
COTS Integration Questions and Checklist

SPC-2000018-CMC

Version 01.00.01

May 2000

COTS Integration Questions and Checklist

SPC-2000018-CMC

Version 01.00.01

May 2000

Louis C. Rose

Roger Alexander

SOFTWARE PRODUCTIVITY CONSORTIUM
SPC Building
2214 Rock Hill Road
Herndon, Virginia 20170-4227

Copyright © 2000, Software Productivity Consortium NFP, Inc. Herndon, Virginia. Permission to use, copy modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48-CFR 227 and 252, and provided that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear in supporting documentation. This material is based in part upon work sponsored by the Defense Advanced Research Projects Agency under Grant #MDA972-96-1-0005. The content does not necessarily reflect the position or the policy of the U.S. Government, and no official endorsement should be inferred. The name Software Productivity Consortium shall not be used in advertising or publicity pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium NFP, Inc. SOFTWARE PRODUCTIVITY CONSORTIUM NFP, INC. MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

CONTENTS

vPreface

1Software Architecture

3COTS Integration

5COTS Functionality

7Management

This page intentionally left blank.

PREFACE

The inclusion of Commercial Off-the-Shelf (COTS) components into a system development effort affords many opportunities for both reuse and economies of scale. Systems must no longer be built completely from the ground up. Instead, components from previous development efforts can be reused, thus speeding the development effort and reducing the cost of software construction. Alternatively, new components can be purchased from the open marketplace, which affords the opportunity to be selective in what features, functions, and capabilities are acquired without having to pay the price of custom development.

Unfortunately, the process of including COTS components is often difficult and laborious and is usually fraught with a number of risks and pitfalls. Key among these is the loss of control over the complete development process that an organization must assume if COTS components are used. The reality is that such organizations will have little or no control over how the components are developed and very little influence over their features and capabilities. Companies that produce COTS components have their own agendas, usually quite distinct from the organizations that adopt their tools. This, of course, is the tradeoff that must be made to enjoy the benefits that the use of COTS components can bring.

For an organization to be successful in using COTS components, a number of factors must be considered:

· First, the use of COTS components will necessarily have an effect on the architecture of the system being developed. Likely, there will be less flexibility available to the software architect due to constraints and requirements imposed by the components selected. Different sets of components will typically have different sets of constraints and requirements, and thus tradeoffs must be considered.

· Second, the manner in which the selected components must be integrated may impose additional constraints on the architecture. If so, these almost certainly have an effect on the implementation as new wrappers and adapters are likely to be required. Also, there will be effort required for the development team to understand the behavior of the components and how to make use of them.

· Third, the functionality of the components themselves must be considered. It is unlikely that a given component will have the exact functionality required for a particular situation. It may be that the component has more capability than is needed; in this case issues of safety, security, and correctness come into play. Alternatively, the component may not provide all the required functionality, thus necessitating composition with other components or even the writing of potentially sophisticated wrappers and adapters.

· Finally, the management of the development process itself must be considered in light of the use of COTS components. Many new issues come into play that do not exist when an entire system is developed in-house. For example, licensing will have to be considered as well as other vendor relationships. Also, the cost of adopting and adapting the components must be considered as well. It may make more sense to build than to buy when all factors are considered.

This technical note presents a checklist for adopting and integrating COTS components. It is intended to provide a guideline for how to approach COTS integration and to focus attention on the key factors for using COTS components successfully. While it may not be complete, the checklist should provide an organization, which is considering the adoption of COTS components insight into the areas that must be carefully considered. For organizations already engaged in COTS-based development, the checklist will serve as a milepost helping to ensure that all the critical activities and decisions are carried out in an effective manner.

COTS INTEGRATION QUESTIONS AND CHECKLIST

	Software Architecture

	Questions
	Remarks

	1. Has the software architecture been explicitly and clearly described?
	It is important that the software architecture is designed first and the COTS products are selected that fit the architecture. A collection of products with no architecture in mind is nothing but a collection of products.

	2. How was the software architecture derived? Did peers review the architecture?
	The derivation of a software architecture is not a straightforward activity. If the architecture development was not the product of some appropriate level of analysis and reviewed by peers, it is probably not a good architecture.

	3. Is this a new architecture to the developing organization?
	If the architecture or infrastructure of the system is new to the team, how did they gain the knowledge to develop the architecture. Did the knowledge stay in-house?

	4. Is the software architecture well understood by the development team?
	If only one or two people understand the architecture, there needs to be a plan to impart the knowledge of the architecture to the team.

	5. How have the COTS components been allocated to the architecture?
	The decision of which functionalities in the architecture are to be supported by COTS products should not be made in an ad hoc fashion. There should be some type of a formal or semiformal analysis of the allocation of COTS products to support an architecture.

	6. Are all the interfaces in the architecture understood?
	No interface within the architecture should be ignored or the knowledge of it taken for granted. The impact and operation of all interfaces within an architecture must be understood.

	7. Is there a controlling middleware layer (e.g., CORBA, DCOM, transaction monitor)? How much experience does the development team have in the middleware products?
	Middleware products typically form the backbone of an architecture; ensuring that there is enough knowledge and experience on the team is critical. If the middleware is new to the team, they should be getting explicit training.

This page intentionally left blank.

	COTS Integration

	Questions
	Remarks

	1. Is the product new to the organization?
	If the product is new to the organization, obtain as much information as you can afford (e.g., training, vendor support/cooperation, testbed operations).

	2. Is the team sufficiently qualified and trained in the integration capabilities of the product?
	It is not enough to just have experience and training with a product operation; the integration capabilities of a product can be quite different than the operation of the product. For example, the graphical user interface (GUI) may provide an intuitive operational control while the application programming interface may be fully object-oriented.

	3. Have the impacts on the system resources of the product been properly analyzed?
	Each product has impacts of the available system resources; while some impacts are straightforward, some impacts are hidden or vary over time. For example, the impact of temporary disk files varies over time, the use of them may not be documented, and the files may or may not be deleted after their use. Product impacts on network utilization are typically not documented as well.

	4. Does the product have an Application Programming Interface (API)?
	There are many different methods that products use for providing integration capabilities. An API is generally accepted as one of the most effective methods. If the product has a different integration method (or no method at all), some form of translator will most likely need to be developed.

	5. Does the development team understand the capabilities and complexities of the API?
	The capabilities and complexities of APIs will vary widely across products. Simply knowing that a product has an API is insufficient information to make critical decisions on estimating the integration effort. Some product APIs will have hundreds of routines and may use a paradigm that is quite different from the operational paradigm. If the team has no experience with such an API, some form of training is needed.

	6. Has the integration of the product’s data with the system data been fully analyzed?
	Operational or control integration is only part of the problem. Analyzing the product’s data formats and determining how the data is to be integrated in the system’s data scheme is essential. If a product uses a commercial DBMS, beware of attempts to directly access the physical database, especially directly writing to a product’s database. It is very easy to destroy the internal integrity of the product’s database.

	7. Has the size of all the integration efforts for the product been estimated? How confident are the estimations? Is there a measure of the confidence?
	This is pretty straightforward. Ensure that ALL the integration efforts are analyzed and the integration effort is estimated. Each integration effort in the development of a system is different from the others.

	8. Does the product have any built-in (vendor-supplied) integration with other components of the system?
	While this situation initially appears to be an “ideal” situation (no integration development is required), the situation is in need of further investigation. How cooperative are the vendors with respect to the upgrade schedules of the other vendor’s products? What is the history of past upgrades? Do both vendors have continuing plans to continue to support the integration?

	9. Is the product upgrade cycle known? How will the project react to the upgrade?
	The product upgrade cycle for every product designed to be in the system should be known, and the impacts on the development and deployment of the products should be reflected in the planning.

	10. What is the history of forward and backward compatibility of product upgrades?
	As the products have been upgraded, determine how well the vendor has maintained compatibility in the past because this is a reasonable indication for the future.

	COTS Functionality

	Questions
	Remarks

	1. Have system/software requirements been allocated to the products?
	The system and software requirements should be allocated to components that are candidates for a COTS product. You should not select a set of products first and then try to “force” the requirements to fit the products.

	2. How are requirements that are not met by the product being handled?
	For any large system that uses a significant number of COTS products, there WILL be some requirements that were intended to be satisfied by a product but are not. How has the development team proposed to handle these situations?

	3. Has functionality that is beyond the allocated requirements been addressed?
	For any large system that uses a significant number of COTS products, there WILL be functionality that the products have that goes beyond the requirements. While this may seem to be that the customer is “getting something for free,” there are several issues that must be considered. If you as the contractor must provide a system warranty, how do you plan to respond to a situation where the use of this extra functionally causes a system failure. Who is responsible—the user for using the extra functionality or the developer for delivering a system that can be grossly affected by the use of this extra functionality? The answer is by no means clear. Understanding the impact of the use of this extra functionality is critical.

	4. How easy is the product to use?
	Basic and simple.

	5. How consistent is the look and feel of the product with the rest of the system?
	A system that contains a collection of products that have different looks and feel can be very annoying to the user.

	6. Were components on which the product is dependent properly considered?
	Dependencies such as shared operating environments, databases, and network resources must be analyzed.

	7. Is the product’s overall operation well known?
	Proceeding with system development with products whose operation is not fully understood is risky.

	8. How have known problems that exist in the product been handled?
	All products have some problems, some simple and innocent and some that may significantly impact system operations.

	9. What standards do the products support?
	Obtain certifications from the vendor for the standards that the products support if proof is needed by the customer; this should save testing for standards compliance.

	10. How mature is the product?
	Does the product have a proven track record, or is the product a new one? If the product is new, as much information as possible about its use should be obtained, such as references from current users.

	11. How was the product evaluated and selected? Ad hoc or with a defined process?
	The evaluation and selection process should use a method that provides a comprehensive form of comparison. Simple checklists and weighted averages may not be sufficient. Ad hoc selection is clearly insufficient.

	12. Were the selection criteria sufficient?
	If selection criteria were used in the process, they should contain criteria that address architectural and management issues in addition to product functionality criteria.

	Management

	Questions
	Remarks

	1. Have all the integration costs been properly estimated?
	The integration of each product has many varying issues. All integration efforts should not be treated in the same fashion.

	2. What relationship does the company have with the vendor?
	Working with knowledgeable vendors whenever possible is best but not always possible. The organization should work hard to understand the capabilities and philosophies of new vendors.

	3. How long has the vendor been in business?
	Purchasing a new product from an upstart vendor could be risky.

	4. How financially stable is the vendor?
	If you are considering a product from a young vendor, perform due diligence on the vendor.

	5. What is the vendor’s market share?
	This is a reasonable indication of the future viability of the product.

	6. Is the vendor willing to modify the product to meet requirements currently outside the scope of the product capability?
	This is a rare but viable circumstance. Requesting a modification to a vendor’s product requires a strong relationship with the vendor.

	7. Has the organization executed mutual nondisclosure agreements with all COTS vendors?
	This is an absolute requirement, especially for vendors of products that are critical to the system.

	8. Have data rights been properly negotiated with the vendors?
	The data rights issue can vary widely with different vendors.

	9. Have cost-effective licensing agreements been worked out with the vendors?
	Also try to negotiate a licensing agreement that is better than listed pricing. The larger the system’s use of a product, the more likely it is to strike a deal.

	10. Has the configuration management (CM) of the products been properly planned for?
	The CM of COTS products should not be assumed to be a straightforward issue.

	11. Has the integration testing of the products been thoroughly planned?
	In a system that contains several COTS products, integration testing of these products should begin as early in the development cycle as possible. Also, as new products are added to the integration testbed, retesting of previously integrated products may be required. Since you can never have a full understanding of the behavior of the products, those products that are critical and tightly coupled may need to be retested as the integration proceeds.

	12. Have the risks related to using each product been identified and managed?
	This aspect should be a normal part of a sound development process, the use of commercially developed products is no different. When including the product into a system, the contractor (not the vendor) assumes whatever risks that are associated with the product.

	13. Is there a plan to negotiate unsupported requirements with the customer?
	If the customer has required the use of COTS products and those products do not support all the requirements, try to negotiate with the customer to remove some of the requirements.

	14. Have the vendor’s technical support capabilities been fully evaluated?
	Straightforward.

	15. Have all the related product costs been considered?
	Do not forget to consider vendor technical support and maintenance costs during development as well as deployment.

