
 Open Architecture Principles and Guidelines

Open Architecture
Technical Principles and Guidelines 1.5.8

Author: Eric M. Nelson
ericnels@us.ibm.com

Owner: IBM Federal CTO Office

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 1� of 44

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 2� of 44

Document History

Document Location
This is a snapshot of an on-line document. Paper copies are valid only on the day they are printed. Refer to
the author if you are in any doubt about the currency of this document.

Revision History
Date of this revision: 02-01-07 Date of next revision (date)

Revision
Number

Revision
Date

Summary of Changes Changes
marked

1.0 02-01-07 First Draft N
1.2 02-05-07 Modifications based on feedback from Fred Mervine and Peter Bahrs.

Added section 3.1 to identify key criteria under which using OA is
necessary, and where it is not relevant.

Y

1.3 03-09-07 Added OA Reference Model and business driver analysis. N
1.4 03-09-07 Added analysis of OA Principle application to TCO N
1.5 03-30-07 Modifications based on feedback from Jeb Brown and Richard Ernst N

1.5.2 04-10-07 Minor edits, added attribution, some minor text additions N
1.5.3 Not yet posted version N
1.5.4 9-19-07 ITAR Approval Notification Added N
1.5.5 11-15-07 Minor edits N
1.5.6 3-24-08 Extensive edits, esp. in section 2.2 and Section 5 N
1.5.7 6-30-08 Additions to enablers and inhibitors N
1.5.8 9-30-08 Minor edits N

Approvals
This document requires following approvals. Signed approval forms are filed in the Quality section of the
PCB.

Name Title
(name) (title)

Distribution
This document has been distributed to

Name Title
(name) (title)

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 3� of 44

Contents
Document History ..2

Document Location ..2
Revision History ...2
Approvals ...2
Distribution ...2

Contents ..3

1. Introduction...7
1.1 Principles and Guidelines ...7
1.2 Open Architecture ...8
1.3 OA Business and Technology Drivers ..8
1.4 OA and SOA (Service Oriented Architecture)...9

1.4.1 OA Principles essential to SOA ...9
1.4.1.1 Modularity ...9
1.4.1.2 Open Standards ...10
1.4.1.3 Interoperability ..10

1.5 Document Scope...10
1.6 Related (future) Open Architecture White Papers ..10
1.7 References..10
1.8 Acknowledgements...11

2. Open Architecture Reference Model...12
2.1 Open Architecture Technical Nonfunctional Requirements..12

2.1.1 Open Standards...13
2.1.1.1 Definition...13
2.1.1.2 Dependencies on other OA NFRs..14

2.1.2 Modularity ..14
2.1.2.1 Definition...14
2.1.2.2 Dependencies on other OA NFRs..14

2.1.3 Interoperability ...14
2.1.3.1 Definition...14
2.1.3.2 Dependencies on other OA NFRs..15

2.1.4 Extensibility ..15
2.1.4.1 Definition...15
2.1.4.2 Dependencies on other OA NFRs..15

 Open Architecture Principles and Guidelines

2.1.5 Reusability ...15
2.1.5.1 Definition...15
2.1.5.2 Dependencies on other OA NFRs..16

2.1.6 Composability ..16
2.1.6.1 Definition...16
2.1.6.2 Dependencies on other OA NFRs..16

2.1.7 Maintainability ..17
2.1.7.1 Definition...17
2.1.7.2 Dependencies on other OA NFRs..17

2.2 Open Architecture Drivers...17
2.2.1 Total Cost of Ownership ..17

2.2.1.1 Acquisition ..18
2.2.1.2 Vendor Payments ...18
2.2.1.3 Training...19
2.2.1.4 Development/Integration ..19
2.2.1.5 Testing..20
2.2.1.6 Maintenance ...20
2.2.1.7 End of Life...20

3. OA Technical Principles..22
3.1 Use Open Standards ..22

3.1.1 Use Open Standards Principle Statement...22
3.1.2 Motivation for Open Standards Use ..23
3.1.3 Implications of Using Open Standards ..23

3.2 Use Modular Design ...23
3.2.1 Use Modular Design Principle Statement..24
3.2.2 Motivation for the use of Modular Design ..24
3.2.3 Implications of using Modular Design..24

3.3 Design for Interoperability ...25
3.3.1 Design for Interoperability Principle Statement ...26
3.3.2 Motivation for designing for Interoperability...26
3.3.3 Implications of designing for Interoperability ...26

3.4 Design for Extensibility..26
3.4.1 Design for Extensibility Principle Statement ..27
3.4.2 Motivation for designing for Extensibility ...27
3.4.3 Implications of designing for Extensibility ..27

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 4� of 44

 Open Architecture Principles and Guidelines

3.5 Exploit Reusability...27
3.5.1 Exploit Reusability Principle Statement ...28
3.5.2 Motivation for exploiting Reusability ..28
3.5.3 Implications of exploiting Reusability...28

3.6 Design for Composability ..29
3.6.1 Design for Composability Principle Statement ..29
3.6.2 Motivation for designing for Composability..30
3.6.3 Implications of designing for Composability ..30

3.7 Design for Maintainability..30
3.7.1 Design for Maintainability Principle Statement ..31
3.7.2 Motivation for designing for Maintainability..31
3.7.3 Implications of designing for Maintainability ..31

4. Related Nonfunctional Requirements ...32
4.1 Scalability ..32
4.2 Replaceability..32
4.3 Portability ..32
4.4 Supportability ..32
4.5 Affordability ...32
4.6 Information Assurance (IA) ...33

5. Open Architecture Guidelines...34
5.1 Open Architecture Criteria ..34

5.1.1 OA is needed if ..34
5.1.2 OA is not needed if ..34
5.1.3 “Degrees of Openness” ...35

5.2 About OA Enablers and Inhibitors...35
5.3 Organizational Practices ...35

5.3.1 Enablers...36
5.3.2 Inhibitors ..38

5.4 Open Standards..39
5.4.1 Enablers...39
5.4.2 Inhibitors ..39

5.5 Modular Design...39
5.5.1 Enablers...39
5.5.2 Inhibitors ..40

5.6 Maintainability ...40

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 5� of 44

 Open Architecture Principles and Guidelines

5.6.1 Enablers...40
5.6.2 Inhibitors ..40

5.7 Interoperability...41
5.7.1 Enablers...41
5.7.2 Inhibitors ..42

5.8 Extensibility ...42
5.8.1 Enablers...42
5.8.2 Inhibitors ..43

5.9 Reusability...43
5.9.1 Enablers...43
5.9.2 Inhibitors ..43

5.10 Composability ..43
5.10.1 Enablers...43
5.10.2 Inhibitors ..44

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 6� of 44

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 7� of 44

1. Introduction
This document describes the Architectural Principles and Guidelines that underlie systems that use an Open
Architecture approach to software and systems engineering.

1.1 Principles and Guidelines
Architectural Principles are broad constraints on all software and system design and development. The
reason for specifying Principles is to drive architectural, design, development and system management
practices that realize business goals and to avoid errors that will limit the success of the system.

Principles differ from Guidelines in that Principles are mandatory. All systems and components developed for
an enterprise must adhere to applicable Principles. Exceptions are possible, but they must be carefully
justified, reviewed and approved at the enterprise level. The justification for an exception must demonstrate
why the Principle(s) cannot be satisfied, how the alternate approach fulfills the intention of the Principle(s),
and the risk mitigation actions that will be used to avoid any problems that served as the original motivation.

The barrier for an exception to a Principle must be very high, because it applies to the system at an
enterprise level, and any component under review should be, in part, crafted to optimize processes or
capabilities across the organization. This means, in particular, that optimizing performance (of any kind) of a
specific system, application or component will almost never be a sufficient reason to violate a principle.1

Guidelines identify best practices and suggestions for all phases of a system lifecycle. Guidelines sometimes
trace back to Principles as directions or suggestions for implementation. Other Guidelines may be
independent and may reflect lessons learned by the organization or from the broader Communities of
Interest.

Principles and Guidelines are fundamental statements of enterprise priorities that must be owned and
maintained as part of the core Enterprise Architecture governance processes of an organization. If there is
not active review of systems against the principles and guidelines, then they will rapidly be ignored under the
pressures of cost and schedules. In the short term, there is always an expense to “having principles” and if
there is not an organizational counterbalance to budget and schedule pressures, short term pressures will
win out.

Further, a regular reassessment of the validity of the principles in light of technological changes is necessary
as part of the governance processes. Principles and guidelines invariably include assumptions, tacit or
otherwise, of what is possible with current technology. Change can invalidate those assumptions. If
principles and guidelines are not reviewed in light of a changed technical ecosystem, then they will rapidly
become irrelevant and if still enforced will become a major problem in the organization. Guidelines in
particular should be reviewed because they often explicitly discuss how to realize a principle with current
technology.

1 Claims of performance or other types of exceptions are frequently based on overgeneralization of lessons
learned in the use of prior technology or processes. Generally these should be viewed with suspicion. But, for example,
if performance is key to a safety-critical system or to a component that has clear deterministic real-time requirements,
then a well-partitioned portion of a system may be approved for an exception to a principle that makes it impossible for
it to meet its performance requirement. This still requires careful analysis, a clear justification and an effort to minimize
the amount of code/hardware that falls under the exception.

 Open Architecture Principles and Guidelines

1.2 Open Architecture
Open Architecture (OA) is a pattern of nonfunctional requirements (NFRs) that contribute to the ability to
create, deploy and manage OA systems. In some domains, e.g. systems engineering, OA considerations
would apply to both hardware and software components.

Open Architecture concepts have been around for years. In information technology it has been present at
least since the 1981 introduction of the IBM PC hardware platform. In other domains, such as electrical and
mechanical engineering it has often been seen, at least in key points where hardware or electrical systems
from different vendors must cleanly, easily and safely interoperate. It can be argued that software
engineering has been slower to adopt this approach because there are many more degrees of freedom to
how components can interact than exist in electrical or mechanical systems. The increasing use of open
standards in both COTS and Open Source software has increased the visibility of component-based,
interchangeable software for complex systems and has shown OA to be viable.

The original IBM PC architecture is an example of a hardware open architecture; the World Wide Web is an
example of a software open architecture. The idealized picture of such openness is simple interchangeability
of components: “swap out, plug and play.” A more realistic view would expect a lowered barrier to entry and
a greater velocity of technological improvement.

The oft-observed results of creating such an open architecture,

• rapid adoption of technology
• easier test and integration
• rapid improvement in technology capability and performance
• reduced lifecycle cost because of

o increased competition
o easier maintenance and upgrades
o broader knowledge base
o greater exploitation of reusability

have convinced many that including OA as a property of systems development and systems engineering can
benefit their acquisition and development processes.

As is discussed below, the value derived from implementing OA technical principles depends on the
existence of supporting business processes, including enterprise IT governance in addition to the
fundamental processes around IT development and operations.

In short, OA specifies the business process and technical nonfunctional requirements that make it easier to
assemble applications from replaceable functional components. As such, it applies to both the construction
of a system (or system of systems) and the management of its lifecycle.

A lack of OA in a large system may result in the system not being capable of being upgraded. The
complexity of building non-modular systems on a large scale historically results in very tightly integrated, but
brittle systems that can only be scrapped if changes must be made.

1.3 OA Business and Technology Drivers
The fundamental drivers of OA are to reduce the total cost of ownership and the time to deliver IT systems.
There are several common objectives that are identified:

• Increase Reuse: Increase the reuse of components across systems in all the lines of business.
• Increase Flexibility: Increase the flexibility of a system so it can be readily modified in response to

business or technology changes.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 8� of 44

 Open Architecture Principles and Guidelines

• Faster Time to Market: Decrease the time required to develop, deploy, maintain and replace
components and systems.

• Reduce Costs: Decrease the cost of development, deployment, maintenance and replacement of
components and systems.

• Leverage Competition: Increase the opportunities for competition and innovation to both drive down
costs and improve quality.

• Improve Interoperability: Create systems that are more readily interoperable with existing and
future systems.

• Reduce Risk: Mitigate risks due to technology obsolescence or single source supply.

The principles and guidelines in this document are intended to support these business drivers, by identifying
the key technical and business factors that facilitate the creation and deployment of OA systems. In the
guidelines you will also find a general list of inhibitors and enablers of OA that are consistent with the OA
Principles.

1.4 OA and SOA (Service Oriented Architecture)
The fundamental relationship between Open Architecture and Service Oriented Architecture can be
summarized in five main points:

• OA is concerned with the quality of a component-based system or system of systems. SOA is
concerned with the business functions that are provided within and across systems.

• OA features are likely to be found in a well-designed SOA.

• A system built to meet OA requirements is likely to facilitate the development of SOA services offered
by that system at a later time.

• Many capabilities of a system are not exposed by a service interface and will never need to be. SOA
is not relevant to their design or implementation; OA is always relevant to the design and
implementation of the components of a system.

• Enterprise Architecture governance processes that support the conformance to OA principles have
many objectives and activities that also support SOA enterprise practices.

1.4.1 OA Principles essential to SOA

1.4.1.1 Modularity
Service Oriented Architecture best practices rely on a modular software architecture that has carefully
partitioned business and technical functions in a way that allows them to be independently accessed with
minimal need to maintain state between client transactions.

It is possible for an SOA access layer to be placed over a non-modularized server application, but those
services are likely to be less flexible, not at the right level of granularity and may invisibly maintain session
state between transactions. Further, modularity is essential to horizontal and vertical scalability, which is also
critical to SOA. SOA must be scalable, precisely because services are open to access to an unknown
number of consumers.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 9� of 44

 Open Architecture Principles and Guidelines

1.4.1.2 Open Standards
The use of open standards most affects SOA where those standards have to do with service description,
discovery, access, and nonfunctional requirements such as security and performance. Implementing these
standards as a part of an OA system will make component services available to a broader SOA architecture.

1.4.1.3 Interoperability
Interoperability at a SOA level relies on well-defined interface syntax and semantics. Not only must an
exposed interface capability be clear in what it does, but the relevant semantics of its data model must be
available to the client so that errors don’t arise due to the misinterpretation of data by applying the wrong
context to its interpretation.

1.5 Document Scope
This document will address the technical principles of Open Architecture. It provides an Open Architecture
reference model, a discussion of the business drivers behind OA and how the OA principles address the key
driver of Total Cost of Ownership (TCO). Finally, it presents a set of organizational and technical practices
that can operate as enablers or inhibitors to satisfying Open Architecture requirements.

The business principles will be addressed in a separate document. That document will address the business
principles needed to acquire, develop and manage Open Architecture systems based on the technical
principles described here. The document will differentiate between the principles needed in the private sector
from those needed in the public sector. The principles in the public sector will be more extensive, because
the acquisition of IT systems in the public sector is closely regulated, whereas there is much more flexibility in
the private sector.

1.6 Related (future) Open Architecture White Papers
• Open Architecture Business Principles and Guidelines

• Open Architecture Metrics and Measurement

1.7 References
[1] OASIS, Reference Model for Service Oriented Architecture, V1.0, 2 August 2006,

http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf

[2] Open Source Institute, Open Standard Requirement for Software, Draft 3, 2 September 2006,
http://opensource.org/osr/

[3] Open Source Institute, The Open Source Definition, V 1.9, no date,
http://opensource.org/docs/definition.php

[4] Open Systems Joint Task Force, MOSA Program Manager’s Guide, Version 2.0, September, 2004.
http://www.acq.osd.mil/osjtf/pmguide.html

[5] Brown, Malveau, Hays & Mowbray, AntiPatterns: Refactoring Software, Architectures and Projects in
Crisis, 1998, John Wiley & Sons, Inc.

[6] Department of the Navy, PEO-IWS 7, Naval Open Architecture Contract Guidebook, Version 1.0, July
2006, https://acc.dau.mil/CommunityBrowser.aspx?id=105662 (Registration is not required).

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 10� of 44

http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf
http://opensource.org/osr/
http://opensource.org/docs/definition.php
http://www.acq.osd.mil/osjtf/pmguide.html
https://acc.dau.mil/CommunityBrowser.aspx?id=105662

 Open Architecture Principles and Guidelines

[7] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A Compilation of
IEEE Standard Computer Glossaries. New York, NY: 1990.

[8] Open Systems Joint Task Force, Open Systems Terms and Definitions,
http://www.acq.osd.mil/osjtf/termsdef.html

[9] Berkman Center for Internet & Society at Harvard Law School, Roadmap for Open ICT Ecosystems,
2005, http://cyber.law.harvard.edu/epolicy/

1.8 Acknowledgements
I would like to thank my colleagues at IBM, Timothy Fain, Lisa Yarbrough, Mark Cutler, Timothy Pavlick, Fred
Mervine and others who helped me with advice and corrections on this paper. I also want to thank the
significant contribution of the team of people working with the Navy, the Software Engineering Institute, The
Johns Hopkins University and other who worked with on the Naval Open Architecture Initiative have made to
my understanding of the issue. This paper is a distillation and extension of the work we did in understanding
how to apply OA principles to the acquisition of the Navy’s complex systems of systems.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 11� of 44

http://www.acq.osd.mil/osjtf/termsdef.html
http://cyber.law.harvard.edu/epolicy/

 Open Architecture Principles and Guidelines

2. Open Architecture Reference Model
This reference model provides an integrated overview of the key Open Architecture nonfunctional
requirements and the business drivers that motivate them. It shows the relationships between the seven OA
requirements. It also takes Total Cost of Ownership (TCO), shows how this business driver breaks down and
how the nonfunctional requirements address the different elements of the driver. That relationship between
the OA NFR and the business driver is meant to suggest that any design or process that satisfies the OA
NFR is likely to address the need(s) reflected by the business driver.

2.1 Open Architecture Technical Nonfunctional Requirements

Figure 2-1: OA Technical Principles

There are strong relationships among the OA NFRs that are shown in Figure 2-1. The OA Technical
nonfunctional requirements provide a pattern of architectural qualities that contribute to a globally open
technical architecture. The sections below detail how the requirements are related to each other.

In general the figure reflects the fact that Open Standards and Modularity are the most fundamental
requirements, while the others, to a greater or lesser extent, depend on the fundamental two and the other
OA NFRs. There are two key relationships among these NFRs, isEnabledBy and isFacilitatedBy.

isEnabledBy: This relation implies that satisfaction of the NFR in an system design and implementation
requires the satisfaction of the enabling NFR requirement in that system. Note that enablement is transitive:
if A isEnabledBy B and B isEnabledBy C, then A isEnabledBy C.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 12� of 44

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 13� of 44

isFacilitatedBy: This relation implies that satisfaction of the NFR is made easier by satisfaction of the
facilitating requirement. Note that isFacilitatedBy can also be transitive, but because the relationship is not
one of necessity, the impact of C in facilitating A is going to be less than that of B facilitating A, and less than
that of C in facilitating B.

For example, Extensibility isEnabledBy Modularity, and isFacilitatedBy Interoperability. From these relations,
one would expect that if Modularity is not present in a system, it will be very difficult for the system to be
Extensible. If Interoperability is a property of a system, then it is likely to be easier to make it extensible, but
its absence is not an inhibitor of Extensibility.

For each NFR, the implications of each relationship are detailed in the analysis below. The definitions of the
principles in this section may be elaborated in the principles discussion in section 3.

2.1.1 Open Standards

2.1.1.1 Definition
Open Standards are “…publicly available documents that contain implementable specifications” (Wikipedia).
The DoD defines it as ” Standards that are widely used, consensus based, published and maintained by
recognized industry standards organizations.”2

The Open Source Institute has defined an Open Standard Requirement (OSR) that states the essential
criteria of an Open Standard [2] for the purposes of Open Source software development. The requirement
states:

To comply with the Open Standards Requirement, an open standard must satisfy the
following Criteria:

1. No Secrets: The standard MUST include all details necessary for
interoperable implementation.

2. Availability: The standard MUST be freely and publicly available
(e.g., from a stable web site) under royalty-free terms.

3. Patents: All patents essential to implementation of the standard
MUST:

• be licensed under royalty-free terms for unrestricted use,
or

• be covered by a promise of non-assertion when
practiced by open source software

4. No Agreements: There MUST NOT be any requirement for
execution of a license agreement, NDA, grant, click-through, or
any other form of paperwork, to deploy conforming
implementations of the standard.

5. No OSR-Incompatible Dependencies: Implementation of the
standard MUST NOT require any other technology that fails to
meet the criteria of this Requirement.

2 http://www.acq.osd.mil/osjtf/termsdef.html

 Open Architecture Principles and Guidelines

It might be initially thought that criteria 3 and 4 don’t apply to commercial software development or acquisition,
since intellectual property protection and licensing are common practices. The criteria though, apply to the
ability to implement the Open Standard not to any specific implementation of an Open Standard, unless that
implementation is Open Source. Thus, a proprietary implementation of an Open Standard is possible. It can
contain confidential IP, if the company so chooses. It can then be marketed as a proprietary implementation
of one or more Open Standards, though if it violates the spirit of the OSR by having dependencies on
components that violate the OSR; it is likely to be considered less than open by most practitioners.

2.1.1.2 Dependencies on other OA NFRs
None: The satisfaction of the Open Standards requirement does not depend on, nor is it facilitated by the
satisfaction of any of the other OA NFRs. This is because the specification of an Open Standard lies outside
of the system being designed and built. To satisfy the Open Standards requirement, relevant interfaces and
protocols must be part of the system design and implementation.

2.1.2 Modularity

2.1.2.1 Definition
In software engineering, a module “…generally must be a component of a larger system, and operate within
that system independently from the operations of the other components.” (Wikipedia).

Modularity is a set of properties that support that independence of operations, which include

• Partitioning into discrete, scalable and self-contained units of functionality

• Well defined module interfaces, designed for ease of understanding (see reference [4]).

In Open Architecture, modularity is a measure of the clarity of the functional specification, and degree of
independence from other system modules for its functionality. This applies to any particular bounded
subsystem or components in the architecture. The specification does not need to be based on Open
Standards. Using Open Standards interfaces does not inherently enhance the modularity of an artifact.
Since it is, in a sense a measure of self-containment, it should not be expected to require the satisfaction of
other NFRs in order to be satisfied by design and implementation.

2.1.2.2 Dependencies on other OA NFRs
None. Modularity is evaluated by the design and implementation of the module. Its focus is internal, in the
sense that it does not directly make assumptions about its integration and runtime contexts. The requirement
is only directly concerned with well-defined, bounded interfaces and behavior and minimal dependency on
external interfaces.

2.1.3 Interoperability

2.1.3.1 Definition
Interoperability is the ability for systems and system elements running in separate process spaces to
exchange data and information or request/provide the execution of a capability. The IEEE defines it as

… the ability of two or more systems or components to exchange information and to use
the information that has been exchanged [7].

See 3.3 for a more detailed discussion.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 14� of 44

 Open Architecture Principles and Guidelines

2.1.3.2 Dependencies on other OA NFRs
Interoperability isFacilitatedBy Open Standards: Open Standards are, by definition [2], intended to
interoperate in a distributed environment. Building a system using Open Standards makes the capabilities of
that system a known quantity and it can expect other components that need the services specified by the
standard will know how to interoperate with the system. It is not, however, necessary for a system, or its
subsystems and components, to be based on Open Standards in order to be interoperable.

2.1.4 Extensibility

2.1.4.1 Definition
An extensible system has been designed with points of contact/integration (e.g. interfaces, ports, connectors,
abstract classes) that allow future capabilities to be added to the component or system. To support
extensibility, the internal implementation also has to be designed with sufficient internal quality and modularity
of data and behavior that new capabilities do not introduce unintentional changes to existing data and
behavior.

Extensibility refers to the ability to both add new capabilities to system components [module extensibility], and
to add components and subsystems to existing systems [system extensibility].

2.1.4.2 Dependencies on other OA NFRs
Extensibility isEnabledBy Modularity: Systems that have tight coupling between components are very hard to
extend because the web of dependence is very brittle. The effects of change are hard to predict and change
is likely to cause malfunctions. Components that are not focused on well-defined business or technical
capabilities have concomitantly “fuzzy” boundaries and it is unclear how they can be extended. A well-
defined modular system does not suffer from these problems.

Extensibility isFacilitatedBy Interoperability: Systems that support Interoperability are hospitable to the
inclusion of other, interoperable elements, and are, therefore more able to be extended. It is not necessary
for a system to be interoperable in an external sense, if it has good modular design to enable its extensibility.

2.1.5 Reusability

2.1.5.1 Definition
Reusability is a property of an artifact that permits it to be used in multiple contexts to provide the similar
capability in different contexts. Traditionally, in software engineering, reuse is seen at a code or module
level. More recently, any lifecycle artifact in system design, development, training, implementation,
configuration or maintenance artifact could be a candidate for reuse. Model Driven Architecture™ has made
it more apparent, for example, that design artifacts are valuable reuse artifacts.

In an OA context, reusability does primarily refer to reusable system components, not as much to design and
other artifacts that are part of the acquisition process. However, best practice suggests that all artifacts
related to the design, construction and configuration of a component should be part of the deliverable
reusable artifact.

See 3.5 for more discussion.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 15� of 44

 Open Architecture Principles and Guidelines

2.1.5.2 Dependencies on other OA NFRs

Reusability isEnabledBy Interoperability: Reusable components obviously need to be interoperable with other
components with minimal adaptation. To the extent they are not their value as reusable components
decreases.

Reusability isEnabledBy Extensibility: A reusable component is more easily integrated into a system that is
easily extensible. The Reusable Asset Specification identifies points of extensibility as likely parts of an asset
package. In some cases, a reusable asset should not be extensible, so extensibility is not a necessary
feature, but principled points of variability in a reusable asset make it adaptable to more contexts.

Reusability isEnabledBy Modularity (transitively via Extensibility): Reuse depends upon both
understandability of the artifact and its relative lack of dependency on other artifacts. A component that is
tightly bound to other components in its runtime context is going to be hard to move to a different runtime
context. Reuse in this scenario reduces down to duplicating the runtime context on another platform in order
to reuse the component elsewhere. That’s simple portability, not full reusability (see section 4.3). Good
modular design provides the definition and minimal dependency that reuse needs.

2.1.6 Composability

2.1.6.1 Definition
Composability is a system design principle that deals with the inter-relationships of components. A highly
composable system provides recombinant components that can be selected and assembled in various
combinations to satisfy specific user requirements. (Wikipedia)

2.1.6.2 Dependencies on other OA NFRs
Composability isEnabledBy Reusability: Composability is an extreme version of reuse that does not require
any modification or adaptation of the reusable component. Therefore, reusability in component and
implementation is central to being able to achieving composability.

Composability isEnabledBy Interoperability (transitively through Reusability): Composable elements must be
able to immediately collaborate with appropriate components in a new runtime context. This means that they
must be interoperable and be placed in a runtime context that has a high degree of interoperability.

Composability isEnabledBy Extensibility (transitively through Reusability): Composability of system
components requires, on the system level, that the insertion and modification of messages/operations is
possible with minimal change to existing system components or system configuration. Further, logical
changes to component interaction protocols should be possible without putting a component instance into an
inconsistent state.

Composability isEnabledBy Modularity (transitively through Reusability and Extensibility): Systems with
composable elements need to have very well-defined functional components whose capabilities are clear and
well bounded. Further, the elements need to have a minimum number of dependencies so that they can be
placed in different runtime contexts without failing. Good modular design is essential to providing those two
properties.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 16� of 44

 Open Architecture Principles and Guidelines

2.1.7 Maintainability

2.1.7.1 Definition
Maintainability is “The ease with which maintenance of a functional unit can be performed in accordance with
prescribed requirements.” (Wikipedia)

In OA the scope of maintainability is the portion of a component’s or system’s lifecycle after installation,
including its end of life. Key to this lifecycle is updating the system to introduce new technology, changed
business processes, etc.

2.1.7.2 Dependencies on other OA NFRs
Maintainability isEnabledBy Modularity: Well designed modular components make it possible to make
changes to, replace parts of, and extend an existing system. Without the decoupling provided by modularity
changes are much harder to incorporate, and over time take increasingly longer to create, test and install.

Maintainability isFacilitatedBy Composability: If a system uses recombinant components, it is easier to add,
replace or remove components without system failure. In this sense, it is not essential, but it does help with
the maintainability of a system.

Maintainability isFacilitatedBy Reusability: Reusability of components is primarily focused on the creation of
a system with reusable components, so maintainability is not a direct concern. Nonetheless, the presence of
reusable components, where they show modularity and interoperability are likely to be more easily
maintained.

Maintainability isEnabledBy Interoperability (via Reusability isEnabledBy Interoperability): Components and
systems that are developed with interoperability in mind, make it substantially easier to maintain the system
through changes in technology, functionality and scale.

Maintainability isFacilitatedBy Open Standards (via Interoperability isFacilitatedBy Open Standards): Open
Standards are likely to be supported by multiple implementations that should be interchangeable, and thus
replaceable to perform patches, upgrades and replacements.

2.2 Open Architecture Drivers
The list of business and technical drivers can be found in section 1.3 above. This version of the whitepaper
will only analyze the key driver Total Cost of Ownership. Other drivers will be addressed in later versions of
this document.

2.2.1 Total Cost of Ownership
Total Cost of Ownership (TCO) is the total of all the expenses related to a specific technology. Figure 2-2
below shows the primary kinds of expenses that contribute to the TCO. This driver is generally considered
the most critical to any organization. Many of the others drivers cited above can be seen as directly
contributing to the TCO driver, including Increase Reuse, Leverage Competition and Faster Time to Market.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 17� of 44

 Open Architecture Principles and Guidelines

Figure 2-2: Total Cost of Ownership Expense Elements

Each of these expense elements are part of the total cost of ownership of a system. The section below
briefly describes how each of the TCO elements can be addressed by one or more of the OA technical
principles.

2.2.1.1 Acquisition
Acquisition expenses reflect the initial costs of purchasing the desired components or systems. It includes
the product price and the labor of evaluating alternative products, due diligence in the ability of the vendor to
deliver and support the product throughout the system lifetime.

• Open Standards contribute to decreased acquisition costs to the extent that there are multiple
vendors that provide implementations of the Open Standard. This brings price and quality
competition that will benefit the customer. This effect is greater if there is an Open Source
implementation of the standard; even if a commercial vendor’s product is selected, price and
capability will be influenced by the existence of an Open Source alternative.

2.2.1.2 Vendor Payments
Vendor payments refers to any ongoing payments for the use of and support for a technology, where a 3rd
party product requires ongoing payments (e.g. usage charge schemes) or technical support is contracted for
or provided on an ad hoc, billed, basis.

• Open Standards contribute to decreased licensing and support costs due to the same competitive
forces that reduced acquisition costs. Though this may not achieve the same cost reduction as a
completely open source implementation, the availability of open source will still serve to drive vendor
support costs downward.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 18� of 44

 Open Architecture Principles and Guidelines

2.2.1.3 Training
Training expenses refer to the cost of training relevant team members in the usage and technical details of
the technology. This can include users, architects, developers, testers, maintenance technicians, system
administrators, etc.

• Open Standards reduces training costs because it takes advantage of a population of experienced
developers, well-developed instruction and open information. Additionally, it is easier to find skilled
practitioners to hire, and if Open Standard components are used across an organization, a critical
mass of technical skill can be developed within the organization.

• Modularity can simplify training costs because well-defined functional components can be studied in
relative independence, and component behavior can be understood independent of system behavior.

• Reusability of components and systems means that as they are used in other systems and systems
of systems, training received in one context can transfer to the new context, lowering the learning
curve when moving from one system to the next.

2.2.1.4 Development/Integration
Development and integration expenses include all labor, tooling and secondary dependencies such as,
technical infrastructure, middleware, technical support for developers, etc.

• Open Standards support development and integration in two ways:

o Skilled developers and common knowledge of the technology.

o Vendor implementations are supported by component and integration testing. This is not to
say that it is perfect, but it is likely to be more robust than the internally developed equivalent.

o Open standards implementations are often common enough that they do not have specific
dependencies on tooling or middleware. In principle any dependency of this sort limits the
openness of the component..

• Modularity makes it easier to develop system components in parallel. If the functional
decomposition of the system is intuitively clear and straightforward it reduces the overall complexity
of the system and makes it easier to develop and later integrate.

• Extensibility has two aspects:

o Component extensibility requires additional effort (cost) in both design and implementation
to create an extensible component. The value will come at a later point when it is easier to
add modify the component without having to change components that are dependent on the
changed component.

o System extensibility is possible if subsystem and component modularity provides very
loosely coupled capabilities, then additional components can be be added with a minimum of
follow-on changes to include the new capabilities.

• Interoperability facilitates the integration of new components into an existing system.

• Reusability, like extensibility, requires additional design costs, care in implementation and additional
testing. It returns its investment, by some estimates, after the 2nd reuse (other estimates say after the
3rd or 4th reuse).

• Composability, like reusability, requires up front design work, but returns the investment in
subsequent development.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 19� of 44

 Open Architecture Principles and Guidelines

2.2.1.5 Testing
Testing expenses include specialized testing tools, test preparation and management, unit, functional,
integration, regression and user acceptance testing.

• Open Standards can reduce the extent of testing at a component unit level, if open source or vendor
implementations are used. Integration testing may be reduced if other components of the system,
especially 3rd party components, have been previously been designed and tested to be compatible
with the relevant Open Standards. Over time, the use of OSR-conformant components can also
reduce the cost of regression testing.

• Modularity best supports unit testing when well-defined interfaces encompass the full functionality of
the component and testing can be designed before development is completed. Low dependency
metrics in a system reduce the number of integration tests that are needed, because there are fewer
points of variability at the system level.

• Extensibility can directly support testing by making it easy to instrument component and the system
with no impact on the system functionality. Functional extensions to a component are also well-
defined so extending unit and systems tests should be relatively straightforward and regression
testing is unlikely to require extensive modification.

• Interoperability requires additional testing when components are created. However, OA returns the
investment by facilitating integration in subsequent use of components thus leveraging prior testing
efforts associated with component design and development.

2.2.1.6 Maintenance
Maintenance expenses encompass all costs associated with a technology after its initial integration and
installation.

• Maintainability is, in large part, an emergent property of meeting many of the other OA NFRs. But it
is still possible to create a system where maintainability is explicitly factored into support tooling,
where maintenance use cases were specifically included in design and requirements analysis and
documentation can be provided that directly addresses maintenance.

• Open Standards components can, if appropriately implemented, be replaced by other
implementations of the same standard, thus simplifying component replacement. Version upgrades
can be similarly straightforward.

• Modularity reduces cost in maintenance by making components easier to remove, replace and
update because changes have limited impact, especially if there are no changes to the interfaces
offered by the components.

• Extensibility

o Component extensibility is an advantage when specific components need to be extended
to provide additional capabilities. It does not directly facilitate bug level maintenance, but,
where maintenance doesn’t result in interface changes, there should be little impact.

o System extensibility provides the greatest advantage in maintenance by making it easier to
add new, or fix existing, capabilities to the system with minimal impact.

• Interoperability facilitates maintenance because components and subsystems created to work well
in multiple runtime environments are likely to be readily modified and enhanced.

2.2.1.7 End of Life
• Maintainability decreases end of life costs by its attention to the ease with which modules and

systems can be changed. Removal of a component, or system, in the context of a larger system or

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 20� of 44

 Open Architecture Principles and Guidelines

system of systems is simply another type of change that should be accounted for. Maintainability is
dependent on a number of other OA NFRs, which, transitively, should also be considered as affecting
the cost of end of life expenses.

• Modularity decreases the difficulty of managing component end of life costs to the degree that there
are a minimum number of remaining dependent components that need to be changed due to the
removal.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 21� of 44

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 22� of 44

3. OA Technical Principles
The core purpose of Open Architecture is to answer the following question affirmatively:

Is a qualified 3rd party able to replace a component of a system, based only on
openly published and available technical and functional specifications of the
component of that system?3

To answer this affirmatively, it is necessary that neither the technical architecture of a system, nor the
organization’s business practices, should impede the ability of a 3rd party to develop, sell, integrate and
maintain a component.

The technical Architecture Principles of an Open Architecture are:

• Use Open Standards

• Use Modular Design

• Design for Interoperability

• Design for Extensibility

• Exploit Reusability

• Design for Composability

• Design for Maintainability

These principles are discussed in detail in the sections below.

3.1 Use Open Standards
An Open Standard is a comprehensive collection of APIs and functional specifications that are publicly
available, specify the syntax, behavior, development and runtime dependencies, and identify the qualities of
service required and provided.

Open Source implementations of an Open Standard should also adhere to the Open Source Definition [3],
from the Open Source Institute. That may not be of direct concern here, though it is worth noting that an open
source implementation of an Open Standard is a proof point for the viability of the standard and its
conformance to the OSR.

Note: Open Standards are created by standards organizations and the result can suffer from the “Design by
Committee” antipattern [5]. Implementation through Open Source mitigates that risk precisely because it is
subject to the critical eye of a large community of skilled developers who attempt to implement the standard.

3.1.1 Use Open Standards Principle Statement
In an Open Architecture system, applicable Open Standards are mandatory specifications for all systems and
components. This applies to middleware and 3rd party components as well as the system under
development.

3 Claude Barron, personal communication.

 Open Architecture Principles and Guidelines

Where no applicable Open Standard exists, components and systems (whether Commercial Off-the-Shelf
(COTS) or Custom) should be documented and available, within the organization, in a manner consistent with
Open Standards and the OSR.

3.1.2 Motivation for Open Standards Use
Proprietary or unpublished APIs lock system owners into a particular vendor’s products and upgrade
schedule. Because there is no ability for other vendors to provide competitive technology that would provide
precisely the same service, system owners pay higher prices. In addition, because there is no competition
and a captive market, the product capabilities do not benefit from competitive innovation. The vendor, in fact,
has little incentive to invest in improvements to the product.

The objective of this principle is to create systems that have a maximum number of standard replaceable
components during their lifetimes. In this way, cost reductions and quality improvements can be easily
incorporated in relatively uncomplicated upgrades.

Use of Open Standards reduces the risks associated with integration and interoperability with new systems
and components. Since industry generally sees Open Standards compliance as something customers want,
new systems are often built to conform to the appropriate standards.

Additional value to an Open Standards APIs is the existence of a Community of Interest that deeply
understands the APIs and has a number of designers and developers who are familiar with the standard.
Rarely can the same be said of proprietary or undocumented APIs.

3.1.3 Implications of Using Open Standards
• In many cases the scope of an Open Standard API will not provide all the capabilities required to

implement a system, especially if the overall system is central to the business. Avoid customizing or
extending any components that conform to an Open Standard. Instead, implement the additional
functionality in an extension component that explicitly depends upon the standardized component.

• Use of, and compliance with, Open Standards will have an initial learning curve in many organizations,
especially in those IT organizations that have long built their own systems, or perceive their problem
domain as being too constrained or unique.

• Conversely, the use of Open Standards will also make it likely that there are more skilled practitioners in
the marketplace, and a larger community of interest will exist than can be found with many proprietary
systems.

• The compliance with Open Standards will have to be assessed by an architecture review board that has
enterprise-wide responsibility. If this practice is not carried out across an organization, then there will be
less long term value to its use; this is because the organization will not develop a critical base of
knowledge around using the standard, and the benefits of easier integration and interoperability will not
be as available when cross-line-of-business integration is required.

3.2 Use Modular Design
Modular Design is “[a] design approach that adheres to four fundamental tenets of cohesiveness,
encapsulation, self-containment, and high binding to design a system component as an independently
operable unit subject to change.”[8]

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 23� of 44

 Open Architecture Principles and Guidelines

Modularity is the degree to which a conceptually separate, well-defined unit of functionality

1. Is implemented as a component or set of cohesive components that provides a standard interface for
the invocation of functionality and access to its state;

2. Has a minimum number of structural and runtime dependencies on other system components.

A conceptually separate, well-defined unit of functionality is best understood in the context of the common
knowledge of a community of interest (COI). For example, a FundsTransfer web service would be a well-
defined function within a financial COI, and an AuditLog component would be well-defined to a software
architecture COI.

Open modular design rigorously specifies the public interfaces, data model, usage protocols, constraints,
dependencies and qualities of service that are offered and required. This information is necessary for
effective development using the system or component. Further, it should document, in comprehensive detail,
all essential functional behavior.

Modular design should also take into consideration the lifecycle management of the system or component.
The design should provide for easy reconfiguration, removal and replacement.

3.2.1 Use Modular Design Principle Statement
Modular design is required in all layers of the system, both for software and hardware.

3.2.2 Motivation for the use of Modular Design
Modular design makes it much easier to maintain, extend and upgrade systems, thereby reducing the total
cost of ownership of a system. In conjunction with the Open Standards compliance it makes it much easier to
take advantage of vendor competition in price and performance of standardized systems and components.

3.2.3 Implications of using Modular Design
• If modular design is not a common practice in an organization, then good design of a modular system will

take significantly more time for design and development. Additional time will be required in developing:

o Clear documentation of the modular components and system design. This is critical to the ability
to reuse components and to maintain the system over time.

o Data models and well-specified qualities of service to provide the most interoperability between
components.

• If a module in a modular system is not provided by a third party, then the enterprise must establish
standard ownership and lifecycle maintenance procedures. Modular components should not be modified
ad hoc. There are two common approaches to this: owned management and organizational open source.

o In owned management, one organization owns the component, its lifecycle management and
deployment in the organization. This practice is probably best for an organization that does not
treat its IT infrastructure as a strategic asset. All change requests (bug reports and additional
features) go to the owning organization and are deployed in the normal change management
processes, such as ITIL.

o In organizational open source, OS collaboration practices are followed and all interested parties
can contribute new features and fix bugs. The organization should study OS best practices
before it commits itself to such an approach. In particular, it is necessary to have some aspects

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 24� of 44

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 25� of 44

of the OS process under Enterprise Architecture review to make sure that EA requirements are
met. This will require a relatively active Enterprise Architecture team, which is sometimes a
challenge if IT is not considered a strategic asset.

3.3 Design for Interoperability
Interoperability is a term, like reuse, that has several meanings when understanding a system.
Interoperability is essentially the capability of a component or system to collaborate with other components or
systems. The collaboration may involve message exchange, data exchange or method invocations. In an
open architecture, interoperability is also based on commonly used open standards APIs and protocols.

For software systems there are several levels of interoperability that are used4. It is critical to understand, in
any context, which meanings are intended. They are, in rough order of complexity:

• Non-interference: A minimal level of interoperability is where two or more applications can execute on
the same physical platform, in different OS processes without interfering with each other’s
operations. They can share resources through the OS without limiting access or corrupting data.

• Communications: For any non-trivial degree of interoperability, the separate systems must
communicate in some manner. To the extent that this interoperability is within the same physical
computer, between computers with the same OS and Middleware, or between systems on different
hardware, OS and Middleware provides a scale for how open it may truly be. The scope/range of the
communications may also be a metric for how exposed the interoperation is.

• Data Interoperation: Increasing the degree of interoperability, one or more communicating
applications can exchange data either through a shared data repository or by data requests through
interprocess or remote communications channels and protocols. The semantics of the data need not
be the same between the various systems. Each is only interested in the specific data for its own
operation.

• Semantic Interoperation: At this level, the shared data have the same meaning for the interoperable
systems. In principle any one of the systems could provide another with the same information and it
would “mean” the same thing in all contexts.

• Functional Interoperation: At this level, shared semantics are essential to interoperating systems
being able to bring their capabilities to bear on a common objective. A particular capability may only
be available through one system, but separate systems know how to request that capability, with
appropriate information, and understand the results of the execution of the capability.

• Dynamic Interoperation: At this level, a required capability can be found, when needed, from the
available capabilities on the network. A trusted meta-data repository, based on a shared ontology,
must exist to provide the information on the type of capabilities available, how to obtain them, how to
interact with them, the data requirements and results and the available runtime qualities of service
provided.

To some extent, reusability and interoperability are often mistakenly thought to overlap where interoperability
enables capabilities to be shared. Interoperability can enhance reuse by making it easier to reuse parts to
create a higher level solution, but so does modularity.

4 There are analogs and differences in dealing with hardware, affecting connections, common current, etc. I am
not, however, currently that familiar with how interoperability issues could be analogously classified. That question will
be addressed in a future version of the paper. Suggestions are welcome.

 Open Architecture Principles and Guidelines

3.3.1 Design for Interoperability Principle Statement
Open Architecture systems and components must provide and enable the interoperability of systems,
processes and data. OA interoperability is concerned with how the elements of a system can cleanly
interoperate and how a system can interoperate with other systems.

3.3.2 Motivation for designing for Interoperability
Interoperability of application systems applies to the appropriate sharing of system resources and to the
ability to provide and utilize capabilities and data between those systems. Full utilization of system
capabilities in an enterprise leads to horizontal integration across the platforms, for which interoperability is a
prerequisite.

Resource Sharing: Within a processing node and across a network, the increasing complexity of systems
and the growing use of Service Oriented Architecture require that capabilities and data across the system are
readily available to all applications across the system.

3.3.3 Implications of designing for Interoperability
• Common data models (a.k.a. standardized ontologies) will need to be established at an enterprise level, if

not at a cross-organizational Community of Interest. Common data models, which include not only data
structures, but also the semantics of the relations among data structures, are critical to effective
interoperability. If a data point in a shared data structure does not have the same meaning in all
applications that use it, there will be differences in how it is used, and ultimately how it may be updated.
When considered in isolation this issue might seem to be one that is infrequently encountered, in fact, it is
a major cause of the failure of system interoperability.

• Qualities of service may also need to be addressed as aspects of interoperability. If a client system
requires a specific QoS for it to operate correctly, then the required QoS will be essential to the
determination of interoperability.

• Information assurance (IA) is a critical assumption underlying correct interoperability. Without confidence
in the data (and metadata) affecting executing behavior, the correctness of interoperation is in doubt.
The need for IA does not apply only to data shared during runtime, but also to the provenance of the
data, its security while at rest, its currency, and the security and reliability of its handling while in flight.

3.4 Design for Extensibility
Extensibility is the capability of a system to accept additional components with additional capabilities without
extensive change to other parts of the system.

Although a modular, open standards compliant system may provide a plug and play capability; extensibility
does not necessarily follow. Some components, though standards-based, may not be designed or
implemented in a way that permits extension without extensive modification. This is especially true if
substantial effort was made to optimize the performance of the component.

Extensibility is also a concern at the system level; is it possible for a system to readily accept and work with
additional components with new capabilities without extensive change to other components or the system
infrastructure.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 26� of 44

 Open Architecture Principles and Guidelines

Extensibility deeply depends upon the degree to which the collaboration of components in a system is
decoupled from the implementation of the components. Where there is high cohesion between components
in a system, new capabilities will be hard to add.

3.4.1 Design for Extensibility Principle Statement
Open Architecture components will be designed so that current capabilities can be improved and new
capabilities added without substantial rework of the component or any components that depend on it. Open
Architecture systems will be designed so that additional component capabilities and new components can be
added to the system with little or no impact on existing components, capabilities and procedures. The system
design should also minimize the impact of change on system management, maintenance and training.

3.4.2 Motivation for designing for Extensibility
Change is inevitable in an IT system. Simply by building a system, the users’ perception of the problem
domain is changed. They will see new aspects of the problem, or ways to improve it. In addition, external
forces, and technology change, are always pushing change into the business practices and the system.

Systems that are not easily extended have been shown to take increasingly more time to modify as they are
changed in response to new requirements, until the point is reached where new change requests arrive faster
than old ones can be implemented.

3.4.3 Implications of designing for Extensibility
• It may be necessary to get stakeholders to express their vision of where they see the business going and

how the system being built or enhanced will support that direction. Any system design represents a point
in time; it addresses a current, and possibly near-future, set of concerns, but it is not necessarily
expressed to the architects in terms of its role in the future. The stakeholders may not have considered it
that way. If so, then the architects should encourage that conversation so that the scope of extensibility
can be better understood. This will serve as a starting point for enabling, and justifying points of
extensibility.

• Like all the design aspects of OA, expect additional time to be devoted to initial requirements and design
phases of a project. Tightly integrated, non-extensible systems are straightforward to build, because they
do not look beyond the requirements of the current problem. Designing in extensibility will take additional
time.

3.5 Exploit Reusability
Reuse is an overloaded term that can cover everything from simple application portability, or cut and paste
coding to J2EE components that can be deployed across J2EE application servers, to design element reuse.
Essentially, any artifact related to the lifecycle of an engineered component may have some value to other, or
subsequent, development or system management efforts. In most cases, though, the term is used with
reference to the creation of components whose capabilities can be used in multiple systems that have
different purposes.

In a strictly logical sense, this form of reuse is not a necessary feature of an Open Architecture system. A
component could be based on modular, Open Standards designs with several vendors competing to provide
it to customers without that component being usable in any other problem domain. Its capabilities may, for

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 27� of 44

 Open Architecture Principles and Guidelines

example, be described in such a way that only specialists in a specific problem domain can understand them,
or the nature of the problem is so unique it has no analog elsewhere.

Reusable components require a degree of abstraction from the specific problem domains in which they are
used. They must capture the core behaviors and information common across most potential uses of the
component (commonalities), as well as identify where the component is likely to have to be changed in
order to work within a different problem context (variability).

Reuse, in a sense, is close to being an emergent property of the use of Open Standards, modular design and
extensibility. Open Standards are usually based upon the agreement of a community of interest about the
structure and behavior of a commonly used capability, or related set of capabilities; modular design drives the
creation of a well-defined component with clear capabilities that has a minimum number of dependencies on
other components, thereby freeing it to be used in different contexts; identifying and implementing points of
variability in a reusable component is a basic aspect of extensibility. Components that meet these
requirements are likely to be, in principle, reusable.

The question that remains is whether the functionality of a particular component is likely to be useful in other
problem contexts. If not, then the additional design and documentation to package the asset into a reusable
form is not needed.

The other artifacts of the system lifecycle should still be considered to be candidates for reuse.
Requirements specifications, system architectures, application architectures, UML or SysML models, testing
plans and scripts, documentation, maintenance manuals, project plans, etc. could all be used in other
projects to decrease the amount of original work needed to create and manage a system.

3.5.1 Exploit Reusability Principle Statement
In each phase of the lifecycle of a system, maximum use of existing enterprise assets is required. Reuse is
to be considered before extension, which in turn is to be considered before new design and development.
The design and development of new components will take reusability into account and will submit reuse
candidates to a review board.

3.5.2 Motivation for exploiting Reusability
Reuse of lifecycle assets can save substantial time, effort and increase quality if it is implemented in such a
way that reusable assets can be understood as applying to a particular problem, within specific activities of
the system lifecycle. It is crucial that assets be re-used at the right level of granularity; too much, or too little
detail in an asset, relative to the activity involved can create more work by the need to transform the
information into the right level to assist with design, implementation, or whatever activity is underway.

3.5.3 Implications of exploiting Reusability
• Design and implementation of reusable components requires several times more effort to develop, test

and deploy. In addition to correctly abstracting the reusable data model and functionality (what is
common to all uses of the component), it is necessary to identify what parts of the component will have to
be customized in each new use (points of variability).

• If reuse is to be of substantial value to an enterprise, it will require management. The enterprise will have
to establish some method by which reusable components are proposed, validated and made available; it
will also need to establish methods to assure that new projects make the most use of existing reusable
assets. This can present an organization with challenges in how to share the costs, ownership and

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 28� of 44

 Open Architecture Principles and Guidelines

cross-organizational responsibilities. See the Open Source implications sections for two approaches to
managing reusable assets.

• Reusable components will require extremely rigorous testing. In normal development, the use cases that
specify system behavior are used to generate test cases. Testing outside the scope of usage in this
context is not needed. However, a reusable component is “intended” to work in use cases not yet
anticipated, meaning that some of the collaborations message sequences between the reusable
component and other components will not have been anticipated. Exhaustive testing for the
permutations on the use of the API calls may not be practical, but testing must more extensively exercise
the behavior of the components. In particular, the testing needs to make sure that the test suite does
succeed in executing all of the component code, even if it doesn’t invoke all possible call sequences.
This should be considered a minimum acceptable standard for a reusable component testing.

• Use of the Reusable Asset Specification, an OMG standard, should be taken as a corporate standard for
the packaging and deployment of reusable assets. This is because tooling for both creating reusable
assets and storing them in searchable repositories are being developed and improved.

• Where component reuse is a corporate strategy, it is not always clear to the team that owns an asset the
types of reuse it may be subject to. Often, in practice, it is necessary for potential component adopters to
work with the owning team to specify the needs that they have for the component and then work with the
owning team to assure correct development.

• Risk: without active management and processes that encourage reuse, asset repositories will simply
become dumping grounds for large numbers of files.

3.6 Design for Composability
Composability, in general, is about how well the parts of the system go together. Composable components
permit the creation of new composite services by orchestrating the functions exposed by the components.
Such composability requires a high degree of modularity and well-defined syntactic and semantic
interoperability of the components.

If you take away the requirement that it is possible to orchestrate a collection of components to implement a
new process without changing the implementation, then you effectively have the requirement of
interoperability.

So, like reusability, composability is an emergent property of the realization of other OA nonfunctional
requirements. Good modular design is useful in providing a well-defined and well-understood capability that
can be easily understood in many different use cases; depending on its deployment it may also be important
that it has few dependencies on other components. Interoperability is critical to composability because
composable components must work from a common data model if they are to be orchestrated to work
together without change. This interoperability is most powerful if it is based on Open Standards because they
tend to have been well-tested and understood by a large COI.

3.6.1 Design for Composability Principle Statement
System components that implement business level capabilities must be designed in such a way that it is
possible to orchestrate their atomic behaviors into different sequences of action to implement multiple
processes without having to change their implementation.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 29� of 44

 Open Architecture Principles and Guidelines

3.6.2 Motivation for designing for Composability
Business processes often change more frequently than many of the actual business capabilities that are
implemented in IT systems. It is desirable to be able to take the implemented capabilities and re-
order/reorganize them so that they provide new capabilities.

In principle, this is no different from what a programmer does in reordering the instructions of a programming
language to perform different types of functions; this approach simply conceptualizes business capabilities as
the “instructions” of the business’ action language.

3.6.3 Implications of designing for Composability
• Composability requires a business operation level specification of the capabilities of the IT infrastructure.

Actions and information must be presented in terms that are very well-mapped to the vocabulary of the
business. Being able to reorganize the way the capabilities work together requires they correspond very
closely to how the business process experts understand the business to operate. Consequently,
business and IT must communicate very clearly, and this communication will have had to be established
over an extensive period of working closely together.

• If these capabilities are well-enough defined to map naturally to the operational concept of the business,
then it is very likely they are also at a level of granularity that readily enables the use of SOA architectural
approach.

3.7 Design for Maintainability
Maintainability is the degree to which a system’s

• capabilities can be sustained

• configurations can be changed,

• repairs can be applied and

• replacements can be installed.

In part, maintainability depends upon good modularity of components: when there are well-defined interfaces
and few dependencies to a component needing replacement, it minimizes concomitant changes to the rest of
the system.

Maintainability is also very much a feature of an entire system, or any set of integrated components that may
make up a modular subsystem. It is possible to build a system with high quality modular components and still
make it nearly impossible to physically access many of the components without taking the entire system
apart. Thus, maintainability should also be a requirement on the overall architecture as it combines the
components into an integrated system.

Maintainability also depends on well-documented procedures for reconfiguring, repairing and replacing a
component in each subsystem and system

Although it may not seem relevant, a system with components that have well-defined, discrete functions is
also easier to maintain because the purpose of each function is readily understood. This makes the
assessment of how well it is operating a much more transparent effort. Technicians and users new to a
system do not face as high a learning curve to understanding the system and its components. A system
whose purpose and functions are clear will always be easier to manage and maintain.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 30� of 44

 Open Architecture Principles and Guidelines

3.7.1 Design for Maintainability Principle Statement
Open Architecture systems, subsystems and components must be designed and implemented in such a way
as to minimize the effort needed to repair and manage them throughout their lifecycle.

3.7.2 Motivation for designing for Maintainability
Only about 20% of the lifecycle cost is in the development or acquisition. Of the rest, infrastructure and
licenses are relatively fixed. Maintenance is the portion of the lifecycle cost that can be most reduced by
upfront design

If there are logical, physical, legal or financial barriers to being able to maintain the parts of the system, then it
isn't open -- even if the system is made up of modular components with Open Standards APIs.

These barriers will increase the Total Cost of Ownership of the system, they will require more time in
deployment, maintenance and replacement of the system. This is of particular concern where the systems
are mission- or safety-critical, such as automated manufacturing or aircraft controls.

3.7.3 Implications of designing for Maintainability

• Maintainable design requires additional time. Design of maintainable systems, like good modular design,
will take additional thought.

• Determination of maintainability requires a clear understanding of the conditions of use of the
component(s) and the system(s). Maintainability in a controlled environment like a server installation will
be considerably different from maintainability in a hostile environment, such as the battlefield, or in
extreme climates.

• Maintainability will need to be measured. Because maintainability, in many cases, must account for
human activity in the maintenance process, measurement and analysis should include the time, effort and
feasibility of maintenance by trained (and possibly untrained) technical workers. Metrics may include;

o Tests of removing and replacing components.
 How much time is required?
 How long does it take an appropriate technician unfamiliar with the component to learn to

replace the component with the provided documentation?
 How long will it take an untrained person to replace the component If the environment

requires it (e.g. in military systems, where there is a real risk of losing skilled personnel)
and the component(s) are mission- or safety-critical).

o For hardware components, physical accessibility.

• For some components, if there are reliable MTBF (mean time between failures) numbers, those can be
factored into the overall design. For example, for low, or unknown, MTBF components effort must be
made to make those components highly accessible and replaceable. For very high MTBF measures, the
component(s) could be less easily replaced, if other design constraints make it advisable.

o Where MTBF metrics are not known, they should be collected.
• Where possible, ongoing component health metrics should be collected, so that component replacement

requirements can be projected.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 31� of 44

 Open Architecture Principles and Guidelines

4. Related Nonfunctional Requirements
Open Architecture NFRs facilitate the satisfaction of other NFRs, or are roughly synonymous with them. This
section describes some of those implications.

4.1 Scalability
A scalable system is capable of increasing its capacity. Capacity can be defined as number of concurrent
users, increasing throughput via faster processing, more processors, more threads per server/partition, or
across more servers without serious degradation in overall performance for any individual transaction or
execution thread. There are often referred to as Scale-Up or Scale-Out.

The modular design and interoperability principles are essential to the potential scalability of a system. The
enablers and inhibitors associated with them also affect whether a system can readily scale vertically or
horizontally.

4.2 Replaceability
Replaceability is a synonym for “plug and play” and modularity, interoperability and reusability requirements
all apply to this NFR.

4.3 Portability
Portability is a special case of reusability, usually applied to being able to move an application from one
hardware/OS platform to another. In some cases it can result in the application dependencies driving the
decisions on what hardware and middleware are needed. Reuse generally aims to be much more platform
independent. If it is locked to a platform, it is not open, and is more at risk of becoming obsolete when that
platform is no longer available.

4.4 Supportability
Supportability in this context can be considered an aspect of the maintainability principle. The ease with
which a system is understood by IT support and maintenance team, and the easier it is to repair, replace or
upgrade, are the essential concerns of both supportability and maintainability.

4.5 Affordability
Affordability is the consideration of TCO within an enterprise’s budget planning. “Does the TCO of the
system fit within that part of the IT budget? One of the key purposes of OA is to reduce TCO, so in that
sense it can be said to intend to increase affordability.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 32� of 44

 Open Architecture Principles and Guidelines

4.6 Information Assurance (IA)
Information Assurance is not directly related to OA. But it is an essential enabler of interoperability. If the
data and data semantics shared between processes are not trustable, then interoperability may work on a
syntactic level, but on the results of collaboration are no longer reliable.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 33� of 44

 Open Architecture Principles and Guidelines

5. Open Architecture Guidelines
Open Architecture Guidelines identify practices that should be followed so that the OA business objectives
can be realized. This section can be considered an initial listing of Best and Worst Practices for
implementing technical OA.

5.1 Open Architecture Criteria
Each architect of a system should ask whether the OA nonfunctional requirements are relevant to a particular
system being built, or to particular subsystems or components of the system. The following criteria, though
not exhaustive, can be used to identify most cases.

5.1.1 OA is needed if
• The system or component is part of a mission-critical system that has a managed lifecycle. It is critical to

the TCO of such a system that it be easily, funded, sponsored, maintained and extended by several
generations of LOB executives and technicians.

• The system or component collaborates with other systems in a distributed computing environment. This
includes client/server systems, Web-enabled applications, Service Oriented Architectures, federated
middleware environments, etc.

• The system or component will be used in multiple runtime contexts. Reusable assets fall into this
category

5.1.2 OA is not needed if
• The system or component is a prototype with a very specific scope and a very short lifecycle (effectively,

it is a “one-off”). For example, developing a new algorithm for DNA analysis using new types of
hardware.

o RISK: Organizations frequently approve “prototypes,” claiming they realize it is not being built for
production, and then later, using market timing as an excuse, drive them to market before
redesign.

• The system does not interact with anything else.

o This begs the question “Why are we doing this?” when today’s default IT ecosystem uses
distributed computing, remote access, and the World Wide Web.

• The component is an informal script (e.g. UNIX shell, makefile, Perl, Ant) that is procedurally oriented and
is used ad hoc by specialists who maintain it directly.

o Note: This does not remove the responsibility to make the script maintainable and reusable,
since there may be many developers using it, and it may be a required part of a reusable asset.

• The system or component will only be used by a small number of people, in the same organization and
the designers and implementers will always be available for maintaining it. Further, the organization has
no intention of ever using the system for any other purpose.

o RISK: All of these are dubious assumptions.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 34� of 44

 Open Architecture Principles and Guidelines

• If it is easier to re-implement the system than to update it and the system does not interoperate with
anything else. For example, some very simple Visual Basic applications can be handled this way,
because they are effectively just another form of informal scripts.

5.1.3 “Degrees of Openness”
Since most systems are a combination of existing and new components and systems, it is not feasible to
instantly become OA conformant. It may be necessary to identify, for business purposes, which OA
requirements will be both critical and cost-effective to implement in the next iteration of the system. Those
components and systems will then be considered candidate for redesign along more OA lines.

For example, an organization may have no interest in fielding a system of composable capabilities, in which
case it won’t be necessary to worry about composability. But if you are creating an open distributed
processing system, then composability requirements could be of concern. In either case, modularity,
reusability and interoperability can still affect the speed with which the system can be built and the ease with
which it can be maintained.

If there is an existing standalone application that needs to become “SOA-enabled,” it is at least necessary to
create an interface level that provides a degree of interoperability. This may make the application somewhat
open, but it won’t have all the advantages of OA.

• RISK: Such “silo” applications are rarely built with reuse and modularity in mind. More critically, their
data models are likely to be application-specific, and therefore not consistent with an enterprise data
model. This will be a serious limiting factor. Further, exposing their services to network-based
clients may stress the scalability of the application, which may have been the “private” tool of a small
number of workers.

It is also possible to view openness by the “scope” or “range” of an open architecture. An architecture may
be open at a LOB level, where the data models and processes are standardized on a LOB data model and
interoperability standards, but it may not be able to interoperate on an enterprise level. At the next level, it
may be open across the enterprise, but not outside it. Further up, it could be interoperable across a
Community of Interest, adhering, for example to industry-defined common data models.

5.2 About OA Enablers and Inhibitors
For each of the architectural principles, there are technical and business techniques and practices that can
either help or hinder the development of a system that is consistent with the principle. This section takes
each of the technical principles and presents a representative set of enablers and inhibitors.

This section does not claim to be a complete collection of the practices that enable or inhibit Open
Architecture, but they do represent a number of the key ones.

Note that, obviously, an absence of an enabler, or a condition that is the opposite of an enabler should also
be considered an inhibitor.

5.3 Organizational Practices
Although these technical architectural principles can be applied just to the design and implementation of a
single system, Open Architecture practices have the greatest impact when applied to all system and software
engineering within an enterprise. This means that there are business practices that support or inhibit the

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 35� of 44

 Open Architecture Principles and Guidelines

effectiveness of use of technical OA principles in the organization. Managing the application of the OA
principles then becomes an issue of IT governance, and should be part of the Enterprise Architecture
portfolio.

5.3.1 Enablers
• Managed Enterprise Architecture: A number of the principles provide more business value if they

operate within a context where there is an enterprise approach to the IT Architecture, Enterprise
Architecture management and cross-organizational agreements regarding data, interoperation, reusable
assets, etc.

• Enterprise Architecture: An enterprise view of organizational capabilities and how they are organized
and deployed provides a sound basis for identifying redundant functionality, over- and under-investment
of effort relative to value to the business and other structural and process problems that will make an
organization less flexible and less focused. Since one of the OA business drivers is to increase flexibility
(See 1.3 above) a clear picture of what the organization does is essential, otherwise the effects of any
changes will be unpredictable and flexibility will be very hard to achieve. The functional architecture
should provide at least the following:

o A single instance of each Business Capability. It can be owned by a line of business, but it must
be available to all business processes.

o Precise and complete identification of each Capability’s services provided and services required.

o Identifies all Processes and the Capabilities used. Special attention should be paid to those
capabilities used in multiple processes.

o Identifies the Services specifically required by the processes, differentiating between those that
require IT support or full implementation and those that don’t.

• Enterprise Standard Ontology: Lines of business, the enterprise and IT tend to internally communicate
with specialized vocabularies. Even within IT, it is not uncommon for different practitioners to have
different concepts around the same technical term. For IT services to work across an organization, the
full semantics of essential business information must be standardized. If different LOBs define
“Customer” with different properties and different relationships to other business data, e.g. “Account”,
their applications will treat Customer differently and make changes that are likely to be mutually
incompatible. Both the properties of “Customer” and the meaning and names of all its relationships in the
business must be agreed to across the organization. One approach is to create a single organizational
data and metadata repository for use by all systems. To achieve this on an enterprise level,
organizations often create

o Communities of Interest that standardize their internal ontologies and collaborate with other
Communities to harmonize them across the boundaries. They may also choose to use, or
customize, industry standards as the basis of their internal standard.

o Establish ontology registries, libraries or metadata repositories that serve as a single point of
publication and reference for these internal standards.

• Layered Architecture Style: Layered application architectures permit a separation of concerns in the
development of components for the system. It also facilitates reuse of components. Components in a
layer operate at a specific level of abstraction that makes it easier to develop and maintain. One example
of a common implementation is:

o Customer Channels, e.g. Web Services, Servlets, Java Message Beans, RPC, etc., which
manage the protocols for requests from clients.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 36� of 44

 Open Architecture Principles and Guidelines

o Process Choreography, which composes the services into well-defined processes.

o Business Services, which are well-defined business services/operations, e.g. Funds
Transfer, that coordinate the actions of Business Objects. In the case of a Funds Transfer it
might coordinate the actions of multiple Account objects, a Customer object and enterprise
services like Account Validation, Authentication and Authorization, etc.

o Business Objects, which are the “things” the business works with, and which provide fine
grained control over state and actions. They also interact with other business objects and
with access services that send and receive messages, access data, drive devices, etc.

o Connection (or Access) Services, which provides a technology independent interface to
access data and services from whatever the current source is. JCA (Java Connection
Architecture) is an example of such a layer.

o Connectors, which are technology specific access connectors that are used by the
Connection Services layer to reach data and service resources, both within the enterprise
and outside it.

One important feature of a layered architecture is the constraint that components in one layer not access
services from a layer above. Violation of that constraint severely limits the reusability, flexibility and clean
modularity of the component and the architecture in general.

• Enterprise Service Bus: The use of a message bus to route, transform and mediate messages between
applications, including capabilities such as publish/subscribe and complex event processing is a very
powerful method for decoupling consumers and producers in a networked environment. Combined with
an Enterprise Standard Ontology, it facilitates the development of flexible, modular and reusable
systems.

• Identify and Manage Key Interfaces: Key Interfaces are those that:

o Are exposed to network-based access, such as web services, or RMI/IIOP, etc;
o Are publicly accessible, within a common runtime.
o Are stable and central to the functional specification of a system or component.
o Have many components and systems that depend upon them.

Key interfaces should be identified early in the design and development phase and managed using
change control throughout their lifecycle. Changes to key interfaces must be carefully assessed, the
extent of the impact reviewed and the transition from the current version carefully managed.

• Capability Specification of Requirements: When requirements are described as capabilities (e.g. what
needs to happen when), the qualitative required behavior is the focus of discussion. This approach to
analysis appropriately separates what is needed from how it will be performed. Capability specification
can state how well the behavior must perform (e.g. a funds transfer request must complete within 3
seconds.) These are the qualities of service (QoS) nonfunctional requirements that apply to the
capability.

• Model-centric Architecture: The use of Model-Driven techniques, whether called Model-Driven
Architecture™, Model-Driven System Development (MDSD), etc. is the foundation of a model-centric
approach to system specification and governance. Model-centric architecture retains a semantically
consistent representation of a system, or system of systems, and provides stakeholder-specific views of
the model that allow the stakeholder assess the architecture from the perspective of their specific
concerns. This approach supports an open architecture because it makes requirements and design
artifacts more directly accessible, understandable and reusable. Models can be shared without loss of
information, and the consistent semantics means that users will understand the models similarly.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 37� of 44

 Open Architecture Principles and Guidelines

5.3.2 Inhibitors
• LOB-centric IT departments: The more autonomous a line of business is, especially with regard to the

ownership and management of its IT assets, the less likely its systems will interoperate well when any
attempt is made to develop an enterprise strategy and management. This is especially true when
attempting to create an enterprise data model: data ownership, including the definition of data is often
difficult for a LOB to cede control over.

• LOB-centric Procurement Practices: Separately negotiated contracts and long-established
relationships between LOB executives and vendors provide strong motivation to maintain autonomy from
any enterprise integration. For example, some cost savings deals may have created penalty clauses if
contracts are prematurely terminated. Integration across the many resulting technologies and
architectures will present massive technical and cost challenges.

• Vendor-Driven Technology Strategy: Vendor product lock-in is inherently contrary to the goals of Open
Architecture.

• Technology-Driven IT: The drivers of Open Architecture are business drivers. IT departments that are
not driven directly by the business’ strategic and tactical needs will not be able to deliver the appropriate
architectures and services. The last thing you want to hear from IT is: “Hey, we built this cool tool for you!
See if you can make some money with it!”

• IT Viewed as a Cost Center: The level of organizational commitment needed to get the most value from
an open architecture requires that IT be well integrated into the strategic planning of the organization. If
IT is seen as the builders of tools to speed up work on individual problems, or the generators of paper
reports, then there will be little to gain from an Open Architecture approach

• Obsessive local optimization: Organizations that have a history of developing high performance,
single-task systems develop common engineering practices that place a very high value on optimizing all
aspects of a system. The problem that arises is that a high performance system builds in a very large
number of design decisions that are tuned to the specified problem only: data models are specific only to
the problem, code is optimized to take advantage of relationships between objects in the problem domain
(where the object may have other relationships and functions in other contexts of the organization).
Interoperability, reusability, standards compliance, and extensibility are generally sacrificed to achieve
optimal local performance. As a result, enterprise level performance will end up being sub-optimal.

o Note: There are still some cases where current COTS technology is not capable of the
necessary performance, but the number of those cases is decreasing almost daily. Careful
thought needs to be given in these cases to make sure that the optimization is local to the
needed capability and that the larger system is still conformant with OA principles.

• Common use of stateful transactions: Stateful transactions are effectively a tight runtime binding
between client and server. The need, on the server side, to maintain state in memory across
transactions constrains the horizontal scalability of the system in two ways:

o The number of concurrent users per server. If state must be maintained in memory between
transactions, then at some point, there is no longer any free memory.

o The system’s ability to load balance. If all of a client’s transactions are bound to a specific
server, then the system cannot as easily balance the workload across servers.

There are technological approaches to this problem, such as saving and restoring session state to and
from common network storage, but the technology and effort costs are sometimes not worth the return,
and there will be some loss of performance which may also be a concern.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 38� of 44

 Open Architecture Principles and Guidelines

5.4 Open Standards

5.4.1 Enablers
• Open Source implementation of an Open Standard: If there exists an Open Source implementation of

an Open Standard, then it is likely that the standard is consistent with the Open Standard Requirement
(OSR) [2], and other implementations, whether Open Source or provided by vendors, are more likely to
be compliant with the OSR because of competitive pressure.

5.4.2 Inhibitors
• Single Vendor Implementation of an Open Standard: If there is only a single implementation of an

open standard, it may be that the “standard” was pushed through the standard setting process by the
single vendor. There is some risk here that the implementation does not conform to the OSR. On the
other hand, the openness of the standard exposes the specification to change from outside of the single
vendor by a COI, and other vendors may eventually come into the market. The risk is less than with a
proprietary system, but not as good as having an existing Open Source implementation.

• Violations of the Open Standard Requirement: The OSR is a concise description of the types of
dependencies that limit the value of using Open Standards implementations. (See 3.1 above.)

• Standardizing on Platforms Instead of Interfaces: Standards should be based on specifications, not
on implementations. For example, it is useful to standardize on J2EE but not on a specific vendor’s
implementation of J2EE, e.g. BEA, because systems will be implemented to the platform and invariably
develop to the non-standard extensions.

• Absence of Open Source Implementation: If there is no viable open source implementation of a
standard after a certain number of years, be cautious of using implementations (a variation of the Single
Vendor problem) because the standard may not be internally coherent. There may be other reasons,
such as a very narrow problem domain, but more careful analysis should be pursued.

5.5 Modular Design

5.5.1 Enablers
• Object Oriented Analysis, Design and Programming: Modular design is more easily expressed

because of the separation between interface and implementation that is essential to OO practices.

• Simple Design: A good OO design should be simple, and is almost demonstrably best if, when it is
shown to a domain expert, the response is: “Well, of course. That’s obvious.” A simple design that
captures the essential abstractions and presents the domain in a clearly understandable set of concepts
and relationships will be much easier to use, maintain and extend.

• Open Standards APIs: Standards provided by international standards organizations, in general, have
been extensively analyzed for comprehensiveness, clarity and completeness. As such, they usually
provide a good modular design for a problem domain or technology infrastructure. Further, products
implementing the standard remove both risk of errors in internal design and substantial reduction in
internal development expense. The cost of purchase and licensing may offset the TCO if the same

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 39� of 44

 Open Architecture Principles and Guidelines

capability is developed internally. As an open standard, costs are likely to drop as competition between
vendors, or an open source implementation is provided.

5.5.2 Inhibitors
• Structured Design Techniques and Languages: These languages support a more function-oriented

approach to development, and the separation of interface from implementation is not an easy thing to
achieve. Any resulting design and implementation that tries to impose an interface/implementation using
a structured language is likely to make the design and code artifacts difficult to understand and maintain.
Additionally, after any original team leaves, the maintenance developers are likely to slowly modify the
code back into a form more common to the particular language being used.

• Complex Design: An OO design that has many different types with a large number of relationships is
often a bad design. It has not captured the abstractions in the problem domain, but is likely to be an OO
model of the existing implementation. A complex design will be very difficult to maintain, will tend to be
brittle, may not perform well and is unlikely to scale.

• Legacy system migrated directly to a distributed system: When an existing system is ported to a
distributed one without substantial redesign it will increase the complexity of the enterprise system, be
very hard to interoperate with and will inhibit the partitioning of the overall system into well-defined
modules. This is because it likely represents a LOB problem-specific perspective, not an enterprise
process perspective. It is likely to make very specific assumptions about location, address space, and
access to local file systems and other local resources [5].

5.6 Maintainability

5.6.1 Enablers
• Modular Design Enablers

• Modular design with well-defined, stable interfaces: If different releases of the same component(s)
have a clear and stable interface over time it will reduce training needed to understand each new release,
and will build a broader common knowledge base across the organization.

• Loose coupling between components: Minimizing the impact of change greatly speeds up the time it
takes to replace, repair or reconfigure a component.

• Clear, comprehensive but concise documentation: Maintenance is usually a task given to new
technicians, meaning that they will be facing a learning curve for each component for which they are
responsible.

• Maintainability Use Cases and Testing: Maintenance use cases should be part of the analysis of the
component and should be used to create testing scripts for the configuration, removal and replacement of
the component.

• Open Standards compliance: Expertise in Open Standards systems exists outside an organization.
This makes it easier to find skilled technical workers to work on a system.

5.6.2 Inhibitors
• Modular Design Inhibitors

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 40� of 44

 Open Architecture Principles and Guidelines

• Frequent changes to component and system interfaces: Frequent changes to key interfaces reflect
an unstable design or a constantly changing set of requirements. The system has either been poorly
designed, or is not ready for production.

• Functional Decomposition: This approach to analysis directs design away from abstractions toward
solutions tightly coupled to the problem domain and heavily optimized, but difficult to change because
there is very high cohesion across the parts of the system.

5.7 Interoperability

5.7.1 Enablers
• Maintainability Enablers

• Detailed Specifications of Internal Design Elements: Where it is necessary to develop key interfaces
internally, they should be designed and documented on a level of quality equivalent to that of Open
Standards. This will help develop a common base of knowledge across an organization.

• Accessible Standardized Enterprise Metadata Repository: Syntactic interoperability between
applications and systems is easy to establish and maintain: systems will not collaborate if the call and
return syntax are not correct. It is much harder to establish an enterprise level common data model and
the metadata that describe it, yet IT system collaboration across traditional application and Line of
Business silos will not succeed until all systems understand the business’ data model (including deep
semantics) in exactly the same way.

• Standardized Data Models, and Metadata established by COI: Enterprise-level data models and
metadata are best when they reflect the expertise of a Community of Interest. They should not be
created by enthusiastic amateurs, however clever. They need to reflect experience as well as domain
knowledge.

• Data are available (posted) when created: Non-trivial interoperable systems often exist to provide a
current view of the state of an organization, or provide valuable situational data to workers. Data and
information need to be available to the organization as soon as they are valid. For example, a securities
trader needs to know the most recent trade(s) of a security as soon as they occur, not after batch process
and the end of the day. Posting data when it’s created opens many more opportunities to use the
information available to the organization in new ways.

• Web Services Discovery and Invocation Capabilities: Web Services is a well-known protocol for
interaction between applications across the network. Exposing services by way of a registry and
repository provides a well-specified interface and programming model that lowers the barrier to
implementing interoperable systems.

• Enterprise-wide Information Assurance (IA) Practices: Reliable operation of interoperable and
interacting systems requires confidence that data, in flight, under transformation and at rest is not subject
to unauthorized change. Note that this is independent of information security. IA applies to both clear
and encrypted information.

• Consumer / Supplier decoupling through message-, or event-based service bus: Runtime
decoupling of consumer and supplier means that client and suppliers only need to share a data model in
order to interoperate, other technical considerations like APIs, runtime platforms, interlanguage
communications, competition for resources (disk, memory, CPU, ports, etc.) are less critical.

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 41� of 44

 Open Architecture Principles and Guidelines

5.7.2 Inhibitors
• Maintainability inhibitors

• Proprietary or unpublished APIs: Non-open APIs present a barrier to entry to interoperability with a
system. They can present legal constraints, or difficulty in finding skilled technicians, and frequently
present a serious challenge to understanding how the implementation really works.

• Point to point connectivity: Systems that require direct point to point connections between interacting
applications or systems do not scale, and require significant time to integrate new capabilities.

• Application data models renamed as Enterprise Data Models: Application data models are designed
with a single problem domain in mind. For most, the best practice was to optimize the data model to
include only the data needed for the application to operate correctly. This local optimization intentionally
avoids addressing enterprise level information needs, and therefore is extremely unlikely to translate well
at the enterprise level.

o Calling the union of application data models an Enterprise data model: Historically,
systems and applications have been built to support difficult problems faced by a specific line of
business. There are relationships between data and the semantics behind data that are different
at the enterprise level. Such system level properties will not exist in the application data models,
and so a union of those models will not be sufficient for enterprise-level needs.

• Fine-grained service calls across the network: Aside from creating excess message overhead,
invoking fine grained methods from networked services suggests that the design is focused on the
technology capabilities and not the business capabilities. When business processes change, it will be
difficult to update the system because so many operations will have to be modified. It is an indicator that
the design used the structured, not OO, approach.

5.8 Extensibility
Extensibility can be a requirement at both the component and system level. On the component level, it is an
enabler of reusability in the sense that an extensible component has design points that allow additional
capability to added to the component without major modifications. On the system level, extensibility may be
affected by component extensibility but its more important aspect is the systems hospitality to the inclusion of
new components to extend the larger set of capabilities of the system.

5.8.1 Enablers
• Interoperability enablers

• Component Level – Clearly Defined Points of Variability: Variability can be implemented with
configuration parameters, or by programming “hooks” that allow it to call variable services, or to which
new function implementations can be attached (such as OO polymorphism).

• Plug-in Architecture: A plug-in framework, that permits the creation of new capabilities that integrate
directly into an existing component based on clearly defined plug-in interfaces and interaction protocols
with the core, is a quintessentially extensible architecture.

• System Level – Layered Architecture: (See 5.3above)

• System Level – Loose Coupling Between Components (See 5.6.1above)

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 42� of 44

 Open Architecture Principles and Guidelines

5.8.2 Inhibitors
• Interoperability Inhibitors

• Undocumented design and architecture assumptions: To extend a capability often involves pushing a
component or system beyond where the original architectural vision. As a result, the assumptions behind
many design decisions may no longer be valid. Not knowing those assumptions can make it difficult to
implement the extensions or to retain correct behavior of the original functionality.

5.9 Reusability

5.9.1 Enablers
• Extensibility enablers

• Use of Reusable Asset Specification (RAS): The RAS specification is an OMG standard that is
implemented in RAS creation and repository tools. Use of the specification helps asset creators
understand what meta-information is needed about an asset to make it more easily reused; a searchable
repository makes it more likely that analysts, architects, software designers, programmers and others can
find assets that are at the right level of detail for their task(s).

• Low code complexity: Complex code, no matter how well modularized or tested, is more likely to have
subtle problems when it is used in a different runtime context.

• Components depend primarily on Open Architecture interfaces: No component can work without
some dependencies, so where those dependencies exist there should be to components with OA
Interfaces. This increases the ease with which a reusable component can be integrated into a new
environment.

5.9.2 Inhibitors
• Extensibility inhibitors

• Serialization/Single-threaded implementation: Reusable, executable assets are likely to be used in
many different runtime contexts, some of which are likely to be multi-threaded. Components that are
single-threaded, or have a built-in serialization are likely to be of less value. Unfortunately, it is rare that
the property of a component or system is documented.

• Violations of the Open Standards Requirement.

• Cut and Paste Programming: Though a very common technique, it creates chaos in change
management, and is generally considered the degenerate form of reuse [5].

5.10 Composability

5.10.1 Enablers
• Reusability enablers

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 43� of 44

 Open Architecture Principles and Guidelines

Document: OA Architectural Principles and Guidelines v.1.5.8.doc Date: 9-30-2008
Version: V1.5.8 © 2007, 2008 International Business Machines Corporation Status: Final
Approved for Public Release - ITAR Exemption 125.4(b)(13) Applicable OSR Case 07-S-2723
Subject: Open Architecture Technical Principles and Guidelines Page 44� of 44

• Enterprise Standard Ontology: (See 5.3 above). A rigorous, semantically consistent organizational
ontology is critical to being able to compose new capabilities from existing services without change to the
implementation of the services.

• Enterprise Service Bus: (See 5.3.1 above). Use of messaging or event driven architecture provides a
profound decoupling of consumer and producer, and in conjunction with an Enterprise Standard Ontology
realized in an enterprise data model, provides a solid foundation to being able to compose new
capabilities from existing services.

• Clear Qualities of Service required and provided: In addition to a consistent model of organizational
information, the qualities of service need to be clearly expressed so that appropriate services can be
utilized. These can include a wide range of runtime requirements (e.g. speed of response, availability,
processor, disk, connectivity, pooling, cache, interrupts, ports) and systems management (e.g.
configuration, deployment, startup, shutdown, updates, problem determination, management tooling).

• Tooling specific to composing services: If it is possible for business users to compose services into
new capabilities, it would be valuable to have tools that hide complexity, are integrated with a change
management system, can track critical usage and dependency information for Enterprise Architecture
management.

5.10.2 Inhibitors
• Reusability inhibitors

• Lack of Enterprise Architecture management of Composable Services: Composable services must
be under a change control process that involves an EA approval process.

• Intra-layer dependencies: In a layered architecture, dependencies between components that exist at
the same layer, e.g. the business component layer, increases the size of a unit of reuse and is directly in
conflict with the need for decoupling. To reuse one component requires bringing along the other (and it’s
lower layer dependencies) even if it is not needed in the new context. In most cases, it indicates a need
to refactor the dependency into a higher level layer of the architecture.

	Document History
	Document Location
	Revision History
	Approvals
	Distribution

	Contents
	1. Introduction
	1.1 Principles and Guidelines
	1.2 Open Architecture
	1.3 OA Business and Technology Drivers
	1.4 OA and SOA (Service Oriented Architecture)
	1.4.1 OA Principles essential to SOA
	1.4.1.1 Modularity
	1.4.1.2 Open Standards
	1.4.1.3 Interoperability

	1.5 Document Scope
	1.6 Related (future) Open Architecture White Papers
	1.7 References
	1.8 Acknowledgements

	2. Open Architecture Reference Model
	2.1 Open Architecture Technical Nonfunctional Requirements
	2.1.1 Open Standards
	2.1.1.1 Definition
	2.1.1.2 Dependencies on other OA NFRs

	2.1.2 Modularity
	2.1.2.1 Definition
	2.1.2.2 Dependencies on other OA NFRs

	2.1.3 Interoperability
	2.1.3.1 Definition
	2.1.3.2 Dependencies on other OA NFRs

	2.1.4 Extensibility
	2.1.4.1 Definition
	2.1.4.2 Dependencies on other OA NFRs

	2.1.5 Reusability
	2.1.5.1 Definition
	2.1.5.2 Dependencies on other OA NFRs

	2.1.6 Composability
	2.1.6.1 Definition
	2.1.6.2 Dependencies on other OA NFRs

	2.1.7 Maintainability
	2.1.7.1 Definition
	2.1.7.2 Dependencies on other OA NFRs

	2.2 Open Architecture Drivers
	2.2.1 Total Cost of Ownership
	2.2.1.1 Acquisition
	2.2.1.2 Vendor Payments
	2.2.1.3 Training
	2.2.1.4 Development/Integration
	2.2.1.5 Testing
	2.2.1.6 Maintenance
	2.2.1.7 End of Life

	3. OA Technical Principles
	3.1 Use Open Standards
	3.1.1 Use Open Standards Principle Statement
	3.1.2 Motivation for Open Standards Use
	3.1.3 Implications of Using Open Standards

	3.2 Use Modular Design
	3.2.1 Use Modular Design Principle Statement
	3.2.2 Motivation for the use of Modular Design
	3.2.3 Implications of using Modular Design

	3.3 Design for Interoperability
	3.3.1 Design for Interoperability Principle Statement
	3.3.2 Motivation for designing for Interoperability
	3.3.3 Implications of designing for Interoperability

	3.4 Design for Extensibility
	3.4.1 Design for Extensibility Principle Statement
	3.4.2 Motivation for designing for Extensibility
	3.4.3 Implications of designing for Extensibility

	3.5 Exploit Reusability
	3.5.1 Exploit Reusability Principle Statement
	3.5.2 Motivation for exploiting Reusability
	3.5.3 Implications of exploiting Reusability

	3.6 Design for Composability
	3.6.1 Design for Composability Principle Statement
	3.6.2 Motivation for designing for Composability
	3.6.3 Implications of designing for Composability

	3.7 Design for Maintainability
	3.7.1 Design for Maintainability Principle Statement
	3.7.2 Motivation for designing for Maintainability
	3.7.3 Implications of designing for Maintainability

	4. Related Nonfunctional Requirements
	4.1 Scalability
	4.2 Replaceability
	4.3 Portability
	4.4 Supportability
	4.5 Affordability
	4.6 Information Assurance (IA)

	5. Open Architecture Guidelines
	5.1 Open Architecture Criteria
	5.1.1 OA is needed if
	5.1.2 OA is not needed if
	5.1.3 “Degrees of Openness”

	5.2 About OA Enablers and Inhibitors
	5.3 Organizational Practices
	5.3.1 Enablers
	5.3.2 Inhibitors

	5.4 Open Standards
	5.4.1 Enablers
	5.4.2 Inhibitors

	5.5 Modular Design
	5.5.1 Enablers
	5.5.2 Inhibitors

	5.6 Maintainability
	5.6.1 Enablers
	5.6.2 Inhibitors

	5.7 Interoperability
	5.7.1 Enablers
	5.7.2 Inhibitors

	5.8 Extensibility
	5.8.1 Enablers
	5.8.2 Inhibitors

	5.9 Reusability
	5.9.1 Enablers
	5.9.2 Inhibitors

	5.10 Composability
	5.10.1 Enablers
	5.10.2 Inhibitors

