals who demonstrate or who have previously demonstrated leadership within their
organizations in promoting OA and “making it happen”, should be made an integral part of the
Navy's OA Implementation Plan. The author strongly encourages The SECNAV, CNO, and
ASN(RD&A) to participate personally in this critical part of the process and to provide visible
and persistent senior leadership across Navy organizations for all aspects of OA
Implementation.

Harley Garrett
 Global Technical Systems, Inc
 December 11, 2007

Enclosures:

1.Glossary of Terms
2. The SHARE Repository
3. Chronology of Modern Computers and Software
4. A Time line of the General Public License (GPL) and Linux

 5. GNU Free Document License v1.2

P

17

Enclosure 1
GLOSSARY OF ACRONYMS

API Application Programming Interface.
A-RCI Advanced Rapid COTS Insertion
ARPA Advanced Research Projects Agency
ASN Assistant Secretary of the Navy
ASN (RDA) Assistant Secretary of the Navy Research, Development, and Acquisition
BASIC Beginners All-Purpose Symbolic Code
BRLESC Ballistics Research Laboratories Electronic Scientific Computer
BSD Berkeley Software Distribution
CADC Central Air Data Computer
CERDIP Ceramic Dual In-Line Packaging
CIO Chief Information Officer
CMOS Complementary Metal-on-Silicon
CNO Chief of Naval Operations
COBOL Common Business Oriented Language
COTS Commercial Off-the-Shelf
CPU Central Processing Unit
CPP Commercialization Pilot Program
CREDA Cooperative Research Development Agreement
CS Combat Systems
CVN Aircraft Carrier Ship Class (nuclear powered)
DDG Destroyer Class ships
DFAR Defense Federal Acquisition Regulations
DIP Dual In-Line Package
DMS Diminishing Manufacture Sources
DOD Department of Defense
DODD Department of Defense Directive
DOS Disk Operating System
DRAM Dynamic Random Access Memory
DUSD Deputy Undersecretary of Defense
DUSD (AS&C) DUSD for Advanced Systems & Concepts
EDSAC Electronic Delay Storage Automatic Calculator
EDVAC Electronic Discrete Variable Automatic Computer
ENIAC Electronic Numerical Integrator and Computer
EXCOM Executive Committee
FAR Federal Acquisition Regulations
FLOPS Floating Point Operations Per Second
FORTRAN FORmula TRANlating System
FSF Free Software Foundation
GCC GNU Compiler Collection
GFLOP One Billion floating point operations per second
GNU GNU's not Unix
GPL GNU General Public License
GPR Government Purpose Rights
GUI Graphical User Interface
HLL High Level Language

 Glossary Page 1

HPC High Performance Computing
IC Integrated Circuit
IDIQ Indefinite Delivery Indefinite Quantity
ILLIAC Illinois Automatic Computer
IP Internet Protocol or Intellectual Property
JWICS Joint Worldwide Intelligence System
KASYO University of Kentucky Asymmetric Zero Beowulf Cluster
LCS Littoral Combat Ship
LGPL GNU Lesser General Public License
LPD Landing Platform Dock – amphibious ship class
LSI Lead Systems Integrator
MIL-SPEC Military Specification
MIL-STD Military Standard
MOSA Modular Open Systems Approach
MOSART MOSA Review Team
MOSFET Metal-on-Silicon Field Effects Transistor
MPI Message Passing Interface. A language-independent API for passing messages among

cluster nodes for parallel processing.
NSA National Security Agency
NAVSEA Naval Sea Systems Command
NAVAIR Naval Air Systems Command
OA Open Architecture
OAET Open Architecture Enterprise Team
OAC Open Architecture Council
OACE Open Architecture Computing Evironment
OMG Object Management Group
OPENBSD An open source operating system licensed under the BSD
OPNAV Pentagon Navy Staff reporting to CNO.
ORDVAC Ordnance Discrete Variable Automatic Computer
OS Operating System (Computer OS)
OSJTF Open Source Joint Task Force
OSSI Open Source Software Institute
OUSD Office of the Undersecretary of Defense
PARC Palo Alto Research Center
PDP-8 First of a series of computers made by the Digital Equipment Corporation
PEO Program Executive Officer
PEO IWS PEO Integrated Warfare Systems
PM Program Manager
pMOS p-type doping metal-on-silicon
PVM Parallel Virtual Machine. A software tool tool to parallel network

heterogeneous machines to function as a single distributed processor.
RFP Request for Proposal
RTL Resistor-to-Transistor logic
SAGE Semi-Automatic Ground Environment
SBIR Small Business Innovative Research
SECNAV Secretary of the Navy
SELinux Secuity-Enhanced Linux
SHARE Software-Hardware Asset Reuse Enterprise

 Glossary Page 2

SIPRNet Secret Internet Protocol Router Network
SSEM (Manchester): Manchester (UK) Small-Scale Experimental Machine
SSEM (IBM): IBM Selective Sequence Electronic Calculator
SPAWAR Space and C4I Warfare Systems Command
STI Sony, Toshiba, IBM
SYSCOM Systems Command
SUBS Submarines
TCP Transmission Control Protocol
TDP Tactical Data Package
TSCE-I Total Ship Computing Environment Infrastructure
TTL Transistor-to-Transistor logic
UC University of California
USCG United States Coast Guard
USD Undersecretary of Defense
USD (AT) USD Acquisition & Technology
UDS (AT&L) USD Acquisition, Technology & Logistics

 Glossary Page 3

Enclosure 2
The SHARE Repository

The Navy promoted SHARE to help create a more competitive environment in Combat Systems design
inclusive of OA principles. Creation of a SHARE had its roots in three of the principles outlined in the
OPNAV OA requirement1:

Design disclosure. Much of the design data the Navy thought it owned, it didn't or the original owner
had limited the Navy's data rights. Without detailed design and manufacturing data for legacy hardware
systems, the Navy had neither the legal right nor the technical information necessary to develop a
Technical Data Package (TDP) needed to compete for a source other than the original design agent. In
the software domain, source code is tantamount to “detailed design data”.

Software Reuse. Without design disclosure of legacy source code, computing systems functionality,
and more importantly, weapon system applications which provide the operational capability cannot be
modularized, modernized, or otherwise converted wholly or in part for reuse on platforms and systems
other than the host for which it was originally developed.

Encouraging Competition and Collaboration. The idea here was that allowing competitors access to
original source code would create an “open environment” and lead to three potential outcomes:

 A desire for competitors to use it to increase their own value to the Navy and in so doing, create
a more robust competitive environment, or,

 A desire to reuse or modify the code for their own Navy contract applications thus lowering the
Navy's overall development cost of those applications or,

 By re-depositing all modified improved code into SHARE, a “collaborative” environment
would emerge conducive to software reuse and innovation.

If any or all of the above outcomes happened, the Navy would be the beneficiary of a constant flow of
better and reusable code. However, the industry landscape, shaped by massive industry consolidation,
left only four players in the shipbuilding and combat systems arena. Traditionally two competed as
shipbuilders and the other two shared the Navy's combat systems (CS) market. But two programs have
changed the relationship among these giants substantially:

 USCG Deepwater program . Albeit a joint venture between a shipbuilder and a CS developer,
the CS partner led the venture and participates in, if not controls ship design.

 Littoral Combat Ship (LCS). One traditional CS provider is now responsible for a ship design.
The other, a shipbuilder of record, is responsible for its CS design.

On 3Jan06, PEO IWS directed SHARE initially include Aegis baseline 7.1.1.1 code and SSDS Mk 2
Mod 1 code2. Later that year the DDG-1000 contractor announced he had put version 4.1 of his Total
Ship Computing Environment Infrastructure “TSCE-I” code in SHARE and one LCS contractor put his
“Data Model” code into the repository. It should be noted that Aegis baseline 7.1.1.1 is only one of at
least seven (7) Aegis baselines endemic to the DDG-51fleet and it is not known to what extent software
patches to fix problems in other baselines have been implemented in the 7.1.1.1 baseline. It is also not

1 “Requirement for Open Architecture (OA) Implementation” Deputy Chief of Staff of Naval Operations (Warfare
Requirements and Programs) (N6/N7) 23Dec05

2 “SHARE”, PEO IWS ppt, 27Mar06.

Enclosure 2 Page 1

known if this is legacy code has been modularized or modernized to run efficiently on currently
available COTS computing architectures or to which ships and missions (destroyers, cruisers, BMD) it
applies.

External Observations on SHARE

The extent that any of the three potential outcomes above has happened is not known but certain
external observations can be made:

 Why any firm would be anxious to improve a competitors code at their own expense is not clear
if they must re-deposit the improved code back in SHARE for the competitor to access.

 Primes using SHARE code to develop software deliverable under a Navy contract may lower
their own development costs but whether this lowers overall costs to the Navy depends on how
permissive or restrictive their contract provisions are.

 Firms cannot access SHARE unless they have a Navy contract that justifies access or a
CREDA. Security and administrative requirements are reportedly overly robust.

 The issue of how to handle software developed under a SBIR versus the SHARE project
appears unresolved. Regardless of its source, inclusion of any proprietary code in SHARE
would seem to violate the purpose of a shared repository.

Notwithstanding these initial external observations, creation of SHARE is a major cornerstone of Navy
OA strategy, and, in spite of birthing pains, the the Navy should be encouraged not to “throw the baby
out with the bath water”.

Additional Observations on SHARE

SHARE Registrants. As of July 2007, the Navy has reported over 250 requests for SHARE data and of
these, some 29 have been cleared for repository access.3 Significantly, some of these are small
businesses. Although this activity is a clear indicator SHARE is producing interest among defense
firms, without further investigation, this metric does not portend any of the Navy's SHARE objectives
are being achieved. Of greater value would be information the Navy might obtain through analysis of
these data. For example, if the 29 all have access due to a contractual Navy tasking they received, such
access shows no significant intent on their part other than to profit by execution of the task. Conversely,
if any of the 29 registrants originated from a company with no Navy contractual incentive, a canvass of
these firm's reasoning could provide a metric of substantial value directly relevant to Navy expectations
and a means by which to monitor future progress in achieving those expectations.

Proprietary Code and SHARE. Notwithstanding FAR and DFAR definitions of various forms of data
rights limitations, placing any proprietary code in SHARE seems to directly conflict with the
repository's purpose of promoting software reuse. Until total platform (and weapons system)
independence is achieved throughout the Navy enterprise, software designed for one system cannot be
“reused” by another without modifying the original source code prior to converting it into executable
code. Conversely, it could be argued that a policy to prevent proprietary code from co-existing in
SHARE with non-proprietary code, adversely affects the competitive landscape. The fact is if the Navy
desires, it can avail itself of the goodness of proprietary application modules without demanding the
owner's source code be placed in SHARE. The process works as follows:

The Navy funds Bill to develop a software module to enable a Fire Control System (FCS) for Platform
“A”. Bill does this either from scratch or by reusing existing SHARE code. Bill puts the new FCS

3 Comments provided to author 31Aug07

Enclosure 2 Page 2

source code back into SHARE. Joe has a proprietary module that can enhance Bill's application which
the Navy believes is badly needed by the fleet. Under a license agreement, Joe provides the Navy an
Application Program Interface (API) for Bill (or the Navy's integrator). Bill deletes (or makes inactive)
that portion of his own source code that Joe's module will replace, and, using Joe's API, writes a “Call”
into his source code at the point where Joe's module will be needed. But computing platforms don't run
on source code, they run on executable code; aka: binary or machine code. So at this point, Bill must
compile his source code, newly modified with the “Call” from Joe's API, into executable code.

Steps to do this generally include pre-processing the source code, compilation (generation of machine
code), assembly, and a link-edit process to link “Calls” in the code to files (modules or subroutines)
resident in the application program's “libraries”. In this instance, Joe provides Bill with a binary copy
of his module which becomes part of Bill's application program run-time library. The net result is the
Navy can run Bill's software anywhere in the Platform “A” fleet. Further, with the enhanced source
code back in SHARE, the Navy can hire Bill (or someone else) to modify the Platform “A” FCS
module to run on Platform “B”, provided the original license with Joe permits. If not, the Navy would
need to negotiate with Joe and extended license to use his module on multiple platforms. In all
instances the fleet gets the benefit and no proprietary source code is needed in SHARE.

SBIR versus SHARE Purposes.

Since no source code developed under the SBIR program is known to exist in SHARE, it might be
beneficial here to examine the relationship between the purposes and policies of SBIR and SHARE
activities. Regarding SHARE, the Navy's current policy requires all SHARE data carry with it
Government Purpose Rights (GPR)4. SBIR holders who want access to SHARE are warned they must
agree to GPR.5 As for the deposit of SBIR code by its owner, the current guidance appears to be limited
to “SBIR efforts will require special handling”. 6

SBIR Data Rights. The government recognizes proprietary technology developed under a SBIR must
be protected to ensure both the government and the small business developer get a fair return on their
investment. The developer's return is financial. The DoD's return is getting innovative technology
fielded in programs of record. Hence it is in the best interests of the government to protect the
developer's technology at least long enough for him/her to successfully consummate Phase III
revenues. In fact, the government considers itself a qualified commercial buyer in the developer's Phase
III commercial marketplace. Source code produced under any SBIR Phase contract is subject to DFAR
Clause 252.227-7018 paragraph (b) (4) which purports to protect the small business developer for a
period of five years beyond delivery of the last data item produced under the Phase I, II, or III contract.
Notwithstanding DFAR (sic) protection, small businesses have far more to lose than larger firm if their
technology is obtained by competitors.

A Matter of Trust

A careful read of DFAR clauses defining government “rights” and “exceptions” falls substantially short
of conveying a strong feeling of trust in government protection of source code, particularly for small
firms whose business model is largely based on products developed under SBIR contracts. At least one
small firm recently lost business in one instance due to an apparent misconception on how test software
works and in the second instance because of SHARE policy which, by extension, apparently expected

4 See DFAR Part 227; 227.7203-6 (a)(1) and DFAR Clause 252.227-7014(a)(11) 6Sept07& 23Jan06
5 PEO IWS-7 Briefing “Computer Software Hardware Asset Reuse Enterprise”, 27Mar07 ppt
6 IBID

Enclosure 2 Page 3

the small firm to grant GPR in lieu of SBIR Rights.7 The small firm lost on both counts.

The first instance was a software module the small firm had developed under a SBIR to test software
developed by third sources. Such test modules are routinely used to test someone else's software and
the firm had already commercially sold a derivative product to two customers. A large firm contracted
with the small firm to use their test module to test a SHARE artifact. The test module was not part of
the artifact hence no derivative was involved nor was the test software required for the artifact to be
used operationally in the fleet. Nonetheless, the Navy sent the small firm an agreement to sign which
would have required them to deposit the test module source code in SHARE. Upon the small firm's
refusal, their contract with the large firm was voided. That the small firm made a good call was borne
out shortly afterwards when it was called by two competing firms both wanting to know when the
small firm's test module would be in SHARE.

In the second instance, the small firm had developed an application software module that executed a
critical function in the deployment of an operational defensive system. The small firm's module had
been developed under a SBIR Phase III contract and had been demonstrated several times to PEO IWS-
1 and PEO IWS-7 personnel executing with the Aegis CR2 baseline. After successfully demonstrating
the software, the Navy expected the small firm to deposit the source code in SHARE so the large firm
incumbent could use it with no obligation to the small firm. Notwithstanding the commercial nature of
SBIR Phase III sales, the small firm viewed the risk of having their competitors obtain their source
code under GPR much greater than if they remained under the SBIR Rights clause.

It might be legally argued there is little protective difference between how SBIR Rights and GPR are
handled. Both require explicit-purpose Non-Disclosure Agreement (DFAR 227.7103-7) compliance by
recipients who either want access to SBIR data or to whom the government may provide access under
the DFAR for what it considers legitimate purposes.8 But under GPR, DFAR language presumes
government dominance, and, in the author's view, provides the government wider latitude to modify
software without restriction. 9 Even if the government's rights are restricted, it provides for itself many
qualifying exceptions.10 Under SBIR Rights, such government latitude is more restrictive and limited to
instances requiring prior owner permission, or for evaluation, or for emergency repair. But in both GPR
and SBIR clauses, the government assumes no liability for unauthorized releases.

Treatment in the DFAR of data rights clearly distinguishes “commercial” from “non-commercial” and
separates “Computer Software” from all other “Technical Data”. In the case of “commercial” computer
software there is no contract clause provided since all such software is required to be purchased with
licenses customarily provided to the public. 11 While Non-Commercial computer software is treated by
DFAR 227.7203, SBIR's are separately treated under DFAR 227.7104. DFAR clause 252.227-7014
covers Non-Commercial Computer Software but it does not apply to SBIRS. The operative SBIR
clause, DFAR 252.227-7018, covers both Non-Commercial Technical Data and Computer Software
developed under the SBIR. In the small business case summarized above, the firm's earlier Phase III
sale qualified it as a commercial product but the Navy apparently chose to forego the technology rather
than negotiate with the firm a commercial license for its use.

7 “Navy's Open Architecture Effort Lacking Punch for Small Firms, Company Says”, Defense Daily, 24Jul07 Vol 235#16
8 For SBIR see DFAR 227.7104 (b) (1) through (3), (c), revised 6Sep07, and Clause 252.227-7018 (b) (4)(ii) & (iii); For

GPR see DFAR 227.7203-6(a)(1) and Clause 252.227-7014(a) (11)(i)&(ii) revised 23Jan06
9 See DFAR Clause 252.227-7014 (a) (10)
10 See DFAR Clause 252.227-7014(a)(14)(i) through (vi)
11 DFAR 227.7202-1(a) 6Sep07

Enclosure 2 Page 4

Regardless of legal analysis, the fact is that the purposes of SHARE: design disclosure to create a path
for software reuse and promoting competition, are not consistent with the SBIR purposes and the
Government's “protection” of SBIR rights has not engendered much trust on the part of small business.
The government may challenge a developer's claim data rights claim while insisting liability for proper
marking of data fall squarely on the back of the developer 12 with dire consequences if mistakes are
made; or, worse yet, interpretations of the DFAR are assumed without being tested in a court-of-law. In
the case of Night Vision Corp. vs United States 13 here is a short summary:

Night Vision developed Panoramic Night Vision Goggles (PNVG) under an Air Force SBIR. They
delivered design data correctly marked as limited rights but, presuming a DFAR interpretation under
the rights clauses that such markings also protected hardware built using the data, they delivered
unmarked hardware prototypes. In lieu of awarding Night Vision a production contract, the Air Force
made the prototype hardware available to Night Vision's former subcontractor turned competitor, held a
“free and open competition” and awarded the competitor production. The court ruled against Night
Vision on all counts stating:

 “...the Government may legitimately provide a sample of a product to another company with
full knowledge that it will be ‘reverse engineered’ to learn how to make a duplicate, even if the
government may not provide the technical data associated with the object.”14

While the court may have ruled correctly on a technicality, the decision rippled negatives throughout
the small business SBIR community. Worse yet, the Air Force, in not awarding Night Vision a Phase III
contract, reinforced the perception among small business that the government is devoid of any integrity
and “you can't fight city hall”. Air Force individuals responsible for this case did their best to help deter
small businesses from offering any kind of future innovation the Air Force's acquisition process.

Recent Changes to the SBIR Program

Successful Phase III commercial sales are the perpetual hope and sole foundation of entrepreneurs
seeking to use the SBIR process to build a successful business. Initially, Phase III funding was not
included in federal budget SBIR allocations since it was assumed government and commercial SBIR
Phase III customers would use their own budgets to source purchases. Under that plan, the rate of
Phase II to Phase III sales has not been good. Congress recognized this and created a Commercial-
ization Pilot Program (CPP) which began in DoD in 2006.15

The Navy has recently become a pace setter in implementing the CPP. Phase II contracts will be
structured to allow for increased funding through either multiple options to an existing contract, or a
second phase II award. The Navy's 2006 CPP report noted a total of 32 SBIR Phase II projects
advanced as candidates for Phase III CPP assistance. These projects were identified by Command
program offices as having potential to insert rapidly into Programs of Record.16

SHARE activity has been a significant milestone in the Navy's pursuit of OA but its implementing
policies should not inhibit the use of innovative technology developed under the SBIR. Resolution of

12 DFAR 252.227-7018 (f), (g), and (h) and 252.227-7014 (f), (g), and (h)
13 “Data Rights Provisions Do Not Protect Your Products in Doing Business with the Government-Be Alert to Protect

Yourself ...Against Reverse Engineering”, 10Feb06, http://www.nixonpeabody.com/copyright_article.asp?id=93
14 IBID
15 See http://www.nsba.biz/docs/robert_schmidt_written_testimony__26_apr_07_final.pdf
16 “Navy SBIR Commercialization Pilot Program (CPP)”; http://www.navysbir.com/navy_CPP.htm

Enclosure 2 Page 5

the apparent incompatibility of SBIR and SHARE purposes does not require a complex discussion and
analysis of Data Rights. As set forth in the FAR and DFAR, such rights and their controlling processes
and legal ramifications are not immediately discernible with any great clarity to the average small
business entrepreneur.

How to best take advantage of both the SBIR and SHARE programs to achieve the rapid introduction
of their technologies into the fleet may be better found in examining the business processes which DoD
has previously noted must be an integral part of the Open Architecture definition and its
implementation process.17

Recommendations

The DFARs provide for both SBIR developed software, software developed at private expense, and
acquisition of software developed partially or fully with government funds as a result of a government
contract. The author's recommendations, with accompanying rationale, are provided below:

1. Navy Funded Contracts. The author believes the Navy should require source code for
software developed for its weapons systems that is funded under a Navy contract, to be delivered by the
contractor with unlimited rights (preferred) or GPR (required) for deposit into SHARE.

Rationale: Software developed under a Navy contract, will not be sold, leased, or licensed to the
public and is therefore Non-Commercial. DFAR 227.7203 provides policy and procedures for acquiring
Non-Commercial software and its documentation. Since the Navy paid for the development, it should
own the source code and have unlimited rights to modify it for reuse or solicit competitive bids to
modernize or otherwise replace it. In cases where the software was determined to be only partially
funded with government funds, GPR will permit the Navy to use it or modify it for government
purposes – including competitive procurement, but not for commercial purposes.18

2. SHARE Policy. To respect the SBIR process, the Navy should consider a new policy
designed to encourage software introduction into the fleet that was developed under a SBIR without
materially impacting SHARE objectives. The author recommends the following:

a) Apply the policy only to small firms whose business model and major revenue sources (such as
60% or more) are based on developing application software for sales under a SBIR contract.

b) If the product has already been sold commercially, purchase it as a commercial product with the
appropriate commercial license. If not, or if the developer is otherwise inclined,

c) Negotiate an exclusive license to use the software for a period of five years with the Navy
obtaining GPR after that period in return for awarding the developer a contract over the 5-year
period to modernize, upgrade, and/or integrate the software into other Navy applications.

Rationale: The policy under a) should be limited to small firms specializing in this technology
and who depend on SBIR awards to build their business base. Under b), if the developer choses to keep
the product commercially available, the Navy can use it in the fleet via an API but this would not be the
preferred method unless the developer agreed to provide GPR with delivery of the original source code
to SHARE after a five year period. Absent that proviso, the Navy could still purchase and use the
software via the API process but would be free to consider funding its own software module as an
alternative. The preferred method to attract SBIR innovation in all cases would be to offer c).

17 “Naval Open Architecture Scope and Responsibilities”, ASN (RD&A) Memo 5Aug04
18 DFAR Clause 252.227-7014 (a) (10) and (a)(11)(i) & (ii)

Enclosure 2 Page 6

Option c) recognizes all software is subject to a short half-life created by competitive forces if
not obsolescence. During the five year period, the Navy will require software support services during
hardware refreshes, add shipboard capabilities requiring software upgrades, or want to reuse the
software through the process of integrating it in other ship platforms. Option c) would allow the Navy
to do all this during the 5-year period provided it did so using the original developer as an exclusive
source. The developer would be permitted to retain his source code, not deposit it in SHARE, and enjoy
a Phase III contract to maintain his software in the fleet. After the 5-year period the Navy would take
delivery of the source code into SHARE permitting it to share it with its contractors, create additional
derivatives, or use it as the basis for a competitive software replacement module.

A new SHARE policy, as outlined above, would recognize integration of small firm business processes
as an equal, if not higher priority, over technical or data right's considerations as part of the Navy's OA
implementation strategy. In the author's view, such a policy would help the Navy obtain innovations
from SBIR programs while still getting the benefits of the SHARE repository. This belief is based on:

 All software is perishable. Its technology half-life is determined by marketplace competition.

 The FAR and DFAR provide existing guidance that can be used.

 The use of API's is not a preferred method but can be used as an interim strategy if the Navy
determines commercial technology is badly needed on an interim basis until a replacement
software module can be provided through competition and added to the SHARE repository.

 The SBIR developer's business process requires him to do his best to convert Phase II awards
into Phase III awards while under the protection of his SBIR rights.

 If the SBIR developer choses to engage the Navy on option c), he will enjoy revenues from a
non-competitive but time-limited support contract. Such revenues from a Navy viewpoint
essentially reflect the cost of a lease or commercial license otherwise required. From the SBIR
developer's viewpoint, the revenues provide a guaranteed option for achieving his goals with
potentially less risk than offering his product under a commercial license only.

 Use of Option c) in the policy would require the Navy to defer its ability to freely use the source
code for SHARE purposes for a nominal 5-year period yet it could still obtain reuse and
modernize by employing the developer. Considering the life-cycle of ships, the Navy would
have unlimited use of the source code via SHARE over at least 80% of the ship's life-cycle.

 The SBIR Commercial Pilot Program (CPP) and Navy use of IDIQ contracts provides an
avenue for the acquisition of promising SBIR Phase II software modules and a method to
expedite their introduction into the fleet.

 The Navy's A-RCI experience has provided a proven management model of how to integrate
software modules, including those developed under the SBIR program, into programs of record
by implementing Peer Reviews and an Advanced Capability Build Process (ACB). 19

19 “Peer Reviews, Advanced Capability Build Process, and Open Architecture Processes”, William M. Johnson, Defense
AT&L, Nov-Dec07

Enclosure 2 Page 7

Enclosure 3
Chronology of Modern Computers and Software

Abacus's have been used for centuries but the concept for a program controlled computer was first
conceived by Charles Babbage in 1822-1835. His Difference Engine was designed to tabulate complex
polynomials and reduce human error but funding ran out before he could build it. His 1849 Difference
Engine 2 included a printer and his Analytical Machine was designed to use punch cards to load
programs and enable reprogramming. None of his machines were built in his lifetime and no real
progress was attained until the 1940's.

In 1991, the London Science Museum built a Difference Machine to Babbage's exact plans using parts
from his laboratory and new parts manufactured using technologies and tolerances no more precise
than those that existed in the 19th century. The machine produced results exactly as defined by Babbage.
It can produce 7th degree polynomials without multiplication to 31 decimal places. Ada Lovelace
created a program for the Analytical Engine that would have been able to calculate Bernoulli Numbers
and thus became the first computer programmer.

Replica of Difference Machine 2
London Science Museum

Enclosure 3 Page 1

1941
First working programmable computer was the Zuse Z3 built by Konrad Zuse in Berlin, Germany. It
used binary floating point arithmetic but was destroyed by allied bombing in 1944.

1943
First High Level Programming Language was Plankalkul developed by Konrad Zuse but due to WWII
events, it was never implemented.

1943-1944
 Lorenz SZ-40 Teletype Cypher Machine Lorenz Machine Mechanical Code Wheels

During WWII, the Colossus computers (below) were used by British code breakers to read German
messages which had been encrypted using the Lorenz SZ 40/42 cipher machine (above); Colossus
emulated the mechanical Lorenz machine electronically through the use of 1500 electronic valves
(vacuum tubes). These were the world's first programmable (if not fully) digital electronic computing
devices. Colossus was operational in January 1944.

Bletchley Park (U.K) Colossus

Enclosure 3 Page 2

http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Lorenz_SZ_40/42
http://en.wikipedia.org/wiki/Nazi_Germany

ENIAC. Mauchly and Eckert at University of Pennsylvania in 1943 begin designing ENIAC for the US
Army Ballistics Research Lab at Aberdeen Proving Ground, MD. Used decimal (Base 10) Coding
system. Design work is also started on EDVAC which will use binary.

1945
Von Neumann Architecture. Established by John Von Neumann, a member of the Manhattan Project
team and Princeton based Institute for Advanced Studies (IAS) in his “First Draft of Report on
EDVAC”. His model combined machine instructions and data into the same memory permitting rapid
reuse for both purposes.

ENIAC at Army Ballistics Laboratory 1947

1947
 ENIAC operational at US Army Ballistic Research Lab at Aberdeen Proving Ground in 1947 to

work on Artillery Ballistic Tables and the H-Bomb. “Re-programming” consisted of 6 ladies
manipulating switches and cables. Modified in 1948 to run small stored computer program,
ENIAC ran continuously to 1955. Replaced by ORDVAC, EDVAC, and BRLESC.

 First Transistor . William Schockley leads a Bell Labs team to explore his idea of using an
external electric field on a semiconductor to affect its conductivity with the objective of finding
a replacement for vacuum tubes. Working separately, lab team members Bardeen and Brittain

Enclosure 3 Page 3

create a Point-Contact transistor.
1948

 SSEM (IBM) becomes the first operating computer to combine electronic computation with
stored-program instructions. Was a hybrid of vacuum tubes and electro-mechanical relays (not
fully electronic) and the last of the large computers of this type built. SSEM ran continuously
until 1952.

 SSEM (University of Manchester – England, First fully electronic stored-program computer and
First to use Von Neumann's Architecture to increase CPU speed.

1949
 EDSAC operational at University of Cambridge (UK). First to add subroutine library (87

routines for general use by 1951). Used punch tape input and teleprinter output. Initial
instructions mechanically hard wired providing a primitive assembler.

 First High Level Language . Manchester England Mark-1 developed from Manchester SSEM
used to create Autocode, one of the first higher level programming languages.

1951
 ORDVAC First computer to have a compiler. The twin of ILLIAC was built by University of

Illinois for US Army Ballistics Lab at Aberdeen Proving Ground, MD. Used IAS (Von
Neumann) Architecture.

 EDVAC (Binary Coding System). Operational at Aberdeen, MD. Received magnetic drum 1954
and floating point unit in 1958. Ran 20 hrs/day until 1961.

 First Bi-Polar Junction Transistor . William Shockley patents his Bi-Polar Junction transistor
which eclipses the point-contract transistor in utility. First digital circuits used resistors and Bi-
Polar transistors in connected with Resistor-to-Transistor Logic (RTL).

1952
 Manchester (UK) Mk-2 delivered with Autocode High Level Language compiler.

 IBM 701. First Commercial scientific computer . Application programs hand coded in assembly
language. 19 units sold.

IBM 701

Enclosure 3 Page 4

1954
IBM 704. First mass produced high capacity computer with floating point arithmetic. Was not
compatible with the IBM 701. First to use magnetic core (ferrite) memory as replacement for cathode
ray tube technology (Williams Tube).

IBM 704 High Capacity Mainframe – Lawrence Livermore National Laboratory

1955
First English-like programming language. Grace Hopper (US Naval Reserve) invents FLOW-MATIC
while at Remington Rand's UNIVAC division.

1956
FORTRAN. First High Level Language. IBM develops the Formula Translating System, a procedural
programming language to make scientific programming the IBM 704 less tedious than hand coding
assembly language. A compiler was added in 1957 to ease acceptance among scientific users.

1958
AN/FSQ-7. IBM begins production of the AN/FSQ-7 intercept computer for NORAD's Semi-
Automated Ground Environment (SAGE). Using 55,000 vacuum tubes and occupying ½ acre weighing
275 tons, it was the largest computer ever built running on 500,000 lines of assembly language
provided by the Systems Development Corporation, a spin-off from the RAND Corporation. IBM's
sales of 56 machines at $30M each propelled it into the next decade as the largest computer firm

Enclosure 3 Page 5

dwarfing its 7 competitors.

1959
First Business Oriented Language COBOL. The Common Business-Oriented Language specification is
heavily influenced by the Grace Hopper's FLOW-MATIC language and compiler. She is promoted to
Rear Admiral by an act of congress in 1983.

1960
 Metal-on-Silicon Field Effects Transistor . Kahng and Atalla at Bell Labs invent the MOSFET, a

low power consumption alternative to the Bi-Polar transistor.

 The TRANSIT system, also known as NAVSAT (for Navy Navigation Satellite System), was the
first satellite navigation system to be used operationally to provide accurate location
information to ballistic missile submarines. (See AN/UYK-1 below).

1962
 BRLESC replaces EDVAC and ORDVAC. Is first generation full electronic computer for US

Army Ballistics Research Lab.

Enclosure 3 Page 6

 AN/FSQ-7 SAGE COMPUTER - 1958

http://en.wikipedia.org/wiki/Ballistic_missile_submarine
http://en.wikipedia.org/wiki/Satellite_navigation_system

 Transistor-to-Transistor Logic (TTL) is used by Texas Instruments to manufacture the 7400
series of Small Scale Integrated circuits (SSI) to economically use solid state digital devices for
analog tasks.

 Packet switch networks concept developed by Paul Baran at the Rand Corporation during
research for the Air Force on survivable communications networks. Baran's research influenced
MIT's Lawrence Roberts who later joined ARPA.

 Complementary Metal on Silicon (CMOS) . Frank Wanless at Fairchild Semiconductor invents
CMOS circuits as a slower but lower power alternative to Bi-Polar TTL technology.

 The AN/UYK-1 was built by TRW for the Lafayette class SSBN's to process navigation data
received from the Navy's Navigation Satellite System. It had 8,192 words of 15-bit core
memory threaded by hand at their Canoga Park factory. Cycle time about one microsecond. The
UYK-1 was built with rounded corners to fit through the submarine's hatch.

1963
BASIC Programming Language. Kemeny and Kurtz at Dartmouth College create Beginner's All-
Purpose Symbolic Instruction Code (BASIC) to provide computer access to non-science students to
write programs for the college's time-share system.

Mouse conceived by Douglas Engelbart, not to become popular until 1983 with Apple Computer's
Macintosh and not adopted by IBM until 1987.

1964
 IBM introduces the first six models of the 360 series of commercial mainframes. By 1968 IBM

had shipped over 14,000 units.

Enclosure 3 Page 7

http://en.wikipedia.org/wiki/1968
http://en.wikipedia.org/wiki/Apple_Computer
http://en.wikipedia.org/wiki/Douglas_Engelbart
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Microsecond
http://en.wikipedia.org/wiki/Core_memory
http://en.wikipedia.org/wiki/Core_memory
http://en.wikipedia.org/wiki/Lafayette_class_submarine
http://en.wikipedia.org/wiki/TRW

IBM 360 Mainframe - 1964
 PDP-8 First Minicomputer . Using transistor technology and magnetic core memory to replace

vacuum tubes and cathode ray memory tubes, DEC introduces the PDP-8. Large but still
smaller than its peers, this $16,000 portable machine ushered in a smaller much more affordable
size class of computers compared to mainframes and supercomputers. Commercial demand
grew rapidly.

Digital Equipment Corporation PDP-8

1965
 First Object-Oriented Programming Language. Simula I, a special programming language for

simulating discrete events developed by Kristen Nygaard and Ole-Johan Dahl at Norwegian
Computer Center (Oslo), runs on a UNIVAC 1107.

 Packet Switching . Donald Davies independently develops packet switching concept at the UK
National Physics Laboratory.

 Moore's Law . Gordon Moore, makes empirical observation that the number of transistors on an
integrated circuit for minimum component cost doubles every 24 months. This becomes known
later as “Moore's Law”.

1966
 DRAM Invented. IBM DRAM replaces capacitors. Patents awarded in 1968.

1967
ARPA's Information Technology Processing Office's Lawrence Roberts begins work on a packet

Enclosure 3 Page 8

switching network technology.
1968

 Garrett Air Research develops Central Air Data Computer (CADC) for the Navy's new F-14
Tomcat fighter. Completed in 1970, it used a MOS based chipset as its core CPU. Chip
contained a "a 20-bit, pipelined, parallel multi-microprocessor". Navy refused to allow
publication of the design until 1997. For this reason the CADC, and the MP944 chip set it used,
are fairly unknown, even today.

 Software Engineering . NATO Science Committee conference on Software Engineering
addresses major development, production and software reliability concerns arising from rapid
advances in computer processing power and evolving lower cost systems.

 RCA uses the Complementary Metal Oxide (CMOS) process, to make CD4000 family; lower
cost than TTL 7400 devices. CMOS yields more transistors on a chip leading to Very Large
Scale Integrated (VLSI) circuits and greatly lowered manufacturing costs..

1969
 First operational packet switching network predecessor to Internet. Under contract to ARPA,

BNN builds 4-node ARPANET. This includes the First packet switching software using TCP/IP,
a Network Control Protocol developed by Vinton Cerf.

 Honeywell designs 3 transistor DRAM for Intel to manufacture. Problems prevented success.

 UNIX Operating System. Bell Labs Ken Thompson & Dennis Richie develop UNICS to run
DEC's PDP 11/20 and port to different machines. Thompson develops B language. UNICS
changed to UNIX.

 Separately priced software. IBM announces separately price software. Prior to this industry
practice was to deliver the software, including source code, free as part of the hardware price.
This decision provided momentum to launch a new commercial software industry.

1970
First commercially successful DRAM: Intel markets the 1103.

1971
 Texas Instrument develops the TMS 4004 processor for a preprogrammed “calculator on a chip”.

The microprocessor patent is awarded to T.I's Gary Boone..

 First solid state microprocessor Intel 4004 . Intel's 4-bit 4004 microprocessor used pre-x86
instruction set and had 2250 transistors manufactured in 10-Micron PMOS technology and 16-pin
ceramic DIP packaging (CERDIP).Intel agrees to pay T.I. royalties.

Enclosure 3 Page 9

Intel 4004 CPU clock speed was 745Khz
1972

 Intel debut's the 8008 microprocessor after developing it for Computer Terminals Corp (later
Datapoint) who decided not to use it. The 8008 had 3300 transistors, was manufactured in 10-
Micron PMOS technology and had a CPU clock speed of 0.5 – 0.8 Mhz.

 C-language developed by Dennis Richie at Bell Labs to run on Unix.

 CMOS manufacturing technology implements channel lengths between transistor features
(gates) to 10-Micron size equivalent to 10,000 nanometers (nm). Shorter channel lengths permit
transistors in the circuit design increasing execution time.

1973
 Honeywell vs Sperry Rand. Voided ENIAC patent putting the electronic digital computer in

public domain.

 UNIX Rewritten in David Richie's C-language making it more portable among hardware
platforms. Retired from Bell Labs, Thompson now works for Google.

 First DRAM with address multiplexing of rows and columns . Founded by former T.I.
employees, Mos Technology (Mostek) delivers MK 4098.

 Robert Kahn joins Vinton Cerf at DARPA to work on an open architecture network protocol to
enable information flow over different packet networks by hiding their differences within a
common Internet Protocol (IP).

1974
 Intel debut's the 8080 microprocessor manufactured in 6-Micron NMOS. It had 6,000

transistors on the chip with a CPU clock speed of 2.0 Mhz. Motorola debuts the 6800
microprocessor.

 DARPA's Networking Working Group with Vinton Cerf publishes RFC 675 Specification for
Internet Transmission Control Protocol to enable communications across local or wide-area
networks using different Network Control Protocols. This specification later known as TCP/IP.

1975
 DEC begins work on Open Virtual Memory System (OpenVMS) a high end operating system

for servers to run on their VAX and Alpha platforms.

 First CPU using Pipelining . MOS Technology offers its 6502 chip at a unit cost of $25. Using a
1-step pipeline instruction, the 6502 outperformed the Motorola 6800 and Intel 8080 at one-
sixth the cost.

 Intel debuts the 8085 microprocessor in 3 Micron CMOS technology with 3-5Mhz speed.

Intel 8085

Enclosure 3 Page 10

 First Microcomputer. ALTAIR. Roberts and Mims launch the Intel 8080 ALTAIR 8800
computer kit advertised in Popular Electronics magazine. Programming was done by toggling
switches. This was the first of the microcomputer class.

ALTAIR 8800 assembled

 Bill Gates and Paul Allen use a PDP-10 time-share computer to write a program on tape to
interpret BASIC on Robert's kit machine called ALTAIR BASIC.

ALTAIR BASIC on tape

 Gates and Allen form a partnership named Micro-Soft to work with Roberts.

1976
 Zilog debut's the Z80 with a memory controller on the chip. This chip along with the MOS

Technnology 6502 made smaller computers economically feasible fueling the demand for
Personal Computers and lanuching the PC industry.

 With unauthorized copies of ALTAIR BASIC being distributed by hobbyists Gates publishes an
“open letter” alleging copyright infringement expressing his intentions henceforth to sell the
software.

1977
 ARCNET. First LAN based Commercial Cluster introduced by Datapoint Inc.

Enclosure 3 Page 11

 A 3-network TCP protocol is conducted between the US, Norway, and the UK.
1978

 Under contract with DARPA, BBN, Stanford, and University College London develop TCP
protocols to connect different networks using different protocols.

 Intel debuts the 8088 processor in 3-Micron CMOS technology with CPU speed of 4.77Mhz.

1979
 IBM selects Intel 8088 for their entry into the micro (personal) computer market.

Intel 8088

1980
 Moore's Law . Carver Mead coins Gordon Moore's 1965 empirical projections as “Moore's

Law” which postulates the number of transistors needed to produce the lowest cost chip will
roughly double every 24 months by reducing transistor size with advances in photo lithography.

 Hypertext Prototype . Sir Tim-Berners-Lee develops ENQUIRE, a prototype system using
hypertext, to facilitate sharing of data among researchers at CERN, the European Organization
for Nuclear Research, the worlds largest particle physics laboratory.

 First Microcomputer Operating Systems . IBM asks Microsoft to deliver a BASIC Interpreter for
their new PC. Bill Gates recommended they use Digital Research's CP/M for the operating
system (OS) but DRI fails to deliver. Gates purchases exclusive rights to the Seattle Computer
Corporation (SCC) 86-DOS called the Quick & Dirty Operating System (QDOS) and hires
SCC's designer to port it to the Intel 8088 chip for the IBM PC. Gates licenses the new OS to
IBM as PC-DOS and moves quickly to license it to other manufactures as MS-DOS (MicroSoft
Disk Operating System).

1981
 IBM enters the personal computer market with the AT and XT. Powered by the Intel 8088 with

a clock speed of 4.77 Mhz using PC-DOS.

 Paul Levy & Mike Devlin found Rational Machines Corporation to provide software tools for
modular architecture and iterative development.

 Inspired by Simula I (1965), an object-oriented, dynamically typed, reflective programming
language called SmallTalk is developed at the Xerox Palo Alto Research Center (PARC) and
given to HP, Tektronix, Apple, DEC, and the UC Berkley for peer review and implementation
on their platforms.

1982

Enclosure 3 Page 12

Moore's Law: Intel debuts the 80286 microprocessor in 1.5-Micron CMOS technology.
1983

 DEC introduces VAX Clustering; use of Star couplers to cluster several computers.

 The ARPANET is switched over to a full TCP/IP protocol replacing the earlier Network Control
Protocol.

 Xerox PARC releases SmallTalk-80v2 as a platform-independent object-oriented (image) and
“virtual machine” specification.

 GNU Project . Richard Stallman launches the “GNU, Not Unix” Project to develop a free
operating system and free software and leaves the Artificial Intelligence Lab at MIT.

1984
 VisualAge, a family of IDE's based on Object-Oriented Programing technologies to support

numerous programming languages and hardware platforms developed by IBM. Most VisualAge
software was written in SmallTalk.

 John Ousterhout at UC Berkley releases Magic, a software tool created to layout very large
scale integrated circuits (VLSIs) designs. Released under Berkley's Open Source License, it
currently runs on Linux.

 Open Standards . A consortium of European Unix systems manufactures forms X/Open Ltd to
create a single specification for Operating Systems derived from Unix in order to increase
interoperability of computers and portability of software.

1985
 Free Software Foundation (FSF). Richard Stallman forms the FSF to provide a legal structure

for development GNU Project free software. Develops concept of “copyleft” GNU General
Public License (GPL) to guarantee the rights of others to modify and redistribute GNU source
code as they wish. Work initiated on the GNU Compiler Collection (GCC).

 Steve Jobs founds NeXT Computer Inc to create a low cost work station for higher education
students called NeXTCube.

 Moore's Law : Intel 80386 microprocessor fabricated in 1-Micron (1,000 nm) CMOS has clock
speed range of 16-40Mhz.

1988
Open Source Foundation (OSF). A consortium of 7 Unix vendors collaborate to keep Unix open in the
face of perceived domination and distribution by ATT and Sun Micro.

1989
 Object Oriented Programming . Job's NeXT Computer company introduces the “Cube”, a Unix-

like work station running an Object Oriented Programming Environment (OOP) operating
system (OS) based on the Mach MicroKernel developed at Carnegie Mellon University. Cube's
NeXTStep OS includes UC Berkley's BSD source code, and an Object-Oriented Application
Layer with numerous tool kits.

 Parallel Virtual Machine (PVM) . Oak Ridge National Laboratory, University of Tennessee, and

Enclosure 3 Page 13

Emory University define TCP/IP protocol permitting communications between any computer in
a heterogeneous “virtual” single distributed parallel processor.

 The FSF publishes the first program-independent GNU General Public License (GPL) to
support development of free software tools by others.

 Object Management Group (OMG). Eleven companies form a consortia to create standards for

object oriented systems. Goal is to create a common portable (platform and IDE independent)
object model.

 Moore's Law : Intel 486 microprocessor in 0.08 Micron (800 nm) CMOS technology with clock
speed range of 16 -100Mhz.

1990
 The GNU Project begins work on a free operating system called GNU HURD based on the UC

Berkley Software Distribution BSD 4.4 Lite kernel derived from Unix. With little support from
Berkley programmers, Stallman switches to Carnegie Mellon's Mach Microkernel.

 National Cash Register (NCR) develops WaveLAN point-of-sale wireless communications
capability. This is a precursor to WiFi.

1991
 Linus Torvalds , a Finnish student, uses GNU tools to develop a “Unix-like” kernel placing it in

the public domain but restricting it from commercial use. Later he relicensed it under the FCF
GPL. The Linux kernel with GNU components is now widely accepted as the GNU/Linux
operating system or simply Linux. Work continues on the GNU HURD.

 World Wide Web . Sir Tim-Berners-Lee combines his earlier ENQUIRE hypertext ideas (1980)
with Vinton Cerf's Transmission Control Protocol (TCP) and Domain Name System (DNS)
technologies to create the Hypertext Transfer Protocol Daemon or httpd server and a browser
called the Worldwideweb.

 UC Berkley Software Distribution (BSD) branch begins development of FreeBSD, a free
operating system.

 Common Object Request Broker Architecture (CORBA) is approved by the OMG. Uses
Interface Definition Language (IDL) to “wrap” program code into a bundle containing
information about the capabilities of the code and how to present objects to the outside world.
Then specifies “mapping” from IDL to a specific implementation language (C++, Java, Ada,
etc.). Widely used in control systems in ships and aircraft.

1993
 Donald Becker and Thomas Sterling at NASA Goddard initiate the Beowulf Project to find a

low cost alternative to expensive proprietary supercomputers. Beowulf leverages commodity
computers for high performance computing (HPC) and massively parallel programming.

 Moore's Law : IBM and Motorola launch Power PC 601 microprocessor using 2.8 million
transistors in 0.6-Micron (600 nm) CMOS. Clock speeds to 80Mhz.

 First Intel Pentium shipped using 600 nm CMOS at CPU speed of 66Mhz.

Enclosure 3 Page 14

http://en.wikipedia.org/wiki/COBOL_programming_language
http://en.wikipedia.org/wiki/COBOL_programming_language

1994
 Ericsson's Mattisson and Haartsen develop short range wireless connectivity between personal

devices such as cell phones, PDAs, laptops, printers. This IEEE 802.15.1 standard is called
“Blue Tooth” .

 The World-Wide Web Consortium (W3C) is founded to ensure compatibility and agreement
among industry for new standards such as HTML.

1995

 Beowulf Cluster . The Beowulf Multi-computer architecture combines MPI and PVM libraries
with commodity computers running on Linux and GNU's free software tools to create a Parallel
Virtual Supercomputer; a Low cost/high performance alternative to “traditional”
supercomputers.

80 Node Beowulf Cluster
40 Athlon 64x2 dual core processors1

 Rational Software Corp tasks the three leading object oriented software methodologists, the
“Three Amigos” to develop a non-proprietary Unified Modeling Language (UML).

 Moore's Law : Intel Pentium Pro in 350 nm CMOS clock speed 150Mhz-200Mhz.

1996
The Open Group. The X/Open Ltd (1984) and Open Source Foundation (OSF – 1988) merge to form
the Open Group to certify Unix operating system variants. The Group's promotes a “Single Unix
Specification and defines Application Program Interface (API) source code enabling applications to run
on different variants of the Unix operating system.

1997
 The Object Management Group (OMG) adopts Rational's UML 1.1 as the consortia standard

general-purpose Object Oriented Modeling Language.

 Moore's Law: Intel Pentium II in 250 nm CMOS Clock Speed 233 to 450 Mhz.

1 Built and used by Global Technical Systems in 2005 using Becker & Sterling's technology

Enclosure 3 Page 15

 Two 16-Pentium Beowulf cluster lowers data processing cost to $30,000 per GFLOPs.
1998

 Blue Tooth Special Interest Group (SIG) formed by Ericsson, IBM, and Nokia to mature IEEE
802.11 technology. Currently over 3,400 firms belong to the SIG.

 Moore's Law : AMD K6-2 microprocessor in 250 nm CMOS Clock speeds to 550Mhz.

 IBM begins supporting Linux on its mainframes and servers.

1999
 Hypertext Transfer Protocol (HTTP) becomes a standard communications protocol for the

world wide web.

 IBM opens the Linux Technology Center (LTC) to focus development of Linux kernels and
Open Source software.

2000
The Open Source Software Institute (OSSI) founded to promote development and use of open Source
software between corporate, government, and academic entities.

2001
 Object Technology International (IBM Canada) begins work on VisualAge replacement known

as Eclipse, an open “framework”. An IBM-independent Eclipse Foundation will offer it under
an IBM version of a public license. .

 MDA: Model Driven Architecture endorsed by OMG as software design approach to support
Model Driven Engineering (MDE).

 Cell Broadband Engine (CBE) . Sony, Toshiba and IBM form an alliance (STI) to design a new
processor architecture called the Cell Broadband Engine architecture or CBEA. The
microprocessor architecture will support 9 processing nodes on each chip.

2003
 Open Source Systems Modeling Language (SysML), a domain-specific modeling language for

systems engineering is offered as a response to an RFP co-authored by the International Council
on Systems Engineering (INCOSE) and the OMG.

 Athlon 64 . AMD releases its first 64-bit x86 single-core microprocessor.

 University of Kentucky's KASYO Beowulf cluster lowers cost of data processing to $84 per
GFLOPs.

2004
IBM's Eclipse Foundation releases Eclipse 3.0 “framework” as open “Common Public License”
modified now as the “Eclipse Public License”. The framework's default form is a Java IDE.

2005
 First Dual-Core Server Processor. AMD releases the first dual core x86-64 server

microprocessor, the Operon 865 in April 2005.

 First Dual-Core Desk-Top Processor. AMD releases the first dual core microprocessor for

Enclosure 3 Page 16

desktops, the Athlon 64x2 in May 2005.
 Intel releases its Pentium D with two Pentium 4 CPUs on individual dies and two variants of its

Pentium Extreme Edition also based on separate cores.

2006
 The OMG adopts OMG SysML as a subset of UML 2.0. Professor Brian Henderson-Sellers

details flaws in UML 2.0 at the MoDELs/UML conference in Genova, Italy

 Intel Core 2 Duo . Intel releases its first 64-bit Dual Core processor using their new Core Micro-
architecture.

 IBM under DARPA's HPIC program develops X10 experimental programming language to
integrate advances in chip technology, architecture, operating systems, compilers, programming
language and programming tools to deliver new adaptable, scalable systems that will provide an
order-of-magnitude improvement in development productivity for parallel applications by 2010.

 AMD merges with ATI Technologies, a graphics processing and video card design firm.
Announces plans for next generation microprocessor architecture combining dual core
processing with 3-D graphics and video functionality on a single chip.

 Moore's Law . IBM announces a deep ultra-violet lithography technology to enable manufacture
of integrated circuits down to 29.9 nm.

 The STI Alliance uses Georgia Tech as the site for its first Center of Competence to build a
community of programmers and promote the Cell BE processor.

 Intell fabricates a prototype 80-core microprocessor on a 300mm wafer using 45 nm
manufacturing. The chip achieved Teraflop performance at 62 watts exchanging more than one
terabyte of data per second between cores. The processor should be in production by 2011.

Intel Prototype 80- Core Microprocessor

Enclosure 3 Page 17

 IBM ships the first servers using the new Cell BE architecture. Each server has two Cell BE
microprocessors providing 18 synergistic core processing elements (CPUs) for computation.
Each Cell die contains a dual threaded Power Processing Element (PPE) and 8 Synergistic
Processing Elements (SPEs) with a theoretical single precision limit of 25.8 Gflops equivalent
to 204.8 Gflops for the 8 SPEs. A small defense contractor achieved 275 Gflops in matrix
multiples over a single server.2

STI's Cell Processor
Transistor Density = 241,000,000 at 90nm

2007
 Moore's Law : (January 2007) Intel announces it is moving from a 90 nm manufacturing process

to channels no longer than 45 nm. Chips to be available in late 2007. Intel plans to unveil 32 nm
process chips by 2009.

 Berkley Software Distribution releases BSD 6.2 open source operating system with added
threading optimization features and advanced IEEE 802.11 functionality.

 GNU SmallTalk, an open source free implementation of the object-oriented SmallTalk language
is released by the GNU Project.



 IBM announces it will launch new software, called “Open Client Offering” for companies
allowing reuse of office applications across windows, apple, or linux platforms. Installation and
use will permit termination of payment of annual license fees related to proprietary operating
systems and software.

 PSA Peugeot Citroen in January 2007 signed an agreement to run Linux on its 20,000 desktop
PCs and 2,500 server computers. Peugeot will use IBM's Open Client.

 March 7, 2007 Intel terminates Pentium D Production and announces plans for additional Core
2 Duo and Quad processors.

 March 12, 2007 IBM announces it has begun manufacturing the Cell BE microprocessor chip at

2 IBM Cell Broadband Engine Performance Evaluation; Global Technical Systems (GTS), 13Mar07

Enclosure 3 Page 18

http://en.wikipedia.org/wiki/PSA_Peugeot_Citroen

the 65 nm fabricating technology level using Silicon On Insulator (SOI) technology which has
certain advantages over CMOS.

 Ambric AM 2045 Beowulf cluster achieves $0.42 per Gflops 3

 May 8, 2007 Sun Micro completes release of all of Java's core code, aside from a small portion
to which Sun did not hold the copyright, open source under the GNU General Public License
(GPL).

 Athlon X2 . June 1, 2007 AMD announces its new Athlon X2 family of dual-core
microprocessors packaged in a single die with dual channel control logic.

 September 10, 2007 AMD introduces first native Quad-Core x86 processor for Opteron servers.

 September 18, 2007. Intel shows first working SRAM chip manufactured on prototype 32 nm
line. This SRAM device is cut from a 300mm wafer and has more than 1.9 billion transistors.
Production will begin in 2009.

3 http://en.wikipedia.org/wiki/FLOPS#_note-10

Enclosure 3 Page 19

Enclosure 4

A Time Line of the GPL and Linux

There are many types of Free Open Source Software (FOSS) licenses today and many see Linux as just
another example of FOSS; however, the reality is that we would not have Linux if were not for the
GNU General Public License (GPL). The GPL forms the foundation of FOSS. Here is a timeline to
show how Linux was one of several free Unix-like operating systems. What makes Linux unique is that
it is the only GPL'd operating system.

1950's and 60's. In the beginning mainframe and minicomputer manufactures openly share system
source code with customers to assist hardware sales. It is a time of great experimentation in computer
architecture and many computer models only have the most minimal software such as hardware
diagnostic programs, simplistic operating systems, assemblers, and debuggers.

Customers receive detailed circuit diagrams of the hardware as well as source code to the system
software as a part of the purchased system. Customers also join manufacture sponsored user groups to
share system and application program source code. In fact, in the documentation would be a catalog of
the user group library and programs that could be ordered on punched cards, paper tape, or nine track
magnetic tape. Thus, since the beginning of the computer industry there always has been a culture of
sharing information about the details of the hardware and software.

1969. Bell Labs terminates its involvement with the Multiplexed Information and Computing Service
(MULTICS) project, which was a joint operating system development project with MIT and General
Electric. Researchers Ken Thompson and Dennis Ritchie return to Bell Labs. Later they develop an
operating system on a salvaged PDP-7. The new operating system has concepts brought over from the
MULTICS project. The name UNIX is coined as a play on the word MULTICS, replacing the "MULTI"
with "UNI" and the "CS" with "X"

1971 – 1980. Richard Stallman joins the MIT AI laboratory and assists with system software
development for a DEC PDP-10 mainframe. Using assembly language, the team extends the DEC
TOPS-10 operating system into its own version called the Incompatible Timesharing system (ITS).
Stallman works on a program called Emacs, which also extends the old macro-based DEC Text Editor
and Corrector (TECO) utility. Stallman strongly committed to sharing software and resists the
introduction of account passwords saying that it would restrict software development.

1973 – 1975. Thompson and Ritchie continue to improve and introduce new concepts into UNIX as it
evolves through five editions. UNIX is also ported from the PDP-7 to the PDP-11/20 and then to the
PDP-11/45. In its first application, the Bell Labs legal department uses UNIX as a timesharing system
for word processing legal documents.

1976 – 1980. Executing on a $10,000 mini-computer, the UNIX timesharing system had matured to the
point that it meets, and in some cases exceeds, the functionality of the $500,000 mainframe TOPS-10
timesharing system. Although a mainframe executed programs faster than a minicomputer, UNIX
dramatically reduced the cost of timesharing computers. In spite of having its own Western Electric
computers and a powerful operating system, the AT&T telephone monopoly was not permitted by
government regulation to sell its computers or software. However, researchers at Bell Labs were
allowed to license the 6th Edition of UNIX, with source code, to four-year colleges and universities
including MIT for educational purposes. The the 6th Edition software license permits use the source
code in the classroom. John Lions writes a Commentary on UNIX 6th Edition Source Code which
quickly spread among university computer science programs.

Enclosure 4 Page 1

The 6th Edition of UNIX is modified, extended and re-released as various versions of the Berkley
Standard Distribution (BSD) from the University of California under the Bell Labs software license. In
this way, many universities would obtain a Bell Labs license, put UNIX in a drawer, and order the BSD
tape. (The 7th Edition and subsequent AT&T licenses restricted use of source code in university
courses.) Stallman and others begin to appreciate the "Unix philosophy" as well as Unix concepts and
methods which change how software was developed at the MIT AI laboratory and many other places.

Meanwhile, the microcomputer first appears as the MITS Altair 8800 marking the beginning of a third
generation of computer hardware: mainframes from the 50s, minicomputers from the 60s, and
microcomputers from the 70s. But it also marks the third generation of computer programmers and
users. As noted, concepts and methods were well established among business/scientific programmers
and users of the first two computer generations. Microcomputers, on the other hand, had simplistic
architectures, the peripherals were cobbled together with consumer parts such as televisions and
cassette tape drives, and there was little to no system software. Needless to say, the beginning of the
microcomputer generation was viewed with disdain and the microcomputer generation of programmers
and users matured as a separate and independent group in the computer industry. In retrospect it is now
obvious that if DEC had embraced the concept of the microcomputer early on, the company would still
be in business today.

In Albuquerque, New Mexico, Bill Gates, the co-founder of Microsoft, takes out an advertisement in
the Homebrew Computer Club Newsletter entitled: Open Letter to Hobbyists. In the letter Gates
expresses dismay at copyright infringement among the hobbyist whom he claims are stealing his Altair
BASIC interpreter software. This letter marked a milestone for the development and expansion of
proprietary software since it is the antithesis of the GPL. The irony of this milestone is that the initial
Altair BASIC interpreter was a modified and extended version of an open source PDP-8 BASIC
interpreter obtained from DEC's DECUS user group library.

Computer manufactures, such as IBM and DEC, note how software was sold and accepted in the
microcomputer market as well as the huge profit margins software sales generate. Computer vendors
change the way computers were sold for the last 20 years. Manufactures begin to charge separately for
the hardware and software and each version of the software was also sold separately without significant
complaint from customers.

1981. An MIT spin-off company, Symbolics, is formed which hires many staff members from the MIT
AI laboratory. These staff members also bring the laboratory software from MIT and it becomes the
property of Symbolics. Richard Stallman, who helped developed the software, stayed at the AI
laboratory.

1983. MIT and DEC begin Project Athena which led to the X Window System for Unix. Initially, all
software developed becomes the property of project partners. Later the software would be released
under the MIT open source license. A printer vendor requires Richard Stallman sign a non-disclosure
agreement (NDA) to have access to the driver source code for its printer. Stallman refuses to sign and
views these events as a serious problem. He sees private companies taking control of the software that
he has helped to develop. Stallman sends an email over the nascent Internet in which he proposes to
write free GNU (GNU is not Unix) software. (This is eight years before the Linus Torvalds' email
saying “I'm doing a (free) operating system...”) Here is a copy of the email:

"From CSvax:pur-ee:inuxc!ixn5c!ihnp4!houxm!mhuxi!eagle!mit-vax!mit-eddie!RMS@MIT-OZ
From: RMS%MIT-OZ@mit-eddie

Newsgroups: net.unix-wizards,net.usoft

Subject: new UNIX implementation

Date: Tue, 27-Sep-83 12:35:59 EST

Enclosure 4 Page 2

mailto:RMS%25MIT-OZ@mit-eddie

Organization: MIT AI Lab, Cambridge, MA

Free Unix! Starting this Thanksgiving I am going to write a complete Unix-compatible software system called GNU (for Gnu's Not Unix), and give it away
free to everyone who can use it. Contributions of time, money, programs and equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write and run C programs: editor, shell, C compiler, linker, assembler, and a few other
things. After this we will add a text formatter, a YACC, an Empire game, a spreadsheet, and hundreds of other things. We hope to supply, eventually,
everything useful that normally comes with a Unix system, and anything else useful, including on-line and hardcopy documentation..."

http://www.gnu.org/gnu/initial-announcement.html

1984. Richard Stallman quits his job at MIT and re-releases what is now called GNU Emacs and other
utilities under a new type of software license called the GNU General Public License (GPL). The GPL
is the first software license to use copyright law to guarantee software users the right to redistribute the
copyright holder's (developer's) software. Douglas Comer releases the source code to Xinu for the
PDP-11. Xinu is a minimal, yet functional, Unix-like kernel. Even though the OS is intended for
education, Xinu employs a software license that restricts its redistribution.

1985. Richard Stallman receives a letter from Don Hopkins in which he says "Copyleft--all rights
reversed." Stallman subsequently uses the word copyleft interchangeably with GPL. Stallman creates
the Free Software Foundation (FSF), a tax exempt charity for free software development. The FSF
distributes GNU Emacs on a nine track tape and charges $150.00 per tape.

1986. The FSF extends its distribution tape by adding other non-GNU free software. Andrew
Tanenbaum releases the source code to Minix, a version seven compatible Unix-like kernel. Like Xinu
before it, Minix is intended for educational use, but its software license restricts redistribution of the
software. Minix is compiled with the proprietary Amsterdam Compiler Kit developed by Tanenbaum so
even if Minix were freely redistributable, the compiler was not..

1987. Stallman now employs programmers in the Free Software Foundation (FSF) and they develop as
well as maintain GNU software. Three key elements of the GNU tools are the C compiler by Stallman,
the C library by Roland McGrath, and the Bash shell by Brian Fox. Copyright of these and other GPL
utilities remain with FSF.

1988 – 1989. The GNU software system grows into a set of hundreds of utilities that can be compiled
and run on most Unix systems. The GNU "tool set" becomes a standard addition to many commercial
UNIX versions.

1990. Richard Stallman receives the MacArthur "Genius Grant." Stallman uses the personal award of
$250,000.00 to continue funding the FSF.

1991. The source code to 386BSD is released. 386BSD has its roots in the original Version 6th Edition
code. Like Xinu and Minix before it, 386BSD does not allow redistribution of the software. The
Internet has grown dramatically and Minix has a mailing list of over 10,000 Usenet users who wanted
to contribute to Minix and transform Minix into a complete operating system, but Tanenbaum resists
changing the restrictive Minix license.

Although Minix was a multi-tasking operating system, it had a limitation where only one user could
access a file at one time. Not liking this single-user bottleneck in the Minix file manager, Linus
Torvalds developed a minimal version of a Unix-like kernel and, as a joke, calls it “Linux.” Like
Comer and Tanenbaum did before him, Torvalds used his own software license, which restricted the
distribution of Linux and Linux versions 0.01 through 0.11 are released on the Minix mailing list.

1992. Usenet users vote to create a separate Linux email list and based upon requests from Usenet users
to make Linux compatible with the GPL license,Trovalds decides to re-license the kernel under the
GPL. In doing this, Trovalds inadvertently releases the pent-up demand for a GPL'd Unix-like kernel

Enclosure 4 Page 3

and thousands of Minix users quickly switch to Linux and begin to extend and enhance the minimal
kernel. Linus quickly adapts to the vast interest in Linux by accepting, integrating, and re-releasing
patches to the kernel, sometimes on a daily basis. By the end of the year, Adam Richter announced the
first Linux CDROM for sale by his Yggdrasil company. Eight years after the creation of the GPL, there
is now an operating system kernel to go with the GNU tools. In contrast, Comer (Xinu), Tanenbaum
(Minix), and the closed BSD development group are unable to offer cogent explanations as to why
Linux is so popular compared to their versions of Unix.

Unix System Laboratories (a division of AT&T) brought a lawsuit against Berkeley Software Design,
Inc (BSDi) and the Regents of the University of California for selling their version of Unix. The case
was settled out of court and the settlement sealed.

1993. Computer science departments employs 386BSD for Unix programming, mail, name service, as
well as network-based backup storage. But BSD is still in legal limbo based upon copyright claims by
AT&T.The FSF programmers and others combine the Linux kernel with the GNU software system.

Ian Jackson developed the Debian package manager. Marc Ewing and Erik Troan developed the Red
Hat Package Management system (RPM). These package managers use executable and/or source code
archives to copy, uncompress, un-archive, install, verify, query, and configure the more than 22,000
software components that can be configured into a Linux system. These package managers were an
essential part in creating the concept of a “Linux distribution.” Patrick Volkerding releases the
Slackware Linux distribution. It is the first commercial, standalone, Linux distribution and quickly
becomes popular with Linux users.

1994. College students and many others around the world download Linux 1.0.0 into their PCs and
experience Unix for the first time. There are 500,000 estimated Linux users.

1995. Linux 1.1.13 employs an "IP masquerade" kernel patch that allows firewall and private network
configurations. This is a watershed year for Linux since it now has more functionality than its closest
alternative, BSDi, which cost $1,000.00 for a "six-user license."

1996. Linux 2.0 is released with the number of users estimated at 3,500,000.

1998. The K desktop environment (KDE) becomes popular, but it is built on top of Qt, a proprietary
GUI toolkit library. Linux 2.2 is released to an estimated user population of 7,500,000.

Bruce Perens and Eric Raymond define and promote the term "open source software" for non-GPL free
software. Richard Stallman disagrees with the concept since open source software licenses may restrict
redistribution of the software by permitting it to be comingled with proprietary software. Open source
software is embraced by business developers who disagree with Stallman's position that all software
must be GPL'd. Richard Stallman feels that the GNU tools are more significant than the Linux kernel
and asks that Linux be renamed to “GNU/Linux.”

Motivated by Eric Raymond's book, The Cathedral and the Bazaar, Netscape Communications
Corporation releases the source code for Netscape Communicator and begins the Mozilla project which
now holds Firefox and Thunderbird. IBM adds the open source Apache software to its Websphere line.

Microsoft cites the GPL'd body of public knowledge, called Linux, as a “business competitor” in its
anti-trust lawsuit. In a series of leaked memos marked "Microsoft confidential," open-source software,
and the Linux operating system, are identified as a major threat to Microsoft's dominance of the
software industry. The memos then offer ways in which Microsoft could disrupt general acceptance of
open source software.

Enclosure 4 Page 4

Consumer advocate Ralph Nader issues a press release to request that PC vendors (Dell, Gateway,
Micron, etc.) offer non-Microsoft systems, including systems with Linux installed. Dell will eventually
offer Linux to consumers, but not until 2007, nine years later.

The Google search engine appears which outperforms all the other search engines and it is
implemented with Linux. But not just one Linux computer. Google configures hundreds of thousands
of Linux PCs interconnected into a vast distributed operating system that holds the entire content of the
Internet in its main memory banks. Google also develops many new system and kernel components
such as the Google File System. However, as allowed under the GPL, Google does not release these
Linux improvements to the public.

1999. There are so many additions to the Linux kernel that is becomes a superset of all Unix-like
operating systems and traditional Unix vendors such as SGI and HP adopt Linux.

2000. IRIX, Ultrix, Tru64, SCO, HP-UX, AIX, and other Unix versions are or have been retired and are
being replaced with Linux. Sun Microsystems re-releases most of Star Office source code as Open
Office under the GNU GPL. Linux executes on 27% of all servers and 36% of Internet connected
servers. Apache is found on 63% of all Internet connected servers. The Qt GUI tool kit is re-released
under the GNU GPL.

Andrew Tanenbaum re-releases Minix under the BSD license open source. Had Minix had a non-
restrictive software license from the beginning, the Linux phenomena would would have been called
the Minix phenomena. Microsoft begins a campaign of filing hundreds of trivial software patents.

2001. Linux 2.4 was released to a user population estimated at 15,000,000. Apache 2.0 is released. This
becomes the year of "embedded Linux." Real time versions of Linux are used throughout the
embedded processor industry. Examples are: Sony PS/2, TiVo, Axil Web camera, PDAs, IDAs, etc.

Committees are formed in large companies such as FedEx, BC/BS, and Bell South to investigate Linux
for company wide integration. The National Security Agency (NSA) releases SELinux under the GPL.
SELinux offers an additional layer of security checks in addition to the standard Unix-like permissions
system. The cost to recreate a full Linux distribution is estimated to be more than $1 billion. Microsoft
continues to file a thousand trivial software patents.

2002. Darl McBride became the CEO of Caldera, Inc. and had the company renamed to Santa Cruz
Operation (new SCO), the same name of a Unix company it recently acquired (old SCO). McBride was
told of an old SCO extensive investigation into whether or not Linux contained proprietary Unix source
code which discovered "At the end, we had found absolutely *nothing*. ie no evidence of any
copyright infringement whatsoever."

NewSCO sends out SCOSource licenses to companies that use Linux asking them to pay $699 for their
use of Linux. Subsequently McBride files litigation against IBM, Red Hat, Daimler Chrysler, and
Autozone for using Linux. McBride accused Linux of containing "line-by-line" copies of oldSCO's
proprietary source code. NewSCO violates the GPL by offering Linux for download from its servers,
yet requiring the $699 license fee for using Linux. Microsoft files 2,000 software patents many deal
with Internet, internet protocols and utilities.

2003. Microsoft purchases a SCOSource license for $28 million, suggesting to many that Microsoft
seems to be a silent partner in the newSCO lawsuits.

2004. The University of California under the State of California Public Records Law released the 1992

Enclosure 4 Page 5

sealed out-of-court settlement between AT&T and the University of California. The agreement stated
that the University would cease distribution of certain files, but otherwise it was free to sell BSD
software. Also, AT&T agreed to not prosecute others who sell Unix derivatives. NewSCO files another
lawsuit, this time against Novell, Inc. which licensed the original AT&T Unix to old SCO. NewSCO
claims it owns the copyright to Unix, not Novell.

2006. In the newSCO lawsuit, two critical decisions were reached. First, Judge Wells ruled from the
bench and accepted IBM's motion to limit SCO's claims to just those supported by evidence. Second,
Judge Dale A. Kimball affirmed Judge Brooke Wells' Order striking most of SCO's claimed evidence of
code misuse as being too vague to be worth adjudicating. After three years, newSCO removes Linux
from its servers, claiming to the court that it did not violate the GPL. The cost to recreate the 2.6 series
kernel is estimated to be more than $630 million.

Microsoft files for 3000 software patents, is awarded its 5000th software patent, and claims to own
unspecified rights to the intellectual property contained within Linux. Microsoft signs cross patent
agreement with Novell stating that Microsoft will not sue Novell SuSE Linux customers in exchange
for a fee from Novell.

2007. Linux 2.6.22 was released to a user population estimated at 29,000,000. NewSCO has filed about
a 1000 motions in its lawsuit against IBM. The motions are designed to obfuscate and confuse the
issues before the court. Dell computer begins shipping some of its product line with Ubuntu Linux
installed. However, the machines are priced higher than equivalent machines with Microsoft software.
Linux 2.6.22 was released to a user population estimated at 29,000,000 with the NSA's SELinux
(security enhanced) changes. GPL Version 3 is released which prevents future Microsoft/Novell type
cross patent agreements.

Enclosure 4 Page 6

Enclosure 5

GNU Free Documentation License

Version 1.2, November 2002
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is
available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such,

1

http://www.gnu.org/licenses/fdl.html#TOC1
http://www.gnu.org/licenses/fdl.html#TOC1

"Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of
the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in
parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all
copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more
than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

2

• F. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document's license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant

Section.
• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version
by various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that is included in the collection, provided that

3

you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a
volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than
one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either
of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

4

	Enclosure 5 GFDL.pdf
	Enclosure 5
	GNU Free Documentation License
	Version 1.2, November 2002

